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Given limited network information, we consider robust risk quantification under the Eisenberg-Noe model

for financial networks. To be more specific, motivated by the fact that the structure of the interbank network

is not completely known in practice, we propose a robust optimization approach to obtain worst-case default

probabilities and associated capital requirements for a specific group of banks (e.g., SIFIs) under network

information uncertainty. With this analytical tool, we observe the effects of various incomplete network

information on these worst-case quantities and provide insights into the collection of network information

from the perspective of financial regulators. All claims are numerically illustrated using data from the

European banking system.
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1. Introduction

Along with the evolution of interconnectedness in financial systems, the importance of financial

institutions’ exposure to losses arising from other institutions’ defaults has increased significantly

in recent years. The more banks are exposed to such losses, the more likely they are to suffer

from the domino effects of financial failures. As seen in the financial crisis of 2008, large financial

institutions may face severe financial stress in quick succession. For another example, since the

onset of the Greek sovereign debt crisis in 2010, some European countries have failed to make
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scheduled debt payments to their creditors such as the International Monetary Fund, resulting in

significant stress on many European banks (Guerrieri et al. 2012).

Such repeating financial crises have provoked heated academic debates on how to measure,

mitigate, and manage the aforementioned risk with a focus on the impact of the financial system’s

network topology. Above all, Eisenberg and Noe (2001) have played a key role in those discussions.

Specifically, the authors provide a clearing mechanism that settles payment obligations of financial

institutions based on a fixed-point characterization. This mechanism effectively describes default

cascades triggered by interbank liabilities in financial networks, leading to many subsequent studies.

To name a few, Elsinger et al. (2006) develop an empirical approach to assess systemic risk, Capponi

et al. (2016) analyze the effect of liability concentration on systemic losses, and Cifuentes et al.

(2005) and Rogers and Veraart (2013) propose extended models incorporating asset fire sales.1 Liu

and Staum (2010) and Feinstein et al. (2018) conduct sensitivity analyses of clearing payments, and

Barucca et al. (2020) study a network-based valuation model for interbank claims. See Birge et al.

(2018) for a good review of this strand of the literature. Interested readers can also consult Gai

and Kapadia (2010) and Elliott et al. (2014) for other models of default contagion in the networks.

Nonetheless, only a few papers use the Eisenberg-Noe model to investigate the impact of random

losses in banks’ assets on their solvency, which is of practical importance to regulators. For example,

Chen et al. (2016) find a lower bound of the probability that a shock to a single bank leads to other

banks’ default. Khabazian and Peng (2019) provide a lower bound of the probability of bankruptcy

in the system when all banks receive normally distributed shocks. However, these works are not

applicable to the case of multivariate shocks following a general class of probability distributions.

Another limitation of the model is that it requires full information on interbank exposures in the

network, which is rarely available in practice as commonly noted in three well-known surveys in this

context (Glasserman and Young 2016, Capponi 2016, Benoit et al. 2017). Instead, various types of

partial information can be collected. For example, each bank’s aggregate interbank exposure can

be generally known from the balance sheet. The Basel III framework requires banks to report large
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interbank exposures, defined as exposures greater than or equal to 10% of their Tier 1 capital (BCBS

2020a,c). Also, the Basel Committee annually investigates the interbank assets and liabilities of

the so-called systemically important financial institutions (SIFIs), but not all banks are examined.

To address the issue of incomplete network information, many studies have developed network

reconstruction methods using the aggregate information of interbank assets and liabilities (e.g.

Anand et al. 2015, Upper and Worms 2004, Baral and Fique 2012, Cimini et al. 2015, Drehmann

and Tarashev 2013, Halaj and Kok 2013, Musmeci et al. 2013, Gandy and Veraart 2017). However,

since these methods do not consider random shocks to financial institutions, they do not provide

a clear answer to risk quantification (in particular, to the estimation of risk capital). Moreover,

Anand et al. (2018) find that none of those methods is generally superior to the other methods

and that the results highly depend on the jurisdiction of the data and the performance measure.

See Squartini et al. (2018) for a systematic review of recent network reconstruction methods.

Several other works focus on connectedness between banks, which we call link information, to

understand each bank’s risk contribution. For example, Kuzubaş et al. (2014), Das (2016), Bosma

et al. (2019) and Bartesaghi et al. (2020) use the link information to rank the banks according to

their systemic importance and identify SIFIs through the notion of network centrality. Still, the

effects of random shocks are not discussed in those works.

To our knowledge, Glasserman and Young (2015) is so far the only paper that considers both

random shocks and partial network information. They use the aggregate liabilities’ information to

obtain upper bounds of banks’ default probability and expected loss, assuming that random shocks

follow a particular type of distribution. However, little is known of a risk quantification method

that can accommodate various types of incomplete network information and random shocks.

Motivated by these limitations, this paper studies robust risk quantification based on multivariate

random shocks to financial institutions and incomplete network information under the Eisenberg-

Noe model. In particular, we provide a comprehensive framework for estimating the worst-case

default probabilities under different kinds of network information. In Figure 1, we illustrate the
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Figure 1 The network information sets that this work covers.

Note. The shaded area represents the network information that we address. The existing literature indicated here

includes Anand et al. (2015) (Anan), Upper and Worms (2004) (Maxe), Baral and Fique (2012) (Bara), Cimini et al.

(2015) (Cimi), Drehmann and Tarashev (2013) (Dreh), Halaj and Kok (2013) (Hala), Musmeci et al. (2013) (Musm),

Gandy and Veraart (2017) (Gand), Glasserman and Young (2015) (Glas), Kuzubaş et al. (2014) (Kuzu), Bosma et al.

(2019) (Bosm), Bartesaghi et al. (2020) (Bart), Das (2016) (Das), BCBS (2020a) (BIS1), and BCBS (2020c) (BIS2).

network information applicable to our framework and classify the aforementioned studies based on

the partial information they consider. We particularly focus on the default event of a specific set

of banks inspired by the fact that regulators pay close attention to the solvency of SIFIs. Indeed,

since the collapse of SIFIs could lead to a financial crisis, the Basel Committee developed higher

loss absorbency requirements for those institutions to secure the financial system by preventing

their bankruptcy (BCBS 2020b). The detailed contributions of this work are as follows.

1. MILP formulation for worst-case default probabilities. We first characterize a bank’s

default event with respect to a shock vector, assuming that full network information is available.

This is then leveraged to formulate a mixed-integer linear program that identifies the worst-case

default event of one or more banks in a specific set, taking into account all possible network

configurations under limited network information. Our approach facilitates the unbiased estima-
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tion of the worst-case default probability and outperforms existing robust optimization methods

that provide more conservative solutions or require computationally intractable procedures.

2. Worst-case systemic risk capital. We compute the minimum capital amount required to

keep all SIFIs solvent with a certain probability to protect the financial system from falling into

a crisis, which we call worst-case risk capital.2 Specifically, we formulate a chance-constrained

optimization problem in which the worst-case default probability of SIFIs is controlled by a cash

injection strategy. The difficulty of solving the problem is alleviated by the shock propagation

mechanism and sample average approximation.

3. Information sensitivity. We proceed to apply our results to various types of limited network

information based on real-world data. For information to be gathered efficiently, we make the

following suggestions on regulatory policies:

(a) When it comes to regulating some selected banks (e.g. SIFIs), gathering only those banks’

information would be one of the best options for regulators to take. Information from the

other banks is found to have little impact on improving the worst-case quantities associated

with the target banks. Given that data collection can be costly, this result helps effectively

reduce the amount of information regulators need to collect.

(b) Another effective option is to collect information on large exposures since they are likely to

be the main source of potential shock contagion. Our numerical analysis indicates that this

information leads to small gaps between the associated worst-case quantities and the true

quantities. This alternative, however, calls for a judicious choice of the threshold for large

exposures to balance the cost of gathering information with its effectiveness.

(c) In the case it is difficult to require banks to report their full data, collecting only link

information without exact amounts is a sensible alternative, provided that the network

has low density. Our study demonstrates that the worst-case quantities under this kind of

information are close to the true quantities for sparse networks.3

(d) It is unlikely that relying on only aggregate information or a part of target banks’ informa-

tion will help. We observe a significant gap between the true quantities and the worst-case

quantities under such information.
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We note that the observations in contributions 3-(a) and 3-(b) share a common thread with Mus-

meci et al. (2013) and Cimini et al. (2015) since they numerically show the robustness of systemic

risk estimates to partial network information. However, in contrast to those works, this paper con-

siders random shocks for risk quantification and investigates how the difference between true and

worst-case risk quantities varies according to various types of limited network information.

The remainder of the paper is organized as follows. Section 2 introduces the underlying model

and describes the problem formulation. In Section 3, we characterize the region for a shock vector

to drive a specific bank to default using the notion of shock propagation. In Section 4, we obtain

the worst-case default probabilities, which change according to the level of available information.

In the section that follows, we apply our results to the computation of the worst-case risk capital

under incomplete network information. In Section 6, we verify the practical applicability of our

results via numerical experiments using real-world data. Finally, Section 7 concludes the paper.

All proofs can be found in the online supplement.

2. Problem Formulation

We begin this section by introducing the basic notations in this paper. All vectors are column

vectors, denoted by bold symbols; e.g., u = (u1, . . . , ud)
> ∈ Rd. The Euclidean norm of a vec-

tor u is denoted by ‖u‖. We use 1, 0, and I for vectors of ones and zeros and the identity

matrix in a suitable dimension, respectively. For any two vectors u,v ∈ Rd, u ≤ v means an

entry-wise inequality, [u,v] = {x ∈ Rd | u ≤ x ≤ v}, u ∧ v = (min{u1, v1}, . . . ,min{ud, vd})>, and

u+ = (max{u1,0}, . . . ,max{ud,0})>. For any matrix M, we denote by M−i the matrix obtained

by eliminating its i-th column and row (similarly defined for vectors). For any two index sets

I,J ⊂ {1, . . . , d}, vI is the vector obtained by restricting the entries of the vector v ∈Rd to I, and

MI,J is the matrix obtained by restricting the components of the d× d matrix M to I × J . If

I =J , we simply write MI .

2.1. The Model and Basic Assumptions

In this paper, we consider an n-bank financial system, where banks are indexed by 1, . . . , n, and

adopt an extended framework of Eisenberg and Noe (2001). The extension comes from, first, the
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existence of liabilities to entities outside the financial network, and second, the inclusion of random

shocks to the external asset values and bankruptcy costs. This modeling framework is proposed by

Glasserman and Young (2015) and it consists of the following ingredients:

� p̄ij is the payment obligation from bank i to bank j, with p̄ii = 0;

� for each i, ci, bi ≥ 0 are the external assets and the external liabilities of bank i, respectively;

� each bank’s balance sheet is given by

1. the asset side: ci +
∑

j 6=i p̄ji;

2. the liability side: p̄i := bi +
∑

j 6=i p̄ij;

3. the initial net worth (book value): wi := ci +
∑

j 6=i p̄ji− p̄i;

� the proportion of bank i’s obligation to bank j is defined by aij := (p̄ij/p̄i)1{p̄i>0};

� a random variable Xi is a shock to the external asset ci;

� η≥ 0 is a multiplier for bankruptcy costs which will be introduced below.

After the shock, bank i’s external asset and its net worth become ci−Xi and wi−Xi, respectively.

Here, 1{p̄i>0} yields 1 if p̄i > 0 and 0 otherwise. We denote the matrix of the relative liabilities

by A = (aij) and the sum of the i-th row of A by βi. The quantity βi is the so-called financial

connectivity of bank i, measuring its reliance on funding sources inside the financial system. In this

paper, we denote by x = (x1, . . . , xn) a realization of the random shock vector X = (X1, . . . ,Xn).

In this framework, bank i defaults if bank i fails to pay its full liabilities p̄ij’s and bi, i.e., if the

asset side of its balance sheet is not large enough to keep it solvent. Then its assets are further

reduced by bankruptcy costs proportional to its shortfall in payments, given by

η

{
p̄i−

(
ci−xi +

∑
j 6=i

pjaji

)}
, (1)

where pj denotes the total debt payment of bank j. After deducting the bankruptcy costs, its

residual assets are distributed to its creditors according to the pro rata allocation rule, where

interbank liabilities p̄ij’s and external liabilities bi have the equal priority.

Based on the above-mentioned features of this framework, the celebrated notion of the clearing

payment vector p(x)∈Rn+ is defined as a solution to the following implicit equation:

pi = p̄i ∧

{
ci−xi +

∑
j 6=i

pjaji− η

(
p̄i− ci +xi−

∑
j 6=i

pjaji

)}+

, i= 1, . . . , n. (2)



Ahn, Chen, and Kim: Robust Risk Quantification via Shock Propagation
8 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Note that the term in the braces represents the amount of remaining assets after accounting

for bankruptcy costs. Thus, (2) implies that each bank either meets its payment obligation or

distributes all its remaining assets to the creditors. We note that the solvency condition for bank i

is equivalent to pi(x) = p̄i; the default of bank i happens only when pi(x)< p̄i.

To facilitate our analysis, we impose the following modeling assumptions in the paper.

Assumption 1. (a) The initial net worth is positive and bounded by the external asset, i.e., 0<

wi ≤ ci for each i.

(b) There does not exist any subset S of banks such that aij = aji = 0 for all (i, j)∈ S ×Sc.

(c) 0≤ η < (maxi βi)
−1− 1.

(d) For each i, xi ≤ ci− ηp̄i/(1 + η).

Item (a) allows us to focus on the impact of a shock vector on the system stability, and it also

indicates that interbank assets are smaller than total liabilities. Assumption 1-(b) implies that the

financial network is irreducible because if such set S exists, then banks in S can be regarded as

being outside the system and considered separately. Condition (c) makes the function p(x) unique

(Glasserman and Young 2015), and item (d) prevents bankruptcy costs in (1) from exceeding the

total assets so that taking the positive part in (2) becomes unnecessary.4

2.2. The Main Problem

In this paper, under the framework in Section 2.1, we focus on the probability that at least one

bank in a specific set T defaults, i.e.,

P

(
X∈

⋃
i∈T

Di

)
(3)

where Di is a set of shock vectors that make bank i default. Due to the shock propagation, for each

i ∈ T , the default event Di of bank i results not only from the loss in the bank’s external assets

but also from its exposure to the loss in interbank transactions.

If we know full network information A and the distribution of X, then the default probability (3)

can be easily estimated via Monte Carlo simulation: for l simulated shocks x1, . . . ,xl, by solving (2),
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Table 1 Possible examples of misspecified networks in Example 1.

