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1 PROOF SKETCH OF PROPOSITION 3.1

We present a proof sketch for Proposition 3.1 below. First, we establish one lemma under these assumptions.
We omit its proof because it is straightforward.
Lemma 1.1. Assume that activation function σ in the network (29) is Lipschitz and the state space S is
bounded. Then, the network F(sss;φ) is Lipschitz in the hyperparemeter φ .

Now let us turn to the proposition’s proof:

Proof Sketch of Proposition 3.1. Given ξ and two sets of hyperparameters φ and φ ′, we can show that∣∣∣∣∣ max
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using Assumption A.1. From the construction of the penalty function z (cf. (5)), we know further that the
right-hand side of (31) should be bounded from above by
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where sss = {ssst , t ∈ T} is the state trajectory under the randomness ξ and action sequence aaa. The Lipschitz
property of deep networks ρ established in Lemma 1.1 ensures that there exists a sufficiently large L such
that

|ρt(ssst ,φt)−ρt(ssst ,φ
′
t )| ≤ L∥φt −φ

′
t ∥ (3)

for all t. This, together with (1) and (2), implies,∣∣∣∣∣ max
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in other words, maxaaaY (φ ,aaa,ξ ) is Lipschitz in φ .
Furthermore, the infinitesimal perturbation analysis (IPA) in the simulation literature (e.g., (Glasserman

2004; Asmussen and Glynn 2007)) ensures that

∇φE[max
aaa

Y (φ ,ξ )] = E[∇φ max
aaa

Y (φ ,ξ )]. (5)

Consider the gradient inside the expectation on the right-hand side of the above equality. As we change φ , the
envelope theorem states that, the resulting change in the optimal policy aaaφ has no first-order contribution to
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the optimal value Y . (Milgrom and Segal 2002) show the envelope theorem holds under the differentiability
of the optimal value function in their Corollary 4. It is easy to check that the conditions of Corollary 4 in
(Milgrom and Segal 2002) are satisfied if Assumption A.2 holds. Based on this observation, we have

∇φY (φ ,ξ ) =−
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Hence,
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