Network Type Ring Star Complete Semi-Complete

Relative Liability
Matrix


0 .8 0 0 0
0 0 .8 0 0
0 0 0 .8 0
0 0 0 0 .8
.8 0 0 0 0




0 0 0 0 .8
0 0 0 0 .8
0 0 0 0 .8
0 0 0 0 .8
.2 .2 .2 .2 0




0 .1 .1 .1 .5
.1 0 .1 .1 .5
.1 .1 0 .1 .5
.1 .1 .1 0 .5
.2 .2 .2 .2 0




0 .4 .2 .2 0
.2 0 .4 .2 0
.2 .2 0 .4 0
.4 .2 .2 0 0
.2 .2 .2 .2 0


The leading zeros are omitted in the matrices for the ease of exposition. The naming convention of the networks is

consistent with the literature, except for the semi-complete network whose name stems from the fact that its subnetwork
consisting of banks 1 to 4 is a complete network.

Figure 2 Bank 5’s default probabilities under different network structures in Example 1.
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Note. The left panel illustrates the bank’s default probabilities with different σ under the true network and the

misspecified networks in Table 1. The right panel describes the relative differences between the default probabilities

under the misspecified networks and under the true network. The Monte Carlo method with 105 replications is used

for the estimation of the probabilities.

one can find clearing payments p(x1), . . . ,p(xl), based on which the frequency of the target event

is measured. Alternatively, Ahn and Kim (2018) introduce an efficient computational method for

the probability (3) using conditional Monte Carlo and importance sampling. However, the public,

banks, or regulators often face a lack of full network information and have only partial information

about financial networks. This poses a huge challenge to accurately assess the default probability (3)

due to possible misspecification of the target financial network. Below we provide a simple example

showing that the network misspecification leads to a misestimation of the default probability.
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Example 1. Consider a 5-bank financial network where wi = 2, p̄i = 8 for i= 1, . . . ,5, η= 0.1 and

the matrix A of relative liabilities is given by aij = 0.2 for all i 6= j. Note that β1 = . . .= β5 = 0.8.

However, if only the aggregate information (β1, . . . , β5) is available, one may incorrectly specify

the network structure as, for example, a ring network or a star network. Table 1 provides four

possible misspecified networks given the aggregate information. Assuming that the random shocks

X1, . . . ,X5 are i.i.d. and follow a lognormal distribution with parameters µ= 0 and σ ∈ [0.2,0.5], we

demonstrate in Figure 2 that the default probabilities of bank 5 under the misspecified networks

could deviate significantly from its true default probability. The star network and semi-complete

network in Table 1 result in the smallest and largest default probabilities for bank 5, respectively,

and the other networks in the table lead to values in between. The case of multiple target banks

will be discussed in Section 4.

Given such network uncertainties that make the exact computation of (3) intractable, one would

need to explore its worst-case version while utilizing all incomplete but available network informa-

tion. Hence, given each bank’s total liabilities (p̄i), external liabilities (bi), equities (wi) and partial

network information, we aim at investigating the worst-case default probability :

P
(
X∈DA,T

)
. (4)

Here, A is the set of all possible matrices of relative liabilities under given the partial network

information, which we call the network uncertainty set hereafter. The set DA,T :=
⋃

A∈A
⋃
i∈T Di is

a collection of shock vectors that might cause at least one bank in T to default in the worst case.

We often suppress the subscript T if it is clear from the context. By definition, (4) bounds (3) from

above, and they are equal when the full network information is known, i.e., when A is a singleton.

Remark 1. Given a lack of knowledge on the true network structure, for practical purposes, one

might consider estimating the probability (3) with a reduced-form approach such as a one-factor

Gaussian copula model. This relies on each bank’s marginal default probability and the correlation

coefficients between the common market factor and idiosyncratic factors without considering net-

work effects. However, if the network effects are not involved, each bank’s marginal probability will

depend only on losses in external assets, leading to the underestimation of the target probability.5
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3. Shock Propagation

To facilitate the derivation of the set DA,T , we characterize the solvency condition via the analysis

of shock propagation in the following lemma.

Lemma 1. For each shock realization x, bank i is solvent if and only if Φi(x)≤wi, where

Φi(x) := xi + max
ζ∈Qi

ζ>(x−i−w−i), (5)

Qi :=
{
v−i ∈Rn−1

+ |vI = (1 + η)(I− (1 + η)AI)
−1aiI , vIc = 0, I ⊂ {1,2, . . . , n} \ {i}

}
, ai is the i-th

column of A, and wi is bank i’s initial net worth defined in Section 2.1 for each i∈ {1,2, . . . , n}.

For each shock realization x, Φi(x) in (5) can be viewed as the total shock to bank i, which

aggregates the direct shock to bank i (i.e., the first term in the right-hand side of (5)) and the

indirect shock (i.e., the second term in the right-hand side of (5)) that indicates shock propagation

from other banks to bank i. Based on the above lemma, the set Di defined in Section 2.2 can be

represented as Di = {x ∈ [0,c] |Φi(x)>wi}, which is the set of shock vectors that cause the total

shock to bank i to exceed its net worth.6

To understand the implication of the vector ζ in (5), we observe that for each shock realization

x and for each i, there exists some I in {1,2, . . . , n} \ {i} such that

Φi(x) = xi +
(
aiI
)> (

(I− (1 + η)AI)
−1
)> (

(1 + η)(xI −wI)
)
, (6)

where the set I represents the set of insolvent banks. This implies that excess shocks of banks in

I, i.e., xI −wI , are increased by a factor (1 + η) and further amplified while circulating within

the set I since (I− (1 + η)AI)
−1 = I + (1 + η)AI + (1 + η)2A2

I + · · · . Then, the resulting shocks

are transferred to bank i through aiI . Note that the banks in the set Ic do not affect bank i.

Accordingly, the vector ζ in (5) captures the banks involved in shock propagation to bank i and

the extent of the propagated shocks, and thus, it can be interpreted as the impact of other banks’

excess shocks on bank i.7
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Before concluding this section, we highlight that for each shock realization x, the condition that

no bank in T defaults is given by Φi(x)≤wi for each i∈ T , where Φi(x) can be rewritten as

Φi(x) = xi + max

{∑
j∈T c

ζj(xj −wj)

∣∣∣∣∣0≤ ζj ≤ (1 + η)

(
aji +

∑
k∈T c

ajkζk

)
∀j ∈ T c

}
, (7)

and for each j ∈ T c, the optimal solution ζ∗j of (7) coincides with that of (5). Equation (7) holds

because bank i in T is not affected by the other banks in T (i.e., ζ∗j = 0 for all j ∈ T \ {i} due

to their solvency) and the vectors in Qi are the extreme points of the feasible set of the above

linear program. This result will be particularly useful for characterizing the worst-case total shock

to multiple target banks under network information uncertainty.

4. Robust Quantification of Default Probabilities

In this section, we discuss tractable quantification of (4) under incomplete network information.

Since Di = {x∈ [0,c] |Φi(x)>wi} by Section 3, for fixed sets A and T , one can derive that

DA,T =
{

x∈ [0,c]
∣∣∣ max
i∈T

{
Φi(x)−wi

}
> 0
}
,

where Φi(x) := maxA∈AΦi(x) means the worst-case total shock to bank i for each shock realization

x. A naive Monte Carlo estimation of the worst-case default probability (4) requires solving a bilevel

optimization problem for each shock realization x: the inner layer solves (7) to find Φi(x) given

A, and the outer layer maximizes Φi(x) over the set A. Such an optimization problem is, however,

difficult to solve in general. Hence, we first propose a tractable formulation of maxA∈AΦi(x) that

facilitates the computation of (4) and then apply it to various examples of partial information.

4.1. Main Result

We assume that total liabilities p̄1, . . . , p̄n and external liabilities b1, . . . , bn are given since their

information is often available to the public in practice, which implies that βj = (p̄j−bj)/p̄j is known

for all j. Also, individual interbank transactions are assumed to be partially (or not) observable.

In particular, the amount of the liabilities p̄jk of bank j to bank k may be exactly known for some

j, k. In some other cases, their positive lower bounds may be known instead of exact amounts; for
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example, if the liabilities between banks j and k are only known to exist, they would be at least

as large as a very small amount, e.g., a dollar.

Let K denote the set of indices (j, k) such that the amount of p̄jk is exactly known. Similarly, we

define K̃ as the set of indices (j, k) such that only a positive lower bound of p̄jk is known. Then,

considering all aforementioned cases, we construct the following network uncertainty set:

A=

{
Ã = (ãjk)∈Rn×n+

∣∣∣∣∣
n∑
k=1

ãjk = βj ∀j, ãjk = ajk ∀(j, k)∈K, ãjk ≥ ajk ∀(j, k)∈ K̃

}
, (8)

where {ajk}(j,k)∈K are the known relative liabilities, and {ajk}(j,k)∈K̃ are positive constants rep-

resenting the known lower bounds of the relative liabilities corresponding to K̃. As we shall see

in Section 4.2, given the available network information, K, K̃, and {ajk}(j,k)∈K∪K̃ can be properly

determined so that the network uncertainty set A in (8) represents the set of all possible network

configurations under that network information.

To facilitate discussions, we classify banks in T c according to the availability of their network

information. For fixed i ∈ T , we denote by Gi1 := {j ∈ T c|(j, k) ∈K ∀k ∈ {i} ∪ T c} the set of banks

whose liabilities to bank i and banks in T c are all known, by Gi2 := {j ∈ T c|(j, i) /∈ K} the set of

banks whose liabilities to bank i are not known, and by Gi3 := T c \ (Gi1∪Gi2) the set of banks whose

liabilities to bank i are known but whose liabilities to some banks in T c are unknown. Clearly, the

three sets are disjoint, there is no priority among them, and T c = Gi1∪Gi2∪Gi3. Based on these sets,

we establish our main result on Φi(x) by applying the worst-case scenario to the potential shock

propagation from bank j in T c to bank i, i.e., the right-hand side of the constraints in the linear

program (7), considering the network uncertainty set A of relative liabilities.

Recall that ζj in (5) and (7) measures the impact of bank j’s excess shocks on bank i. Observe

that for each j ∈ Gi1, there is no uncertainty in its liabilities aji and {ajk}k∈T c (see Figure 3-(a) in a

four-bank system with T = {4} and G4
1 = {1}). Thus, the corresponding constraints in (7) remain

unchanged as follows:

0≤ ζj ≤ (1 + η)

(
aji +

∑
k∈T c

ajkζk

)
for j ∈ Gi1. (9)
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By contrast, if the direct link from bank j to bank i is not known (i.e., j ∈ Gi2), one may intuit

that the worst-possible network would concentrate all unknown liabilities of bank j on that direct

link; Figure 3-(c) shows the worst-case allocation of bank 2’s liabilities when we consider a four-

bank system with T = {4} and G4
2 = {2} (Figure 3-(b)). Let β̃j := βj −

∑
{k|(j,k)∈K∪K̃} ajk, which

represents the sum of unknown relative liabilities of bank j. Then, the above intuition implies that

the worst-case version of the constraints in (7) could be written as

0≤ ζj ≤ (1 + η)

β̃j +
∑

k∈Kj∪K̃j

ajkζk

 for j ∈ Gi2, (10)

where Kj := {k ∈ T c|(j, k)∈K} and K̃j := {k ∈ T c|(j, k)∈ K̃}.

On the other hand, if j ∈ Gi3, since the direct link aji is known, the worst-possible network would

allocate all unknown liabilities of bank j to the link to a bank in T c \ Kj that has the greatest

impact on bank i, i.e., arg maxl∈T c\Kj ζl. For example, in a four-bank system with T = {4} and

G4
3 = {3} (see Figure 3-(d)), bank 3’s total unknown liabilities are allocated to its link to bank 1 if

the impact of bank 1 on bank 4 is greater than that of bank 2 on bank 4, i.e., ζ1 > ζ2 (see Figure 3-

(e)); otherwise, they are allocated to its link to bank 2 (see Figure 3-(f)). Hence, the associated

worst-case constraints may correspond to

0≤ ζj ≤ (1 + η)

aji +
∑

k∈Kj∪K̃j

ajkζk + β̃j

(
max

l∈T c\Kj
ζl

) for j ∈ Gi3. (11)

The right-hand sides in (10) and (11) represent the worst-possible shock propagation from bank j

to bank i. It is worth noting that banks in T are minimally liable since no unknown liabilities are

allocated to the links between them.

These considerations of worst-possible network structures help develop the tractable formulation

of Φi(x) by maximizing the total shock to bank i, i.e., xi+
∑

j∈T c ζj(xj−wj), subject to the above

constraints on {ζj}j∈T c , which is formalized in the following theorem.

Theorem 1. Assume that every bank in T is solvent and the network uncertainty set A satis-

fies (8). Then, for all x∈ [0,c] and for each i∈ T , Φi(x) is the maximum of xi+
∑

j∈T c ζj(xj−wj)
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Figure 3 An illustration of worst-possible networks with a four-bank system when T = {4}.

Bank 1 Bank 2

Bank 3 Bank 4
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(a) Bank 1’s Liabilities

Bank 1 Bank 2

Bank 3 Bank 4

a21

ã24
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(b) Bank 2’s Liabilities (unknown)

Bank 1 Bank 2

Bank 3 Bank 4

a21

β̃2

(c) Bank 2’s Liabilities (worst-case)

Bank 1 Bank 2

Bank 3 Bank 4

a34

ã31

ã32

(d) Bank 3’s Liabilities (unknown)

Bank 1 Bank 2

Bank 3 Bank 4

a34

β̃3

(e) Bank 3’s Liabilities (worst-case)

Bank 1 Bank 2

Bank 3 Bank 4

a34

β̃3

(f) Bank 3’s Liabilities (worst-case)

Note. We assume that all relative liabilities are known except a23, a24, a31, and a32. Black solid arrows represent

known liabilities (aij), and dashed arrows denote unknown liabilities (ãij). Red and blue solid arrows are the liabilities

of banks 2 and 3, respectively, in the worst-possible network.

among all impacts {ζj}j∈T c of banks in T c on bank i satisfying the worst-case shock propagation

constraints (9), (10), and (11). Further, the nonlinear constraints (11) can be written as the fol-

lowing equivalent linear constraints:
0≤ ζj ≤ (1 + η)

(
aji +

∑
k∈Kj∪K̃j

ajkζk + β̃jζl + 1− zjl
)

for j ∈ Gi3, l ∈ T c \Kj;∑
l∈T c\Kj

zjl = 1 for j ∈ Gi3;

zjl ∈ {0,1} for j ∈ Gi3, l ∈ T c \Kj,

(12)

where for each j ∈ T c, the binary variable zjl determines whether bank l has the greatest impact on

bank i among banks in T c \Kj.

The maximization problem in Theorem 1, constructed by replacing (11) with (12), is a

mixed-integer linear program (MILP) that is much easier to solve than the original formulation

maxA∈AΦi(x). Thus, it greatly facilitates the computation of P (X∈DA). Specifically, the Monte

Carlo estimate for P (X∈DA) can be computed by solving the MILP for each i ∈ T and checking
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if maxi∈T {Φi(x)−wi}> 0. While solving the MILP |T | times may seem time-consuming, this is

not a critical issue since the set T would often be a collection of SIFIs and the number of SIFIs

is limited in practice. Also, we can relieve the computational burden by not solving the MILP for

some shock realizations. Since maxi∈T {xi−wi}> 0 implies maxi∈T {Φi(x)−wi}> 0, it is enough to

solve the MILP only when xi ≤wi for all i∈ T . Later, we will see some cases that further improve

the time-efficiency of the algorithm by transforming it into linear programs, or by obtaining Φi(x)

even without solving an optimization problem.

Remark 2. For the robust quantification of (3), one may consider two alternatives. The first

method is to use the robust counterpart of the linear programming version of (2): max 1>p s.t.

(I−(1+η)A>)p≤ (1+η)(c−x)−ηp̄, 0≤ p≤ p̄, ∀A∈A, where the result of Soyster (1976) can be

applied. However, the solution turns out to be more conservative than ours. The second approach is

to identify the worst possible network configuration in A that yields the largest default probability,

i.e., maxA∈AP
(
X∈

⋃
i∈T Di

)
, using sample average approximation. However, this requires solving a

large-scale bilevel nonlinear optimization problem that is computationally intractable. In contrast,

our method relies on solving a single-level MILP in Theorem 1, which is smaller in size and easier

to solve. A numerical performance comparison is presented in Appendix A.

Remark 3. Given the network uncertainty set A, one might alternatively consider the worst-case

“systemic default” probability (WSDP). While there is no formal definition of systemic default, it

is often understood as the default of all banks in the system (Tasca et al. 2014, Battiston et al.

2016, Roukny et al. 2018). In this case, the WSDP can be easily characterized under our model as

long as X is a continuous random vector. Firstly, a simple calculation shows that for each x and A,

systemic default occurs if and only if s(x;A)> 0, where s(x;A) := (1+η)(I− (1+η)A>)−1(x−w)

denotes the vector of each bank’s payment shortfall. Hence, similar to (4), the WSDP can be

defined by P(X ∈ D̃A), where D̃A :=
⋃

A∈A{x | s(x;A) > 0} is the set of shock vectors that could

cause all banks to default in the worst case. Then, by Farkas’ lemma, it is not difficult to show that

P(X∈ D̃A) = P(Ψ(X) = 0), where Ψ(x) := max{(w−x)>ξ | (I−(1+η)A)ξ≥ 0 for all A∈A}. Note
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that the optimization problem for Ψ(x) can be simply converted into a tractable linear program

via a standard approach to robust linear optimization with polyhedral uncertainty (Bertsimas

et al. 2011). Accordingly, the WSDP can be estimated in a manner similar to the estimation of

P(X∈DA) discussed above. See Section EC.1.3 of the online supplement for technical details.

4.2. Applications to Various Network Information

This subsection provides several examples of partial network information to illustrate the usefulness

of the MILP formulation in Theorem 1 from the perspectives of individual banks and regulators.

Individual bank’s information. Suppose that bank 1 wants to estimate the worst-case default

probability (4) of its counterparty bank n, i.e., P(X ∈ DA,{n}) = P(Φn(X) > wn), using all the

information bank 1 has, i.e., K =
⋃n

j=1{(1, j), (j,1), (j, j)} and K̃ = ∅. In practice, bank 1 would

compute such a probability conditional on itself remaining solvent prior to bank n’s bankruptcy.

In this case, solving the MILP results in

Φn(x) = xn + (1 + η)
n−1∑
j=2

(βj − aj1)(xj −wj)+ (13)

since Gn1 = Gn3 = ∅ and Gn2 = {2, . . . , n−1}. This corresponds to the fact that, from bank 1’s perspec-

tive, the worst-case shock propagation to bank n occurs when all unknown liabilities of banks 2

to n−1 are associated with bank n. In this worst-case network structure, the condition that bank 1

is solvent before bank n’s default is given by x1 + (1 + η)
∑n−1

j=2 aj1(xj −wj)+ ≤w1, and hence, we

can estimate the said probability by sampling X from the distribution satisfying this condition.

Note that the increase or decrease in the amount of bank 1’s lending to bank n does not affect (4)

since Φn(x) and wn remain unchanged irrespective of these actions. However, if bank 1 allows

bank n to roll over the loan, the probability will be reduced because it has the same effect as

temporarily increasing wn while keeping Φn(x) unchanged.

Multiple banks’ information. Suppose that regulators want to estimate banks’ default

probabilities but have limited information obtained only from some of the banks. Let S denote

the set of banks that provide their own information to the regulators. Then, we have K =
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(
⋃
i∈S,j=1,...,n{(i, j), (j, i)}) ∪ (

⋃
j∈Sc{(j, j)}) and K̃ = ∅. Given this situation, the MILP in Theo-

rem 1 can be used for any S,T ⊂ {1, . . . , n}. Below we present two particular cases of S and T that

would be of interest to regulators. We find that in those cases, the MILP can be greatly simplified.

� The regulators might want to estimate the worst-case default probability (4) of the banks whose

information is not available. Thus, let us assume that the target banks’ information is not

available, i.e., T ⊂ Sc. Then, we have Gi1 = S, Gi2 = T c \ S, and Gi3 = ∅ for each i ∈ T , and thus,

one can show that the MILP can be recast as the following linear program:

max xi + u>(xT c −wT c) s.t.
(

(1 + η)−1I− Ã
)

u≤ q, u∈R|T
c|

+ , (14)

where

Ã =

 AS AS,T c\S

AT c\S,S 0

 and q =

 aiS

βT c\S −AT c\S,S1

 .
� Given incomplete network information, even if the regulators observe the target banks’ informa-

tion, i.e., T = S, the exact computation of their default probability (3) may not be feasible. In

this case, we have Gi1 = Gi2 = ∅ and Gi3 = T c for each i∈ T , and hence, the MILP is equivalent to

the following simple MILP formulation for i∈ T :

max xi + u> (xT c −wT c)

s.t. (1 + η)−1u1>− β̃T cu>+ Z≤
(
aiT c + 1

)
1>,

Z1 = 1, diagZ = 0,

Z∈ {0,1}|T
c|×|T c|, u∈R|T

c|
+ ,

where we simplify the notation by adding a redundant constraint diagZ = 0.

Large exposures’ information. As discussed in the introduction, according to the Basel III

framework (BCBS 2020a), a bank’s large exposures greater than or equal to 10% of the bank’s

capital are likely to be reported to regulators. We can deal with such a case in the MILP formulation

by letting K be the set of interbank transactions corresponding to large exposures and K̃ be an

empty set. We will see in Sections 6 and EC.4 that this information contains significant interbank
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liabilities that could largely affect network stability in practice, and thus, the worst-case default

probabilities under this information are likely to be close to the true values.

Link information. Recall that link information refers to the information on whether each

interbank link exists or not. We assume that such link information is available but the exact amount

of interbank liabilities is not observed. Let K and K̃=Kc denote the set of non-existing links and

the set of existing links, respectively. Then, for some ε > 0, the uncertainty set A can be given by

A=

{
Ã∈Rn×n+

∣∣∣ n∑
k=1

ãjk = βj for all j, ãjk = 0 for all (j, k)∈K, ãjk ≥ ε for all (j, k) /∈K

}
. (15)

Clearly, the uncertainty set A in (15) gets smaller as the set K becomes larger. This implies that

the lower the network density, the closer the worst-case probability (4) under the link information

is to the true probability (3). Note that the corresponding MILP problem is not as simple as the

equivalent formulations in the previous cases, but it is still easy to formulate and solve.

In the following theorems, we further observe the closeness between the probabilities (3) and (4)

given the link information (15) in the presence of regularly varying shocks and lognormal shocks.8

Theorem 2. Suppose that A satisfies (15) for fixed K and ε > 0 and that Xi be a nonnegative

random variable having a regularly varying distribution with index ρi > 1 for each i, i.e., for all

t > 0, limx→∞ fi(tx)/fi(x) = t−ρi where fi(·) is the density function of Xi. Let Xm = X/m for

m= 1,2, . . . , and ρ∗ = mini∈H∪T ρi, where H is the set of banks that have a directed path to a bank

in T . Assume that for large m, Xm
1 , . . . ,X

m
n are independent and constrained to be in [0,c] almost

surely. Then, for any A∈A,

lim
m→∞

1

logm
log P

(
Xm ∈DA

)
= lim

m→∞

1

logm
log P

(
Xm ∈

⋃
i∈T

Di

)
=−ρ∗+ 1. (16)

Theorem 3. Suppose that A satisfies (15) for fixed K and ε > 0 and that Xi follow a lognormal

distribution with parameters µi and σi for each i. Let Xm = X/m for m = 1,2, . . . , and σ∗ =

maxi∈H∪T σi, where the set H is defined as in Theorem 2. Assume that for large m, Xm
1 , . . . ,X

m
n

are independent and constrained to be in [0,c] almost surely. Then, for any A∈A,

lim
m→∞

1

(logm)2
log P

(
Xm ∈DA

)
= lim

m→∞

1

(logm)2
log P

(
Xm ∈

⋃
i∈T

Di

)
=− 1

2σ2
∗
.
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The above theorems commonly indicate that under the link information (15), the probabilities (3)

and (4) are asymptotically equivalent as the shock size gets smaller in the sense that for any A∈A,

lim
m→∞

log P
(
Xm ∈

⋃
i∈T Di

)
log P (Xm ∈DA)

= 1.

This not only highlights the importance of the link information but also allows us to use (4) as a

proxy of (3) when it comes to small but heavy-tailed shocks. The set H can be identified using the

link information (15) and represents the set of banks that may affect the banks in T .9 Also, (−ρi)

and σi indicate the heavy-tailedness of the shock Xi. Thus, among the shocks that could affect the

banks in T , the one with the heaviest tail has the most powerful influence on the probabilities (3)

and (4). See Section EC.2 of the online supplement for more discussions on the two theorems.

Aggregate information. Suppose that individual interbank liabilities are not observed at all

and only the aggregate information (β1, . . . , βn) is available, which is the case in Glasserman and

Young (2015, 2016). Then, K = {(1,1), (2,2), . . . , (n,n)} and K̃ = ∅. In this case, it is easy to see

that Φi(x) = xi+(1+η)β>T c(xT c−wT c)+ for i∈ T , and the worst-case default probability becomes

P(X∈DA) = P
(

max
i∈T

{
xi−wi + (1 + η)β>T c(xT c −wT c)+

}
> 0
)
, (17)

Thus, we do not solve an optimization problem for estimating this probability, which helps us

reduce the computation time greatly. Note that (17) is analogous to the result of Glasserman and

Young (2015); in fact, both coincide given a single shock and a single target bank. However, we

consider a multivariate shock vector X and the target event
⋃
i∈T Di in (17), whereas their result

is based on a single shock to a specific bank and the target event
⋂
i∈T Di.

Comparison of network information effects. We revisit the underlying network in Exam-

ple 1 to illustrate how the worst-case default probability (4) changes according to the network

information. In Figure 4, we present the estimated values of (4) with the target sets {1,2} and {5}

under five different types of network information: full network information, bank 1’s information,

target banks’ information, link information, and aggregate information. The same shock distribu-

tion in Example 1 is assumed. For the link information, we arbitrarily set ε= 0.05. Note that all
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Figure 4 The worst-case default probabilities under different types of network information.
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Note. The figure exhibits the worst-case default probabilities (4) for T = {1,2} (left) and T = {5} (right) with

different σ under different types of network information. The Monte Carlo method with 105 replications is used for

the estimation of the probabilities.

interbank liabilities in this example are large exposures, equal to 80% of banks’ capital, meaning

that the large exposures’ information is exactly the same as the full information.

In the left panel of Figure 4, we observe that the estimate of (4) given banks 1 and 2’s information

is closer to the true value (3) than the estimate of (4) given bank 1’s information. This corresponds

to our intuition that more information would lead to a better estimate. Also, in both panels, the

information of target banks in T gives the best approximation, implying that the firsthand shock

propagation is likely to dominate the whole shock propagation in financial networks. We shall see

in Section 6 that these observations are consistent even in the case of real-world financial networks.

The magnitude of the differences between the true and worst-case default probabilities (up to

50% in this example) greatly depends on several inputs, including partial network information,

shock distributions, bankruptcy costs, the size of interbank liabilities, and the number of target

banks. However, no matter how large or small the gap is, our methodology allows us to compare the

effects of different types of network information on the proximity between the true and worst-case

default probabilities, which eventually gives us practical insights into information collection.

5. Worst-Case Risk Capital
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The higher loss absorbency requirements in the Basel III framework ask global systemically impor-

tant banks (G-SIBs) to hold additional capital to reduce their default probabilities. The task of

gauging this risk capital poses a challenge when full network information is not available. In this

section, we apply the main results in Section 4 so as to estimate the minimum additional capital

amount, which we call worst-case risk capital, required to keep all SIFIs solvent with probability α.

Let T be the set of SIFIs, which is assumed to be given, and fix α ∈ [0,1). Then, using the

probability (4), our problem can be mathematically formulated as follows:

min
∑
i∈T

νi s.t. P
(

max
i∈T

{
Φi(X)−wi− νi

}
> 0
)
≤ 1−α, νi ≥ 0, i∈ T . (18)

Note that the left-hand side of the first constraint of (18) is the probability (4) with wi+νi instead

of wi for i∈ T . The optimal solution to (18), say να, limits the probability (4) to 1−α, and the total

amount να◦ :=
∑

i∈T ν
α
i is the worst-case risk capital. However, (18) is a joint chance-constrained

optimization problem that is known to be difficult to solve; since the probability does not have a

closed form in general, it is hard to check the feasibility of the probabilistic constraint, and even if

it is feasible, the feasible region might not be convex.

To tackle this issue, in the following theorem, we propose a sample average approximation (SAA)

of the problem (18) assuming that the random shock vector X can be sampled.

Theorem 4. Assume that X is a continuous random shock vector and x1, . . . ,xN are its indepen-

dent and identically distributed samples. Let V be the set of optimal solutions of (18) and M be a

sufficiently large constant such that Φi(X)<M almost surely for all i ∈ T . If (νN ,zN) solves the

following MILP:

min
∑
i∈T

νi

s.t.
N∑
j=1

zj ≤N(1−α),

wi + νi +Mzj ≥Φi(x
j), i∈ T , j = 1, . . . ,N,

0≤ νi ≤M, i∈ T ,

zj ∈ {0,1}, j = 1, . . . ,N,

(19)

then νN◦ :=
∑

i∈T ν
N
i → να◦ and infνα∈V ‖νN −να‖→ 0 with probability 1 as N →∞.
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Figure 5 The worst-case risk capital under different types of network information.
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Note. The left panel exhibits the worst-case risk capital νN◦ for T = {1,2} with N = 10,000, α = 0.95,0.99, and

different σ under five types of network information in Figure 4. The right panel shows the worst-case risk capital νN◦

for T = {1,2} with σ= 0.4,0.5, α= 0.99, and different N under full information and aggregate information.

Theorem 4 provides significant computational benefits because the new problem (19) is much

easier to solve than the original problem (18), and the approximation quality improves as the

sample size increases. Furthermore, the random vector X can be a general continuous probability

distribution, and hence, shocks to banks are possibly correlated.

Ahn and Kim (2019) and Demange (2018) study tractable mathematical programs for the optimal

capital injection under the Eisenberg-Noe framework. However, those approaches essentially differ

from ours. Firstly, their policies are scenario-based solutions and do not adopt any probabilistic

approach, i.e., each deterministic shock scenario may lead to a different capital allocation. Secondly,

they do not take incomplete network information and SIFIs’ default into special consideration.

In Figure 5, using Example 1 again, we describe the worst-case risk capital under different types

of network information, different σ, and different N , for the set T = {1,2}. In the left panel of the

figure, we observe the impact of network information on estimating the risk capital, which is similar

to the results in Figure 4. The right panel, on the other hand, numerically shows that the risk

capital is underestimated when the sample size is small, but converges rapidly as the sample size

increases. In general, the small sample size would lead to the underestimation of the (worst-case)

default probability and risk capital because default events are rare.
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Remark 4. One may also consider convex approximation (Hong et al. 2011), robust approxima-

tion (Yuan et al. 2017), and scenario approaches (Calafiore and Campi 2005, 2006) to overcome

the intractability of the problem (18). However, those methods either require more distributional

assumptions or lead to conservative bounds only. As long as we can sample the random vector, it

is relatively easier to apply the SAA than the other methods. See Luedtke and Ahmed (2008) and

Pagnoncelli et al. (2009) for more details on the SAA for joint chance-constrained optimization.

Before we end this section, we briefly discuss the applicability of our SAA approach to the mea-

surement of external creditors’ risk exposure to the financial system. If we regard the set of external

creditors as node 0 and denote the associated relative liabilities of bank i by ai0 for each i, then

a slight modification to Lemma 1 suffices to show that the creditors’ worst-case losses are equal

to Φ0(x) := maxA∈AΦ0(x) where Φ0(x) := max
{
ζ>(x−w) | (I− (1 + η)A)ζ ≤ (1 + η)a0, ζ ∈Rn+

}
and a0 = (a10, a20, . . . , an0)>, which can be computed using an MILP similar to the one in The-

orem 1. Thus, the associated value-at-risk, VaRα

(
Φ0(X)

)
= min

{
y ∈R+ |P

(
Φ0(X)> y

)
≤ 1−α

}
,

can be estimated via Theorem 4. According to Rockafellar and Uryasev (2000), given the samples

Φ0(x1), . . . ,Φ0(xN), the conditional value-at-risk of the worst-case losses can be approximated as

CVaRα(Φ0(X))≈min{y ∈R+ |Φ0(xj) + {N(1−α)}−1∑N

j=1 zj ≤ zj + y, zj ≥ 0, j = 1, . . . ,N}.

6. Numerical Experiments

To demonstrate how our theoretical results in Sections 4 and 5 can be applied in practice, we use

data from the 2011 EU-wide stress test conducted by the European Banking Authority (EBA). For

illustration, we restrict our focus on 11 German banks that participated in the test as in Chen et al.

(2016) and Gandy and Veraart (2017). Our numerical results based on the full dataset can be found

in Section EC.4 of the online supplement. Note that both datasets lead to the same conclusions.

The dataset of the German banks is provided in Table 2. We use the numbers in the first column

of Table 2 for the subscripts of variables; e.g., DE017’s net worth is denoted by w1 = 30,361. Since

this dataset does not report each bank’s bilateral interbank exposures, we adopt the three types of

reconstructed networks used in Chen et al. (2016): complete, ring-like, and core-periphery networks
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Table 2 Data of German banks from the 2011 EBA EU-wide stress test.

No. Code Bank Name Total Assets EAD Equity (w) External Assets (c)
1 DE017 Deutsche Bank AG 1,905,630 47,102 30,361 1,858,528
2 DE018 Commerzbank AG 771,201 49,871 26,728 721,330
3 DE019 Landesbank B-W 374,413 91,201 9,838 283,212
4 DE020 DZ Bank AG 323,578 100,099 7,299 223,479
5 DE021 Bayerische Landesbank 316,354 66,535 11,501 249,819
6 DE022 Norddeutsche Landesbank 228,586 54,921 3,974 173,665
7 DE023 Hypo Real Estate Holding AG 328,119 7,956 5,539 320,163
8 DE024 WestLB AG Dusseldorf 191,523 24,007 4,218 167,516
9 DE025 HSH Nordbank AG Hamburg 150,930 4,645 4,434 146,285

10 DE027 Landesbank Berlin AG 133,861 27,707 5,162 106,154
11 DE028 DekaBank Deutsche Girozentrale 130,304 30,937 3,359 99,367

All quantities are exhibited in millions of euros.

Figure 6 The recovered interbank network structures from the EBA stress test data.
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Note. The three structures above represent complete, ring-like, and core-periphery networks, respectively. For each

structure, nodes represent individual banks, and edges stand for their interbank exposures.

(see Figure 6). This reconstruction is based on an entropy-minimization method in Upper and

Worms (2004), assuming that each bank’s interbank assets and liabilities are equal to its exposure

at default (EAD).10 We refer the reader to Chen et al. (2016) for more details. For the core-

periphery network, DE017, DE018, DE019, and DE020 are selected as the core banks according to

the size of the total assets. The matrices of the relative liabilities for these networks are presented

in Section EC.4.3 of the online supplement.

We assume that the random shocks X1, . . . ,X11 follow Pareto distributions, taking into account

that heavy-tailed shocks could lead to large shock propagation. Note that if only a little shock prop-

agation occurs, it is obvious that the worst-case default probability and risk capital under partial

information are almost identical to the true quantities. For each i, the probability density fi of Xi
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Figure 7 The worst-case default probabilities for T = {DE017,DE018} under different network information and

different network structures.
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Note. The Monte Carlo method with 105 replications is used for the estimation of the probabilities. The legend in

the left subfigure applies to all the subfigures.

is assumed to depend on the amount of external assets as follows: fi(x) = θ−1
i (1 + λx/θi)

−(1/λ+1),

where θi = ci/c1 and λ∈ [1,6]. It is also assumed that the shocks are independent and constrained

to be in [0,c] to satisfy the modeling assumption in Section 2.

We set Deutsche Bank (DE017) and Commerzbank (DE018) as target banks, i.e., T =

{DE017, DE018}, since they were the two largest banks in terms of asset size and were identified as

G-SIBs by the Financial Stability Board in 2011. Further, we consider seven types of network infor-

mation: full network information, DE017’s information, DE018’s information, DE017 and DE018’s

information, large exposures’ information, link information, and aggregate information. Recall that

the worst-case quantities under full information correspond to the true quantities and those under

partial information should be larger than the true values.

In Figures 7 and 8, we observe the impact of network information on the worst-case default

probabilities (4) and risk capitals (18) as in Figures 4 and 5, respectively. We arbitrarily set ε= 0.002

for the link information and η = 0 for all cases. We find that most interbank exposures are large

exposures due to the small network size, and hence, the worst-case analysis under large exposures’

information is hardly different from the quantities under full information. While this observation

does not extend to the case of larger networks, the experiments with the full EBA dataset show

that large exposures’ information remains useful in larger networks; see Section EC.4.1 of the online

supplement. This result is associated with contribution 3-(b) in the introduction.
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Figure 8 The worst-case risk capitals for T = {DE017,DE018} under different network information and different

network structures.
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Note. The upper subfigures are when α= 0.95, and the lower subfigures are when α= 0.99. The number of samples

(N) is 10,000. All subfigures share the same legend in the upper left subfigure.

Notably, the impact of link information on approximation quality is highly sensitive to the

network structure. While it is most effective under the ring network, the performance hardly

improves under the complete network. This confirms that the value of the link information is

greater for a sparse network than for a dense network, as previously inferred from the corresponding

uncertainty set (15). This corresponds to contribution 3-(c) in the introduction.

More importantly, it is consistently observed that the target banks’ information results in the

best approximations while the aggregate information and the information of a single target bank do

not help much, which pertains to contributions 3-(a) and 3-(d) in Section 1. The figures nevertheless

show that the information of DE018 is more useful than that of DE017 regardless of the network

structure, which is because DE018 has greater financial connectivity than DE017 (see Table 2).

In contrast to the result in Figure 5, Figure 8 shows that the worst-case risk capital is close to the

true risk capital in most cases and the degree of proximity increases as α increases. This seemingly
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Figure 9 The distributions of (Φ1(X),Φ2(X)) with full information (left) and aggregate information (right).
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Note. The complete network is used for the illustration. We set λ= 4. Each rectangle represents the region in which

the total shocks to DE017 and DE018 are completely covered by their net worths and the corresponding risk capital

allocated to each of them.

conflicting phenomenon stems from the nature of factors that affect shock propagation and that of

the data we use. Figure 9 provides two scatter plots of the samples of (Φ1(X),Φ2(X)) under full

information and aggregate information, respectively. The figure tells us that large Φi’s are driven

by direct shocks but small Φi’s by indirect shocks. Hence, the shock propagation has more effects

on computing the risk capital for smaller α. Note that in the figure, the default probability estimate

counts the number of samples outside the region [0,w1]× [0,w2], whereas for risk capital, (να1 , ν
α
2 )

is determined to limit the number of samples outside the region [0,w1 + να1 ]× [0,w2 + να2 ] to at

most N(1− α). In addition, compared to the case in Figure 5, the financial connectivities of the

target banks are relatively small (see Table 2), which strengthens the impact of direct shocks.

7. Conclusion

In this paper, we addressed robust risk quantification under the Eisenberg-Noe model with incom-

plete network information. Particularly, we provided an MILP problem to identify worst-case shock

propagation to a specific group of banks from other banks, based on which worst-case default prob-

abilities are quantified. In response to recent changes in financial regulations, we also expanded our

approach to the problem of computing risk capital which secures SIFIs against the worst-case shock



Ahn, Chen, and Kim: Robust Risk Quantification via Shock Propagation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 29

propagation. We formulated the problem using chance-constrained optimization and suggested a

sample average approximation scheme for computational tractability. Our numerical observations

revealed the impact of partial information on the worst-case default probability and risk capital.

They were found to be potentially useful in estimating the true quantities in the presence of certain

network data such as target banks’ information, large exposures’ information, or link information.

This work opens up several interesting directions for further investigation. Firstly, analyzing

the difference between true and worst-case default probabilities and its sensitivity to information

availability could be insightful. Secondly, relaxing specific modeling features, such as extending

to the Eisenberg-Noe model with fire sales, would be interesting. Further, based on the mapping

from the shock vector x to the loss Φi(x), one may explore the problem of selecting the most

likely shock scenario given the loss outcome, which is called reverse stress testing. Lastly, assuming

that unknown interbank liabilities are random, one might tackle the issue of incomplete network

information differently by finding a confidence interval of the total loss given a shock realization.

Appendix A: Comparison with Different Approaches

In Table 3, we compare the performance of our approach with that of the two alternative methods

for the robust quantification of (3) in Remark 2, denoted by Robust LP and Bilevel NLP, respec-

tively. We consider two different networks: the core-periphery network constructed by the data of

11 German banks in Section 6 and that constructed by the full EBA data with 80 European banks

in Section EC.4.1 of the online supplement. We use the same target banks as in those sections.

We assume Pareto distributions for random shocks, where λ = 4 for the small network case and

λ= 2 for the large network case. Based on 1,000 presampled shock realizations, we apply different

approaches to estimate the worst-case default probabilities under SIFI information and aggregate

information, and thus, the computation times in Table 3 do not include sampling times. We use

the DELL PowerEdge R630 server with Dual Intel Xeon E5-2697 2.6GHz CPU and 128 GB RAM.

Our approach shows outstanding performance compared to the two alternative methods. In

particular, Robust LP is computationally fast, but it can be easily seen in Table 3 that the estimates

are too conservative to be used in practice. Bilevel NLP turns out to be extremely slower than

our method. More importantly, we find that this method may often produce unreliable estimates

despite such high computational costs and fail to distinguish SIFI and aggregate information as

seen in their identical estimates. Note that in the case of aggregate information, our approach is

fast and accurate since it does not require solving an MILP; see (17).
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Table 3 Estimates and estimation times under different approaches

for the robust quantification of (3) in Remark 2

Small network
SIFI information Aggregate information

Methods Estimate Time (sec) Estimate Time (sec)
Our approach 0.053 4.902 0.071 0.003

Robust LP 0.062 3.498 1 0.346
Bilevel NLP 0.053 3.038×102 0.053 4.634×102

Large network
SIFI information Aggregate information

Methods Estimate Time (sec) Estimate Time (sec)
Our approach 0.083 31.139 0.097 0.009

Robust LP 0.120 4.203 1 0.415
Bilevel NLP 0.083 1.985×104 0.083 3.004×104

Robust LP means the method of using the robust counterpart of (2), and Bilevel
NLP represents the method of using a bilevel nonlinear program to find the worst
possible network configuration that yields the greatest default probability.

Figure 10 The worst-case default probabilities and three different quantiles of the default probabilities.
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Note. The Monte Carlo method with 105 replications is used for the estimation of the probabilities.

Furthermore, we numerically examine the practical validity of our worst-case default probabil-

ities. We revisit the example of 11 German banks in Section 6 and assume that only aggregate

information is available. We first generate 106 network structures that satisfy the condition in the

set A with K= {(1,1), (2,2) . . . , (n,n)} and K̃= ∅ based on a homogeneous random graph model, in

which every possible edge occurs independently with probability 1/2. Given 105 shock realizations,

we estimate the default probabilities for each network structure and obtain their 99%, 99.9%, and

99.99% quantiles. In other words, we have an empirical distribution of the target default proba-

bility based on a million different network structures. Figure 10 compares our worst-case default

probabilities with those quantiles when T = {DE017, DE018}. We use the core-periphery network

in Section 6 for the full information benchmark. We observe that the 99.9% and 99.99% quantiles
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are close to our worst-case default probabilities with aggregate information. This implies that our

worst-case default probabilities are not overly conservative. We also note that the more information

is available (e.g., SIFI information), the smaller the gap between our worst-case default probabilities

and the quantiles, which further highlights the value of information on interbank liabilities.

Endnotes

1. Capponi and Larsson (2015) and Capponi and Weber (2022) discuss fire-sale spillover effects

between banks with applications to capital constraints and portfolio diversification, respectively.

2. Although the concept of the risk capital we consider is analogous to systemic risk measures that

address capital injection to each bank (Biagini et al. 2019, Feinstein et al. 2017), our approach differs

in that we consider the worst-case capital requirement against incomplete network information.

3. Since interbank networks typically have a core-periphery structure (in ’t Veld et al. 2020), the

entire interbank network is generally sparse, but the network of core banks could be relatively dense

in practice. In this case, link information may not be useful for approximating the true quantities.

4. Based on the empirical data, Ahn (2020) points out that conditions (c) and (d) are not restric-

tive from the practical point of view.

5. See Figure EC.9 of the online supplement for the 5-bank financial network in Example 1.

6. This lemma also allows us to visualize the default region and to understand an explicit form of

the total shock; see Sections EC.3 and EC.4.2, respectively, of the online supplement. Such analyses

are hardly possible if the set Di is represented by p(x) in which x is implicitly entangled.

7. The vector ζ can be viewed as a dual of the weighted Bonacich centrality in network analy-

sis (see, e.g., Candogan et al. 2012). This centrality is used as a measure of how influential each

single node is in a network, while ζ captures the influence of other nodes on a particular node.

8. Based on empirical observations, it is widely accepted that financial shocks have heavy tails in

practice; see, e.g., McNeil et al. (2015) and Bradley and Taqqu (2003).

9. See Section EC.2 of the online supplement for its mathematical definition.

10. The EAD quantifies a bank’s total claims on all other banks, and hence, is considered as the

size of its interbank assets. As interbank liabilities are not reported in the EBA data, their size is
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roughly assumed to be equal to the EAD or its perturbed value in the literature (Glasserman and

Young 2015, Chen et al. 2016, Gandy and Veraart 2017, Veraart 2020, Amini and Feinstein 2023).

Acknowledgments

The authors thank Paul Glasserman for his constructive comments on an earlier version of this paper. The

authors also appreciate the area editor (John Birge), the anonymous associate editor, and two anonymous

reviewers for their valuable and insightful feedback that improved the paper. The work of D. Ahn was

supported by the Early Career Scheme from the Research Grants Council of Hong Kong (Project No.

24210420). N. Chen acknowledges the funding supports from Research Grants Council, Hong Kong, via

GRF grants No. 14207918 and No. 14208620. Parts of this research of the second author has been done

during his visit to AI-powered Financial Technology (AIFT) Ltd., Hong Kong. The work by K. Kim was

supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT (NRF-

2019R1A2C1003144).

References

Acemoglu D, Ozdaglar A, Tahbaz-Salehi A (2015) Systemic risk and stability in financial networks. American

Economic Review 105(2):564–608.

Ahn D (2020) Shock amplification in financial networks with applications to the CCP feasibility. Quantitative

Finance 20(7):1045–1056.

Ahn D, Kim KK (2018) Efficient simulation for expectations over the union of half-spaces. ACM Transactions

on Modeling and Computer Simulation 28(3):Article 23.

Ahn D, Kim KK (2019) Optimal intervention under stress scenarios: A case of the Korean financial system.

Operations Research Letters 47(4):257–263.

Amini H, Cont R, Minca A (2016) Resilience to contagion in financial networks. Mathematical Finance

26(2):329–365.

Amini H, Feinstein Z (2023) Optimal network compression. European Journal of Operational Research

306(3):1439–1455.

Amini H, Minca A (2016) Inhomogeneous financial networks and contagious links. Operations Research

64(5):1109–1120.



Ahn, Chen, and Kim: Robust Risk Quantification via Shock Propagation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 33

Anand K, Craig B, von Peter G (2015) Filling in the blanks: Network structure and interbank contagion.

Quantitative Finance 15(4):625–636.
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Online Supplement

Appendix EC.1: Proofs of Theoretical Results

In this section, we denote by ei the i-th column of the identity matrix in a suitable dimension, and

for any two vectors u and v, we define u∨v = (max{u1, v1}, . . . ,max{ud, vd})>.

EC.1.1. Proof of Lemma 1

In this proof, we assume that η= 0. The proof for the case of η > 0 can be found in Ahn (2020).

Lemma EC.1. For each x∈ [0,c], p(x) is a solution to the following linear program:

max 1>p s.t. (I−A>)p≤ c−x, 0≤ p≤ p̄, (EC.1)

The above lemma is proved in Eisenberg and Noe (2001). In what follows, based on this lemma,

we prove the statement in four steps. Without loss of generality, we set bank n as the target.

Step 1. Let Q̃n := {u∈Rn−1
+ |(I−A−n)u≤ an−n}. We want to show that Qn is the set of extreme

points of Q̃n. To find extreme points, all we need to do is to find n − 1 linearly independent

and active constraints from the conditions u ≥ 0, (I −A−n)u ≤ an−n. Take any u ∈ Q̃n and set

J = {i|ui = 0} with I = {1, . . . , n− 1}\J . There must be an additional (n− 1− |J |) number of

linearly independent constraints for u to be an extreme point of Q̃n. Suppose that u is an extreme

point and it has

[(I−A−n)u]j = ajn (EC.2)

for some j ∈J as one of such constraints. Then, we get

[(I−A−n)u]j = uj −
n−1∑
i=1

ajiui =−
∑
i∈I

ajiui = ajn.

Since all quantities are nonnegative in the above equation and ui > 0 for i∈ I, we have aji = 0 for

all i ∈ I and ajn = 0. That means, these conditions must be satisfied for (EC.2) to be one of the

active constraints that determine u.
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As a result, if those conditions are met, then the constraint (EC.2) can be re-written as

[(I−A−n)u]j = uj −
∑
i∈J

ajiui = 0.

This, however, is clearly not independent of the constraints uJ = 0. Hence, the remaining n−1−|J |

number of constraints, i.e. ((I−A−n)u)i = ain for i ∈ I, must be active. Those n− 1 constraints

yield uJ = 0, uI = (I−AI)
−1anI .

For the converse, take u such that uJ = 0 and uI = (I−AI)
−1anI for any fixed I ⊂ {1, . . . , n−1}.

We need to show that u ∈ Qn. By the assumption on A, I−AI is also a nonsingular M-matrix

and thus its inverse is nonnegative, which implies uI ≥ 0. Hence, for j ∈J ,

[(I−A−n)u]j =−
∑
k∈I

ajkuk ≤ 0,

whereas, for i∈ I, from (I−AI)uI = anI

[(I−A−n)u]i = ui−
∑
k∈I

aikuk = ain.

This is simply (I−A−n)u ≤ an and thus u ∈ Q̃n. The linear independency of the constraints is

clear from the invertibility of I−AI .

Step 2. Recall that p(x) is the vector of clearing payments between banks in the network. The

solvency condition for bank n is equivalent to pn(x) = p̄n; the default of bank n happens only when

pn(x)< p̄n. We first show that this condition pn(x) = p̄n is equivalent to that the following set is

nonempty:

R =
{

p∈Rn
∣∣∣ p∈ [0, p̄], pn = p̄n, (I−A>)p≤ c−x

}
.

The sufficiency of pn(x) = p̄n is trivial. For the converse, we note that if p1,p2 ∈ [0, p̄] satisfy

(I−A>)pi ≤ c−x for i= 1,2, then p̃ = p1∨p2 also satisfies p̃∈ [0, p̄] and (I−A>)p̃≤ c−x. This

is because

pi ≤ c−x + A>pi ≤ c−x + A>p̃ ⇒ p̃≤ c−x + A>p̃.
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Let p(x) be the clearing vector with the maximal 1>p. If po is a feasible vector in R, then p(x)∨po

should also have the maximal 1>p. Since the maximizer is unique (from Assumption 1-(d)) and

pon = p̄n, we have pn(x) = p̄n.

Step 3. We then claim that R being nonempty is in turn equivalent to

sup
p∈R̃

n∑
i=1

ainpi ≥ p̄n− (cn−xn) (EC.3)

where

R̃ =
{

p
∣∣∣ p≤ p̄, pn = p̄n, ((I−A>)p)i ≤ ci−xi, , ∀i 6= n

}
.

Note first that (0, p̄n)> ∈ R̃ because, for each i 6= n,(I−A>)

 0

p̄n



i

=−anip̄n ≤ 0≤ ci−xi.

Hence the left-hand side of (EC.3) is well defined.

To show equivalence, let us take po ∈R. Then, obviously po ∈ R̃ and

(
(I−A>)po

)
n
≤ cn−xn ⇒ p̄n− (cn−xn)≤

n∑
i=1

ainp
o
i ≤ sup

p∈R̃

n∑
i=1

ainpi.

For the converse, first check that, if p1,p2 ∈ R̃, then p1∨p2 ∈ R̃ thanks to A≥ 0. This implies that,

for any feasible p∈ R̃, p∨ (0, p̄n)> ∈ R̃, and that this p∨ (0, p̄n)> has a greater, if not equal, value

than p or (0, p̄n)> for the objective function value of the left side of (EC.3). As a result,
∑n

i=1 ainpi

takes its supremum on R̃ ∩ [0, p̄]. Therefore, its maximizer exists and this maximizer becomes a

feasible vector in R.

Step 4. The left-hand side of (EC.3) can be rewritten as follows:

max
p′∈Rn−1

an−n
>p′ such that (I−A>−n)p′ ≤ d, p′ ≤ p̄−n,

where d∈Rn−1 is given by di = ci−xi + anip̄n for i= 1, . . . , n− 1. Then, its dual program is

min
u,v∈Rn−1

+

d>u + (p̄−n)>v such that (I−A−n)u + v = an−n,
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which can be rewritten as follows:

min
u∈Q̃n

(
d− (I−A>−n)p̄−n

)>
u + (p̄−n)>an−n.

Since the primal has an optimal solution, by the strong duality theorem, (EC.3) holds if and

only if

0 ≤ min
u∈Q̃n

(
d− (I−A>−n)p̄−n

)>
u + (p̄−n)>an−n + cn−xn− p̄n

= min
u∈Q̃n

n−1∑
i=1

(
ci−xi +

∑
j 6=i

p̄jaji− p̄i

)
ui + cn−xn +

n−1∑
i=1

p̄iain− p̄n

= min
u∈Q̃n

n−1∑
i=1

(
ci +

∑
j 6=i

p̄ji− p̄i−xi

)
ui + cn +

n−1∑
i=1

p̄in− p̄n−xn

= min
u∈Q̃n

n−1∑
i=1

(wi−xi)ui +wn−xn.

As a consequence, pn(x) = p̄n is equivalent to Φn(x) = xn + maxu∈Q̃n
(x−n−w−n)>u≤wn. �

EC.1.2. Proof of Theorem 1

The linear program (7) implies that under the assumption of Theorem 1, for i ∈ T and x ∈ [0,c],

Φi(x) is the optimal value of the following problem:

max xi + (xT c −wT c)>u s.t.
(

(1 + η)−1I− ÃT c

)
u≤ ãiT c , Ã∈A, u∈R|T

c|
+ . (EC.4)

Fix Ã ∈ A and assume T c = {1, . . . , d} with d < n without loss of generality. Note that by

Assumption 1–(c), the matrix ((1 + η)−1I− ÃT c)−1 is a nonnegative matrix and (1 + η)βj < 1 for

each j. Then, a feasible solution u of (EC.4) satisfies u ≤ ((1 + η)−1I− ÃT c)−1ãiT c . In addition,

consider a Markov chain with 2n states and transition probabilities {qij}i,j=1,...,2n defined by

qij =


(1 + η)ãij, if i, j = 1, . . . , n;

1−
∑n

j=1(1 + η)ãij, if i= 1, . . . , n and j = n+ i;

1{i=j}, otherwise.

States n+1 to 2n are absorbing states. If the chain is currently in state j ∈ T c, the probability that

it never reaches state i without visiting another state in T is given by 1−(((1+η)−1I−ÃT c)−1ãiT c)j,
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and the probability that the chain will be in state n+ j at the next step is given by 1− (1 + η)βj.

Thus for all j ∈ T c, we observe 1− (((1 + η)−1I− ÃT c)−1ãiT c)j ≥ 1− (1 + η)βj, and hence uj < 1.

Also, the problem (EC.4) is equivalent to

max xi +
∑
j∈T c

(xj −wj)uj

s.t. (1 + η)−1uj −
∑
k∈T c

ãjkuk ≤ ãji, j ∈ T c

n∑
k=1

ãjk = βj, j ∈ T c

ãjk = ajk, j ∈ T c, (j, k)∈K

ãjk ≥ ajk, j ∈ T c, (j, k)∈ K̃

ãjk ≥ 0, j ∈ T c, k= 1, . . . , n

uj ≥ 0, j ∈ T c.

(EC.5)

Let ∆j = {(ãj1, . . . , ãjn) ∈ Rn+ |
∑n

l=1 ãjl = βj, ãjk = ajk if (j, k) ∈ K, ãjk ≥ ajk if (j, k) ∈ K̃} for

j ∈ T c. Then, the first five constraints of the above problem can be combined to a single constraint

min
(ãj1,...,ãjn)∈∆j

(
(1 + η)−1uj −

∑
k∈T c

ãjkuk− ãji

)
≤ 0, j ∈ T c. (EC.6)

Recall that Kj = {k ∈ T c|(j, k) ∈ K}, K̃j = {k ∈ T c|(j, k) ∈ K̃}, Gi1 = {j ∈ T c|(j, i) ∈ K,Kj = T c},

Gi2 = {j ∈ T c|(j, i) /∈ K}, and Gi3 = {j ∈ T c|(j, i) ∈ K,Kj 6= T c}. The left-hand side of (EC.6) is

another linear programming problem whose objective value is equal to


(1 + η)−1uj −

∑
k∈T c ajkuk− aji, if j ∈ Gi1;

(1 + η)−1uj −
∑

k∈Kj∪K̃j
ajkuk− β̃j, if j ∈ Gi2;

minl∈T c\Kj

(
(1 + η)−1uj − β̃jul−

∑
k∈Kj∪K̃j

ajkuk− aji
)
, if j ∈ Gi3.
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since ∆j is a convex polytope with extreme points {β̃jel+
∑
{k|(j,k)∈K∪K̃} ajke

k}{l|(j,l)/∈K}. Then, the

optimization problem (EC.5) can be rewritten as follows:

max xi +
∑
j∈T c

(xj −wj)uj

s.t. (1 + η)−1uj −
∑
k∈T c

ajkuk ≤ aji, j ∈ Gi1

(1 + η)−1uj −
∑

k∈Kj∪K̃j

ajkuk ≤ β̃j, j ∈ Gi2

min
l∈T c\Kj

(1 + η)−1uj − β̃jul−
∑

k∈Kj∪K̃j

ajkuk

≤ aji, j ∈ Gi3

uj ≥ 0, j ∈ T c.

(EC.7)

Since the left-hand side of the third constraint in (EC.7) is less than 1, by introducing binary

integer variables {zjl}j∈Gi3, l∈T c\Kj 6=∅ satisfying
∑

l∈T c\Kj
zjl = 1 for each j ∈ Gi3, the second constraint

becomes

(1 + η)−1uj − β̃jul−
∑
k∈Kj

ajkuk ≤ aji + 1− zjl, j ∈ Gi3, l ∈ T c \Kj.

Note that it is redundant when zjl = 0. Consequently, the result follows. �

EC.1.3. Technical Details on Remark 3

We first claim that all banks in the system default if and only if s(x;A) > 0, where s(x;A) is

defined as in Remark 3. From Assumption 1–(d), by subtracting p̄i from both sides of (2), the

equation becomes

p̄−p = (1 + η)
(
x−w + A>(p̄−p)

)+
, (EC.8)

whose unique solution p = p(x) exists by Assumption 1–(c). If all banks in the system default,

i.e., p(x)< p̄, then since the superscript ’+’ in the right-hand side of (EC.8) can be omitted, we

have p̄− p(x) = (1 + η)(I− (1 + η)A>)−1(x−w) = s(x;A) > 0. Conversely, if s(x;A) > 0, then

s(x;A) = (1+η) (x−w + A>s(x;A))> 0, and thus, p = p̄−s(x;A) is a solution to (EC.8). Hence,

we have s(x;A) = p̄− p(x) > 0 due to the uniqueness of the solution to (EC.8), leading to the

default of all banks. This proves the claim.
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Suppose that X is a continuous random vector. Then, since P(s(X;A) = 0) = 0, it suffices to

show that s(x;A)≥ 0 for some A∈A if and only if Ψ(x) = 0, where Ψ(·) is defined as in Remark 3.

To that end, we observe the following relationship: for fixed A∈A,

s(x;A)≥ 0 ⇔
{
s≥ 0 : (I− (1 + η)A)>s = x−w

}
6= ∅

⇔
{
ξ : (I− (1 + η)A)ξ≥ 0, (w−x)>ξ> 0

}
= ∅,

where the second equivalence holds by Farkas’ lemma. Thus, s(x;A)≥ 0 for some A∈A implies

C∩
{
ξ : (w−x)>ξ> 0

}
= ∅, (EC.9)

where C :=
⋂

A∈A {ξ : (I− (1 + η)A)ξ≥ 0} = {ξ : (1 + η)maxÃ∈A (
∑

k ãjkξk) ≤ ξj, j = 1, . . . , n}.

Note that (EC.9) can be rewritten as Ψ(x) = 0 since by definition Ψ(x) is nonnegative for all x.

It remains to prove that (EC.9) implies (I− (1 +η)A)>s = x−w for some s≥ 0 and A∈A. For

ease of exposition, we only consider the case where for each j, there exists k such that (j, k) /∈K;

the proof for the other case is similar and hence is omitted. For fixed j ∈ {1, . . . , n}, it is easy to

check that maxÃ∈A (
∑

k ãjkξk) can be recast as

∑
{k:(j,k)∈K∪K̃}

ajkξk + max

 ∑
{k:(j,k)/∈K}

ãjkξk :
∑

{k:(j,k)/∈K}

ãjk = β̃j, ãjk ≥ 0 ∀k s.t. (j, k) /∈K

 ,

where the second term is equal to max{k:(j,k)/∈K}(β̃jξk) by the strong duality theorem. This implies

that C = C̃ :=
⋂n

j=1{ξ : (1 + η)(
∑
{k:(j,k)∈K∪K̃} ajkξk + β̃jξl)≤ ξj for all l s.t. (j, l) /∈K}. Accordingly,

if (EC.9) is true, C̃∩
{
ξ : (w−x)>ξ> 0

}
= ∅, and hence, by Farkas’ lemma, there exist nonnegative

constants (γjk)j∈{1,...,n},(j,k)/∈K such that for all j,

∑
{k:(j,k)/∈K}

γjk− (1 + η)

 ∑
{i:(i,j)∈K∪K̃}

aij
∑

{k:(i,k)/∈K}

γik +
∑

{i:(i,j)/∈K}

β̃iγij

= xj −wj. (EC.10)

Let sj =
∑
{k:(j,k)/∈K} γjk ≥ 0 for j = 1, . . . , n, āij = aij for (i, j)∈K, āij = aij + β̃iγij/si for (i, j)∈ K̃,

and āij = β̃iγij/si for (i, j) /∈ K ∪ K̃. Then, A = (āij) ∈ A, and the equation (EC.10) becomes

sj− (1 +η)
∑n

i=1 āijsi = xj−wj for all j, i.e., (I− (1 +η)A)>s = x−w, which completes the proof.

Finally, the above analysis shows that Ψ(x) is equal to the optimal value of the linear program

maxξ∈C̃(w−x)ξ, which can also be derived by a standard approach to robust linear optimization

with polyhedral uncertainty in Bertsimas et al. (2011).
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EC.1.4. Proof of Theorem 2

We assume η = 0 without loss of generality. Let X̃ be an unconstrained version of X. Then, we

have

P

(
Xm ∈

⋃
i∈T

Di

)
=

P
(
X̃m ∈

⋃
i∈T Di

)
P
(
X̃m ∈ [0,c]

) ,

and hence log P(Xm ∈
⋃
i∈T Di)∼ log P(X̃m ∈

⋃
i∈T Di) as m increases since P(X̃m ∈ [0,c])→ P(X̃≥

0)> 0 and P(X̃m ∈
⋃
i∈T Di)→ 0 as m→∞. This is true for P(Xm ∈DA) as well. Thus, it suffices

to show that

lim
m→∞

1

logm
log P

(
X̃m ∈DA

)
= lim

m→∞

1

logm
log P

(
X̃m ∈

⋃
i∈T

Di

)
=−ρ∗+ 1.

For simplicity, abusing notation, we write X as the unconstrained version in the rest of the proof.

Note that the complementary cumulative distribution function F̄i(x) := P(Xi >x) is also regularly

varying with index ρi−1 by Karamata’s theorem, and it is well known that for any I ∈ {1,2, . . . , n},

P

(∑
i∈I

Xi >x

)
∼
∑
i∈I

P(Xi >x) as x→∞. (EC.11)

Let QT :=
⋃
i∈T {ξ ∈Rn+ | ξi = 1, ξj = 0 for j ∈ T \ {i}, ξk = uk for k ∈ T c and u ∈QTi }, where QTi

is the collection of extreme points of the feasible set in (7). Then, for all ξ ∈QT , ξ>w≥mini∈T wi

and ξ ≤ 1 from the proof of Theorem 1. Also, it is easy to see that for any A ∈A, {i|ξi > 0, ξ ∈

QT } ⊂ H̃ :=H∪T . Thus, the following relationship can be found for large m:

P
(
Xm ∈DA

)
= P

(⋃
i∈T

{
Φi(X

m)>wi,X
m ≤ c

})

≤ P

(⋃
i∈T

{
Φi(X

m)>wi
})

= P

(⋃
i∈T

{
Xm
i + max

A∈A
max
u∈QTi

u>
(
Xm
T c −wT c

)
>wi

})

= P

( ⋃
A∈A

⋃
ξ∈QT

{
ξ>Xm > ξ>w

})

≤ P

( ⋃
A∈A

⋃
ξ∈QT

{
1>Xm

H̃ >min
i∈T

wi

})
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= P
(
1>Xm

H̃ >min
i∈T

wi

)
∼
∑
i∈H̃

P
(
Xi >m

(
min
i∈T

wi

))
(EC.12)

∼
∑
i∈H̃

P
(
Xi >m

)(
min
i∈T

wi

)−ρi+1

(EC.13)

≤ P
(
X∗ >m

)∑
i∈H̃

(
min
i∈T

wi

)−ρi+1

where P(X∗ >m) := maxi∈H̃P(Xi >m) for large m. The asymptotic equivalence (EC.12) follows

from (EC.11), and the asymptotic equivalence (EC.13) holds since f1(x)∼ g1(x) and f2(x)∼ g2(x)

implies f1(x) + f2(x)∼ g1(x) + g2(x) if f1(x)f2(x)> 0. Thus, we have

lim
m→∞

log P
(
Xm ∈DA

)
log P

(
X∗ >m

) ≥ 1.

On the other hand, we define ẽ :=
∑

i∈H̃ ei and

c̃i =


1 + ẽ>w, i∈ H̃;

ci, otherwise.

Then, since z∈R|H̃|+ ∩ [0, c̃H̃]c implies 1>z≥ ẽ>w, we similarly make the following observation for

large m:

P
(
ẽ>Xm > ẽ>w,Xm ∈ [0, c̃]

)
= P

(
1>Xm

H̃ > ẽ>w,Xm
H̃ ∈ [0, c̃H̃]

)
P
(
Xm
H̃c ∈ [0, c̃H̃c ]

)
∼ P

(
1>Xm

H̃ > ẽ>w,Xm
H̃ ∈ [0, c̃H̃]

)
= P

(
1>Xm

H̃ > ẽ>w
)
−P
(
Xm
H̃ ∈ [0, c̃H̃]c

)
≥ P

(
1>Xm

H̃ > ẽ>w
)
−P
(
1>Xm

H̃ > 1 + ẽ>w
)

∼
∑
i∈H̃

P
(
Xi >mẽ>w

)
−
∑
i∈H̃

P
(
Xi >m

(
1 + ẽ>w

))
∼
∑
i∈H̃

P
(
Xi >m

){(
ẽ>w

)−ρi+1−
(
1 + ẽ>w

)−ρi+1
}

≥ P
(
X∗ >m

){(
ẽ>w

)−ρ∗+1−
(
1 + ẽ>w

)−ρ∗+1
}
.



ec10 e-companion to Ahn, Chen, and Kim: Robust Risk Quantification via Shock Propagation

Hence, we have

lim
m→∞

log P
(
ẽ>Xm > ẽ>w,Xm ∈ [0, c̃]

)
log P

(
X∗ >m

) ≤ 1.

Next, fix ε > 0 small enough. Then, for large m and for any i∈ T ,

log P

(
Xm ∈

⋃
i∈T

Di

)
≥ log P

(
Xm ∈Di

)
≥ log P

(
Xm ∈Di ∩ [ε1,c]

)
= log

∫
1{x/m∈Di∩[ε1,c]}f1(x1) · · ·fn(xn)dx

= log

∫
1{z∈Di∩[ε1,c]}m

nf1(mz1) · · ·fn(mzn)dz

∼ log
(
mnf1(m) · · ·fn(m)

)
+ log

∫
1{z∈Di∩[ε1,c]}z

−ρ1
1 · · ·z−ρnn dz (EC.14)

∼ log
(
mnf1(m) · · ·fn(m)

)
+ log

∫
1{ẽ>z≥ẽ>w, z∈[ε1,c̃]}z

−ρ1
1 · · ·z−ρnn dz

∼ log

∫
1{ẽ>z≥ẽ>w, z∈[ε1,c̃]}m

nf1(mz1) · · ·fn(mzn)dz (EC.15)

= log

∫
1{ẽ>x/m≥ẽ>w, x/m∈[ε1,c̃]}f1(x1) · · ·fn(xn)dx

= log P
(
ẽ>Xm > ẽ>w,Xm ∈ [ε1, c̃]

)
where Di is the closure of Di. It is easy to see that as m increases, f1(mz1) · · ·fn(mzn) ∼

f1(m) · · ·fn(m)z−ρ1
1 · · ·z−ρnn uniformly in z on the compact sets Di ∩ [ε1,c] and {z ∈ [ε1, c̃]|ẽ>z≥

ẽ>w} since limm→∞ fj(mx)/fj(m) = x−ρj locally uniformly in x on (0,∞) for each j by Proposi-

tion 2.4 of Resnick (2007). Thus, the asymptotic equivalences (EC.14) and (EC.15) hold. Since ε

is arbitrary, the above relationship implies

lim
m→∞

log P
(
Xm ∈

⋃
i∈T Di

)
log P

(
ẽ>Xm > ẽ>w,Xm ∈ [0, c̃]

) ≤ 1.

Therefore, we finally arrive at

lim
m→∞

log P
(
Xm ∈

⋃
i∈T Di

)
log P

(
X∗ >m

) ≤ 1.

According to Proposition 2.6 of Resnick (2007), limm→∞ log P
(
Xi >m

)
/ logm=−ρi + 1 for all i.

Hence, the result follows. �
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EC.1.5. Proof of Theorem 3

Indeed, we can establish the following theorem which provides a more general result about the

asymptotic default probability in the case of lognormal shocks than Theorem 3. This theorem

covers the case when the shocks are possibly correlated.

Theorem EC.1. Suppose that A satisfies (15) for fixed K and ε > 0. We denote the set H as in

Theorem 2. Let X follow a multivariate lognormal distribution with parameters µ and Σ positive

definite. Define σ2
◦ = maxi∈H̃

(
σ2
i − (ΣH̃H̃cΣ

−1

H̃cH̃cΣH̃cH̃)ii
)

and σ2
∗ = maxi∈H̃ σ

2
i where H̃ =H∪ T .

Assume that X is constrained to be in [0,c] almost surely. Then, for any A∈A,

− 1

2σ2
◦
≤ lim inf

m→∞

1

(logm)2
log P

(
Xm ∈

⋃
i∈T

Di

)
≤ limsup

m→∞

1

(logm)2
log P

(
Xm ∈DA

)
≤− 1

2σ2
∗
.

Proof of Theorem EC.1. We assume η= 0 without loss of generality. Let X̃ be an unconstrained

version of X. Then, as in the proof of Theorem 2, it is enough show

− 1

2σ2
◦
≤ lim inf

m→∞

1

(logm)2
log P

(
X̃m ∈

⋃
i∈T

Di

)
≤ limsup

m→∞

1

(logm)2
log P

(
X̃m ∈DA

)
≤− 1

2σ2
∗
.

For simplicity, abusing notation, we write X as the unconstrained version in the rest of the proof.

We note that if Xi follows a lognormal distribution with parameters µi and σi, then

P(Xi >x)∼ σi/
√

2π

logx−µi
exp

(
−
(

logx−µi
)2

2σ2
i

)
. (EC.16)

From the proof of Theorem 2, for large m, we observe the following relationship:

P
(
Xm ∈DA

)
≤ P

(
1>Xm

H̃ >min
i∈T

wi

)
≤ P

(⋃
i∈H̃

{
Xi >m|H̃|−1

(
min
i∈T

wi

)})

≤
∑
i∈H̃

P
(
Xi >m|H̃|−1

(
min
i∈T

wi

))

∼
∑
i∈H̃

κi1
logm−κi2

exp

(
−
(

logm−κi2
)2

2σ2
i

)

≤ |H̃| κ1

logm−κ2

exp

(
−
(

logm−κ2

)2

2σ2
∗

)
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where κi1 and κi2 are constants for i∈ H̃, and κj = maxi∈H̃ κ
i
j for j = 1,2. The asymptotic equivalence

is based on (EC.16). Thus,

limsup
m→∞

1

(logm)2
log P

(
Xm ∈DA

)
≤− 1

2σ2
∗
.

Next, we define ẽ and c̃ as in the proof of Theorem 2. Then, for large m, we observe

P
(
ẽ>Xm > ẽ>w,Xm ∈ [0, c̃]

)
= P

(
1>Xm

H̃ > ẽ>w,Xm
H̃ ∈ [0, c̃H̃],Xm

H̃c ∈ [0, c̃H̃c ]
)

= P
(
1>Xm

H̃ > ẽ>w,Xm
H̃ ∈ [0, c̃H̃],XH̃c ∈ [0,mc̃H̃c ]

)
≥ P

(
1>Xm

H̃ > ẽ>w,Xm
H̃ ∈ [0, c̃H̃],XH̃c ∈ [1, exp(1) ·1]

)
=

∫
[1,2·1]

P
(
1>Xm

H̃ > ẽ>w,Xm
H̃ ∈ [0, c̃H̃]|XH̃c = x

)
fH̃c(x)dx

where fH̃c(·) is a probability density function of XH̃c .

Since fH̃c(·) is positive and continuous, there exists δ > 0 such that fXH̃c
(x)≥ δ for all x∈ [1,2 ·1].

Also, since X1, . . . ,Xn are lognormally distributed, the probability in the integrand is positive and

continuous in x, and hence there exists x′ such that P
(
1>Xm

H̃ > ẽ>w,Xm
H̃ ∈ [0, c̃H̃]|XH̃c = x

)
≥

P
(
1>Xm

H̃ > ẽ>w,Xm
H̃ ∈ [0, c̃H̃]|XH̃c = x′

)
. for all x∈ [1,2 ·1]. Thus, for large m, we have

P
(
ẽ>Xm > ẽ>w,Xm ∈ [0, c̃]

)
≥ δP

(
1>XH̃ >mẽ>w,XH̃ ∈ [0,mc̃H̃]|XH̃c = x′

)
= δP

(
1>X′H̃ >mẽ>w,X′H̃ ∈ [0,mc̃H̃]

)
= δ
(

P
(
1>X′H̃ >mẽ>w

)
−P
(
X′H̃ ∈ [0,mc̃H̃]c

))
≥ δ
(

P
(
1>X′H̃ >mẽ>w

)
−P
(
1>X′H̃ >m(1 + ẽ>w)

))
∼ δP

(
1>X′H̃ >mẽ>w

)
∼ κ3σ◦/

√
2π

logm+ log ẽ>w−µ◦
exp

(
−
(

logm+ log ẽ>w−µ◦
)2

2σ2
◦

)
.

where X′H̃ is lognormally distributed with parameters µ̃ = µH̃ + ΣH̃H̃cΣ
−1

H̃cH̃c(log(x′) −

µH̃c) and Σ̃ = ΣH̃H̃ − ΣH̃H̃cΣ
−1

H̃cH̃cΣH̃cH̃, σ2
◦ = maxi∈H̃ σ̃ii, µ◦ = maxi∈H̃:σ̃ii=σ

2
◦
µ̃i, and κ3 =

δ
∑

i∈H̃ 1{σ̃ii=σ2
◦,µ̃i=µ◦}. Since Σ is positive definite, so is Σ̃. Then, σ̃ij <

√
σ̃iiσ̃jj for all i, j ∈ H̃
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with i 6= j. Thus, the two asymptotic equivalences above hold by Theorem 1 of Asmussen and

Rojas-Nandayapa (2008), and it follows that

lim inf
m→∞

log P
(
ẽ>Xm > ẽ>w,Xm ∈ [0, c̃]

)
(logm)2

≥− 1

2σ2
◦
.

We now fix ε > 0 small enough. Then, for large m and for any i∈ T ,

log P

(
Xm ∈

⋃
i∈T

Di

)
(EC.17)

≥ log P
(
Xm ∈Di

)
≥ log P

(
Xm ∈Di ∩ [ε1,c]

)
= log

∫
1{x/m∈Di∩[ε1,c]}f(x)dx

= log

∫
1{z∈Di∩[ε1,c]}κ4

(
n∏
i=1

z−1
i

)
exp

(
−1

2

(
log(mz)−µ

)>
Σ−1

(
log(mz)−µ

))
dz

≥−1

2
(logm)21>Σ−11− (logm)1>Σ−1(log z∗−µ) + log

∫
1{z∈Di∩[ε1,c]}f(z)dz

∼−1

2
(logm)21>Σ−11− (logm)1>Σ−1(log z∗−µ) + log

∫
1{ẽ>z≥ẽ>w, z∈[ε1,c̃]}f(z)dz

≥ log

∫
1{ẽ>z≥ẽ>w, z∈[ε1,c̃]}κ4

(
n∏
i=1

z−1
i

)
exp

(
−1

2

(
log(mz)−µ

)>
Σ−1

(
log(mz)−µ

))
dz

= log

∫
1{ẽ>x/m≥ẽ>w, x/m∈[ε1,c̃]}f(x)dx

= log P
(
ẽ>Xm > ẽ>w,Xm ∈ [ε1, c̃]

)
where Di is the closure of Di, κ4 = (2π)−n/2|Σ|−1/2, and f(x) is a probability density

function of X given by f(x) = κ4

(∏n

i=1 x
−1
i

)
exp

(
−
(

log x−µ
)
Σ−1

(
log x−µ

)
/2
)
. Also, z∗ =

arg maxz∈Di∩[ε1,c] 1
>Σ−1(log z − µ), and z∗ = arg minz∈[ε1,c̃]:ẽ>z≥ẽ>w 1>Σ−1(log z − µ). Since ε is

arbitrary, the above relationship implies that

limsup
m→∞

log P
(
Xm ∈

⋃
i∈T Di

)
log P

(
ẽ>Xm > ẽ>w,Xm ∈ [0, c̃]

) ≤ 1.

Therefore, we finally arrive at

lim inf
m→∞

1

(logm)2
log P

(
Xm ∈

⋃
i∈T

Di

)
≥− 1

2σ2
◦
.

Hence, the result follows. �
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EC.1.6. Proof of Theorem 4

Let us consider a feasible solution ν of the problem (18). Since Φi(X)<M almost surely for all

i∈ T , by adding redundant constraints νi ≤M, i∈ T , we can rewrite the problem (18) as:

min
∑
i∈T

νi

s.t. P
(

max
i∈T

{
Φi(X)−wi− νi

}
> 0
)
≤ 1−α,

0≤ νi ≤M, i∈ T .

(EC.18)

The left-hand side of the probabilistic constraint is strictly decreasing with respect to νi, i ∈ T .

Thus, there is an optimal solution να of the problem (EC.18) such that ναi <M for each i∈ T , and

for any ε > 0, P
(
maxi∈T

{
Φi(X)−wi− ν ′i

}
> 0
)
< 1−α where ν ′i = ναi + min{ε,M −maxi∈T ν

α
i }/n

for i∈ T . Note that ‖ν ′−να‖< ε.

The sample average approximation of the problem (EC.18) is formulated as follows:

min
∑
i∈T

νi

s.t.
N∑
j=1

1{maxi∈T {Φi(xj)−wi−νi}>0} ≤N(1−α),

0≤ νi ≤M, i∈ T .

(EC.19)

Define G(ν,X) := maxi∈T (Φi(X)−wi − νi). Then, it is easy to see that G(ν, ·) is measurable for

every ν and G(·,X) is continuous for a.e. X. Also, the set [0,M ]|T | is compact, and the function ν 7→∑
i∈T νi is continuous. Therefore, by Proposition 2.2 of Pagnoncelli et al. (2009), for any optimal

solution νN of (EC.19), we have
∑

i∈T ν
N
i → να◦ and infνα∈V ‖νN − να‖→ 0 with probability 1 as

N →∞.

It remains to show that (EC.19) and (19) are equivalent. Let {νi, zj}i∈T ,j=1,...,N be a feasible

solution of (19). Then, from the second constraint of (19), 1{maxi∈T {Φi(xj)−wi−νi}>0} ≤ zj for all j,

and hence from its first constraint, we have

N∑
j=1

1{maxi∈T {Φi(xj)−wi−νi}>0} ≤
N∑
j=1

zj ≤N(1−α).
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Therefore, {νi}i∈T is feasible for (EC.19) with the same objective value. Conversely, let {νi}i∈T

be a feasible solution of (EC.19), and we define zj := 1{maxi∈T {Φi(xj)−wi−νi}>0} for all j. Then,

{νi, zj}i∈T ,j=1,...,N is feasible for (19) with the same objective value, which establishes the claim of

the theorem. �

Appendix EC.2: Further Discussions on Asymptotic Default Probabilities

EC.2.1. Remarks on Theorems 2 and 3

In this subsection, we record detailed observations and remarks related to Theorems 2 and 3.

Firstly, as mentioned earlier, both of the probabilities (3) and (4) turn out to be highly affected

by the shocks’ heavy-tailedness which is represented by (−ρi) in the regularly varying case and

σi in the lognormal case. Those parameters form ρ∗ and σ∗ based on the set H and thus mainly

determine the decay rate of the probabilities when the shock size gets smaller, whereas the sizes of

interbank liabilities and net worths do not matter at least asymptotically.

Secondly, let Π = (πij)∈Rn×n+ such that πij = ε1{(i,j)/∈K} given K and ε in (8). Given the target set

T , the set H in Theorems 2 and 3 can be formally defined as H=
⋃
i∈T {j : ((I−ΠT c)

−1
πiT c)j > 0}.

To see this, consider a Markov chain with 2n states and transition probabilities {qij}i,j=1,...,2n

defined by

qij =


πij, if i, j = 1, . . . , n;

1−
∑n

j=1 πij, if i= 1, . . . , n and j = n+ i;

1{i=j}, otherwise.

States n+ 1 to 2n are absorbing states. Then, for each i ∈ T and j ∈ T c, it can be easily shown

that ((I−ΠT c)
−1
πiT c)j is the probability that the chain, starting from state j, eventually reaches

state i without visiting the other states in T . Thus, the set H corresponds to the set of banks

having a directed path to a bank in T .

Thirdly, in Theorems 2 and 3, we discuss asymptotic behaviors of (3) and (4) for a sequence of

diminishing shock vectors. Since the default of banks is arguably a rare event, decreasing shock sizes

can be considered as a mild assumption. The impact of small shocks to financial networks has been



ec16 e-companion to Ahn, Chen, and Kim: Robust Risk Quantification via Shock Propagation

considered in the literature (Acemoglu et al. 2015, Amini and Minca 2016, Amini et al. 2016). Under

small shock regime, the first work addresses stable network structures, and the other two papers

consider the fraction of defaults in a different default cascade model other than the Eisenberg-Noe

framework. Similar approaches can also be found in the literature of portfolio credit risk, which

focus on the asymptotic behaviors of portfolio loss probabilities (Glasserman et al. 2000a,b, 2002).

Those papers discuss large loss threshold regimes that could be considered equivalent to the small

shock regime.

Last but not least, one might be interested in the asymptotic behaviors of (3) and (4) in the

case of correlated lognormal shocks, which are described in Theorem EC.1. We observe that when

they are correlated, the probabilities (3) and (4) are not asymptotically equivalent in general, but

the theorem gives us an asymptotic bound on the relative difference between (3) and (4).

EC.2.2. Asymptotic Default Probabilities under Other Distributions

In this subsection, we add the cases under two other distributions: multivariate normal distribution

and heavy-tailed elliptical distribution.

Theorem EC.2. Let X has a truncated multivariate normal distribution with mean vector µ and

nonsingular covariance matrix Σ. Assume that it is truncated to [0,c]. Then,

lim
m→∞

1

m2
log P

(
Xm ∈

⋃
i∈T

Di

)
=−1

2
min

x∈
⋃
i∈T Di

x>Σ−1x (EC.20)

where Di is the closure of the set Di.

Proof. Let X̃∼N (µ,Σ) without any truncation. According to the proof of Theorem 2, we need

to show that

lim
m→∞

1

m2
log P

(
X̃m ∈

⋃
i∈T

Di

)
=−1

2
min

x∈
⋃
i∈T Di

x>Σ−1x.

We first note that

Ξ(λ) := lim
m→∞

1

m2
log E

[
em

2λ>X̃m
]

= lim
m→∞

1

m2
log E

[
emλ

>X̃
]

=
1

2
λ>Σλ.
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Then, it is easy to see that its Fenchel-Legendre transform Ξ∗(x) := supλ{λ
>x − Ξ(λ)} =

(1/2)x>Σ−1x. Since the origin belongs to the interior of {λ∈Rn|Ξ(λ)<∞}, by the Gärtner-Ellis

Theorem in Dembo and Zeitouni (2009), it holds that

− inf
x∈

⋃
i∈T D◦i

Ξ∗(x)≤ lim inf
m→∞

1

m2
log P

(
X̃m ∈

⋃
i∈T

Di

)

≤ limsup
m→∞

1

m2
log P

(
X̃m ∈

⋃
i∈T

Di

)

≤− inf
x∈

⋃
i∈T Di

Ξ∗(x).

where D◦i and Di are the interior and the closure of the set Di, respectively. Hence, the result

follows. �

Clearly, the default probability depends both on distribution parameters and on the default

region
⋃
i∈T Di. For this reason, it is worth noting that the mean vector µ does not play any role

in the limiting behavior and that the effects of the covariance matrix Σ and the default region⋃
i∈T Di are decoupled in Theorem EC.2. The former is in the objective function and the latter

is in the constraint of the optimization in (EC.20). This can be useful when we want to see the

difference of the behavior according to the change of Σ or
⋃
i∈T Di. Also, the above theorem tells

us that, in the case of normal random shocks, the default probability can be approximated by

P

(
Xm ∈

⋃
i∈T

Di

)
≈ exp

(
− m

2

2
min

x∈
⋃
i∈T Di

x>Σ−1x

)
(EC.21)

when m is large enough.

The approximation (EC.21) can be utilized to show an interplay between the covariance structure

of the shock distribution and the network structure of the financial system. For a better under-

standing, we revisit the example of a 3-bank network in Figure EC.8 with w3 = 1 and T = {3}. In

this example, it is easy to see that p̄12 = p̄13 = p̄21 = p̄23 = 3/2. Let Xi follow a normal distribution

with mean 0 and variance σ2
i for i= 1,2 and r := corr(X1,X2). For each given shock distribution,

let us assume that bank 3 can redistribute the amount of money it lends to bank 1 and bank 2,

i.e., p̄13 and p̄23, while keeping the aggregate amount equal, i.e, p̄13 + p̄23 = 3. In this situation, we
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Figure EC.1 The optimal values of the optimization problem in (EC.21) with respect to p̄13 for different variances

and correlations (left) and bank 3’s default regions (unshaded) at the points of (p̄13, p̄23) where the

optimal values are maximized (right)

consider six different cases where (σ2
1, σ

2
2, r) = (2,2,0), (2,2,0.9), (2,2,−0.9) (2,1,0), (2,1,0.9), and

(2,1,−0.9). For each case, we calculate the optimal values of the optimization problem in (EC.21)

with respect to p̄13 between 0 and 3, which the left panels of Figure EC.1 illustrate. In other words,

the figure shows how the approximate default probabilities change according to the amount of

money bank 3 lends to bank 1.

According to (EC.21), the approximate default probability of bank 3 decreases as the optimal

value gets bigger. Thus, for each case, we find p̄13 and p̄23 maximizing the optimal value, which

provides the following interesting observations. First, in the case of equal variances, the plots in

the first column of Figure EC.1 show the perfect symmetry. In particular, bank 3 should select
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either bank 1 or 2 and lend all the interbank assets to the selected bank when shocks are positively

correlated, whereas it is better for bank 3 to allocate the assets equally to bank 1 and 2 when

shocks are negatively correlated. Second, when the shock X1 is more volatile than X2, the figures

in the second column are skewed to the left. This implies that it is optimal for bank 3 to reduce the

amount of money lending to bank 1, which coincides with our intuition. Especially, when shocks

are uncorrelated or positively correlated, bank 3 needs to loan its total interbank assets to bank

2 only. Finally, with those p̄13 and p̄23 maximizing the optimal value for each case, we describe

new default regions and compare them with 50%, 90%, 95%, and 99% confidence regions of the

corresponding shock distributions in the right panels of Figure EC.1.

Next, we provide the case of dependent heavy-tailed distributions. In the following theorem, the

random shock vector is assumed to have a multivariate elliptical distribution in which the radial

component or the distance is regularly varying. The conclusion of Theorem 2 does not change,

and we observe that the heavy-tailedness ρ is the only factor determining the asymptotic default

probability.

Theorem EC.3. Let X have an elliptical distribution, given by X =µ+RΛΘ, where µ is an n-

dimensional vector, R is a nonnegative continuous random variable, Λ is a n×d matrix such that

Σ := ΛΛ> is positive definite, and Θ is uniformly distributed on the unit sphere in Rd independent

of R. Assume that X is constrained to be in [0,c] and R has a regularly varying distribution with

index ρ> 1. Then,

lim
m→∞

1

logm
log P

(
Xm ∈

⋃
i∈T

Di

)
=−ρ+ 1. (EC.22)

Proof. Let X̃ be an unconstrained version of X. According to the proof of Theorem 2, we need

to show that

lim
m→∞

1

logm
log P

(
X̃m ∈

⋃
i∈T

Di

)
=−ρ+ 1.

For simplicity, abusing notation, we write X as the unconstrained version in the rest of the proof.

We note that the complementary cumulative distribution function P(R>x) is also regularly varying

with index ρ− 1 by Karamata’s theorem.
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Let R(θ) := {r ≥ 0|rΛθ ∈
⋃
i∈T Di} for each θ where Di is the closure of Di. One can prove

that R(θ) is an interval if it is nonempty. It is known that the density of X is given by fX(x) =

|Σ|−1/2g
(
(x−µ)>Σ−1(x−µ)

)
for some function g. Also, by Fang et al. (1990), the relationship

between the function g(·) and the density function fR(·) of R is

fR(r) =
2πn/2

Γ(n/2)
rn−1g(r2).

Then, we observe the following relationship:

P

(
Xm ∈

⋃
i∈T

Di

)
= E
[
1{Xm∈⋃i∈T Di}

]
= E0

[
fX(X)

f0
X(X)

1{m−1X∈Dn}

]
= E

[[
fX(RΛΘ)

f0
X(RΛΘ)

1{R∈mR(Θ)}

∣∣∣∣Θ]
]

=

∫
fΘ(θ)dθ

∫
mR(θ)

fX(rΛθ)

f0
X(rΛθ)

fR(r)dr

=m

∫
fΘ(θ)dθ

∫
R(θ)

fX(mτΛθ)

f0
X(mτΛθ)

fR(mτ)dτ

∼m
∫
fΘ(θ)dθ

∫
R(θ)

fR(mτ)dτ (EC.23)

=

∫
fΘ(θ)dθ

∫
mR(θ)

fR(r)dr

= P

(
m−1RΛΘ∈

⋃
i∈T

Di

)

where the superscript of E0 denotes the probability measure P0 under which X is distributed as

RΛΘ with density f0
X. Since ϕm(τΛθ) :=

√
(τΛθ−µ/m)>Σ−1(τΛθ−µ/m)→ τ as m increases,

fR (mϕm(τΛθ))∼ fR(m)τ−ρ as m increases. Thus, the asymptotic equivalence (EC.23) holds since

fX(mτΛθ)

f0
X(mτΛθ)

=

(
τ

ϕm(τΛθ)

)n−1
fR (mϕm(τΛθ))

fR (mτ)
→ 1

uniformly on the compact set {(τ,θ)∈R+×Rn|τΛθ ∈
⋃
i∈T Di,‖θ‖= 1} as m increases. Therefore,

it remains to show that

lim
m→∞

1

logm
log P

(
m−1RΛΘ∈

⋃
i∈T

Di

)
=−ρ+ 1.
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Define QT as in the proof of Theorem 2. Note that ξ>Λ 6= 0 for all ξ ∈ QT since Σ = ΛΛ> is

positive definite and ξ is a nonzero vector for all ξ ∈QT . Since RΘ follows a spherical distribution,

for all u ∈ Rn, u>(RΘ) = ‖u‖(RΘ1) in distribution. Then, for large m, we observe the following

relationship:

P

(
m−1RΛΘ∈

⋃
i∈T

Di

)
= P

( ⋃
ξ∈QT

{
ξ>(RΛΘ)>mξ>w

}
,m−1RΛΘ≤ c

)

≤ P

( ⋃
ξ∈QT

{
ξ>(RΛΘ)>mξ>w

})

≤
∑
ξ∈QT

P
(
ξ>Λ(RΘ)>mξ>w

)
=
∑
ξ∈QT

P
(
‖ξ>Λ‖(RΘ1)>mξ>w

)
=
∑
ξ∈QT

P

(
RΘ1 >m

ξ>w

‖ξ>Λ‖

)

≤
∑
ξ∈QT

P

(
R>m

ξ>w

‖ξ>Λ‖

)

∼
∑
ξ∈QT

P
(
R>m

)( ξ>w

‖ξ>Λ‖

)−ρ+1

= P
(
R>m

) ∑
ξ∈QT

(
ξ>w

‖ξ>Λ‖

)−ρ+1

.

The second inequality holds since |Θ1| ≤ 1 and R≥ 0 almost surely. Hence, we have

lim
m→∞

log P
(
m−1RΛΘ∈

⋃
i∈T Di

)
log P

(
R>m

) ≥ 1.

On the other hand, it is easy to see that there exist r1, r2 > 0 and a subset B of the unit sphere

such that r1 < r2, P(Θ ∈ B) > 0, and rΛθ ∈
⋃
i∈T Di for all r ∈ (r1, r2] and θ ∈ B. For example,

x◦ := (c1/2, . . . , cn−1/2, (wn + cn)/2) ∈
⋃
i∈T D◦i where D◦i is the interior of Di. Then, we can find

r2 > 0 and θ′ such that ‖θ′‖ = 1 and x◦ = r2Λθ
′. Also, there exists ε > 0 and r1 < r2 such that

Bε/2(r1Λθ
′)⊂Bε(r2Λθ

′)⊂
⋃
i∈T D◦i where Ba(u) is an open ball with center u and radius a. Let

B := {θ|‖θ‖= 1, r1Λθ ∈Bε/2(r1Λθ
′), r2Λθ ∈Bε(r2Λθ

′)}. Since θ′ ∈B and the mappings θ 7→ r1Λθ
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and θ 7→ r2Λθ are continuous, B is nonempty and open, which implies that P(Θ∈B)> 0. Therefore,

for large m,

P

(
m−1RΛΘ∈

⋃
i∈T

Di

)
≥ P

(
r1 <m

−1R≤ r2

)
·P
(
Θ∈B

)
=
(
P
(
R>mr1

)
−P
(
R>mr2

))
P
(
Θ∈B

)
∼ P

(
R>m

) (
r−ρ+1

1 − r−ρ+1
2

)
P
(
Θ∈B

)
.

Accordingly, we have

lim
m→∞

log P
(
m−1RΛΘ∈

⋃
i∈T Di

)
log P

(
R>m

) ≤ 1.

Hence, the result follows since limm→∞ log P
(
R>m

)
/ logm=−ρ+ 1. �

Appendix EC.3: Characterizing Solvency Regions

Define the solvency region of bank i as Si := [0,c] \Di for i= 1,2, . . . , n. Then, the next corollary

is a trivial consequence of Lemma 1.

Corollary EC.1. Suppose that xn <wn. Then x∈ Sn if and only if x∈ [0,c] and

x−n−w−n
wn−xn

∈Q∗n

where Q∗n is the polar set of Qn defined by Q∗n = {z|ζ>z≤ 1,∀ζ ∈Qn}.

Based on the above corollary, we describe our result for bank n, still retaining the full generality.

We further impose the next assumption for convenience sake. It can be done for a general network

by renumbering banks.

Assumption EC.1. There exists an integer m with 1≤m≤ n−1 such that ain 6= 0 for i= 1, . . . ,m

but ain = 0 for i=m+ 1, . . . , n− 1.

In the next theorem, we now see how the network information contained in the matrix

(I−A−n)>

diag(aI)
−1 0

0 I


affects a target bank’s survivability.
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Theorem EC.4. Suppose that Assumption EC.1 holds. We further assume xn < wn and η = 0.

Then, x∈ Sn if and only if x∈ [0, c]

y :=
x−n−w−n
wn−xn

∈ (I−A−n)>

diag
(
an{1,...,m}

)−1

0

0 I

4m×Rn−m−1
+ −Rn−1

+ .

where 4m = {z ∈Rm+ |1>z≤ 1}. Here, the set U − V for U,V ⊂Rn−1 is the set of vectors of form

u−v with u∈U and v ∈ V .

Proof. We prove this theorem in three steps.

Step 1. Let us denote {1, . . . ,m} by I and {1, . . . , n− 1}\I by J for brevity. We set

I−A−n =

MI

MJ


where MI is the matrix consisting of the first m rows of I−A−n and MJ is the rest of I−A−n.

Define

Mε,τ =


diag(aI)

−1MI

diag(ε)−1MJ

−diag(τ )−1

 ,

where ε and τ are strictly positive real vectors decreasing to zero. Here the operation diag trans-

forms a given vector into a diagonal matrix with the same diagonal entries. Then, by letting

Qε,τ := {z |Mε,τz≤ 1}, we observe that

Qn = lim
ε,τ↓0

Qε,τ

if we understand the limit as a decreasing limit of sets.

Step 2. The following result based on the polar duality is well known (see for example Lemma

3.2 of Faigle et al. (2002)). For a nonzero k× d matrix M , it holds that

{
x∈Rd

∣∣∣Mx≤ 1
}∗

=
{

x∈Rd
∣∣∣ x = M>w for some y such that 1>y = 1,y≥ 0

}
.

This implies that the polar dual of Qε,τ consists of vectors of form

(MI)>diag(aI)
−1u + (MJ )>diag(ε)−1v−diag(τ )−1w (EC.24)
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with (u,v,w)∈R|I|+ ×R|J |+ ×Rn−1
+ and 1>(u,v,w) = 1.

We next claim that the polar dual of Qn is given by

Q∗n =
⋃
ε,τ

Q∗ε,τ .

Since Qn ⊂Qε,τ , we have Q∗ε,τ ⊂Q∗n for all ε and τ . As a result,

⋃
ε,τ

Q∗ε,τ ⊂Q∗n.

Since the polar set of any given set is convex and closed, Q∗n is convex and closed. Hence, the

closure of the left side is still a subset of Q∗n.

To show the converse, let us consider the following set

(
Q∗n
)◦

=

{
x

∣∣∣∣ max
ζ∈Qn

ζ>x< 1

}
⊂Q∗n.

This is nonempty (0 ∈ (Q∗n)
◦
) and open. To see this, for any x in the set, consider a small ball B

with radius r. Then, we observe that

max
ζ∈Qn

ζ>(x + v)≤max
ζ∈Qn

ζ>x + r×max
ζ∈Qn
|ζ|

for any v ∈ B. Since Qn is bounded, it is enough to choose a sufficiently small r that makes the

right-hand side less than 1. On the other hand, it is clear that (Q∗n)
◦

= Q∗n; we simply consider the

sequence xm = (1−m−1)x for x∈Q∗n and check xm ∈ (Q∗n)
◦
.

Next, consider the following function

g(ε,τ ) := max
ζ∈Qε,τ

ζ>x.

Let us fix x∈ (Q∗n)
◦

with maxζ∈Qn ζ
>x = 1− δ for some δ > 0. Since the objective function is linear

and the domain Qε,τ continuously decreases to Qn, there exists (ε,τ ) such that g(ε,τ )≤ 1−δ/2< 1,

which implies x∈Q∗ε,τ . Consequently,

(Q∗n)
◦ ⊂
⋃
ε,τ

Q∗ε,τ ⇒ (Q∗n)
◦ ⊂
⋃
ε,τ

Q∗ε,τ .
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The claim is now proved.

Step 3. From the previous steps, we only need to find the closure of the set
⋃
ε,τ Q∗ε,τ . For

any u ∈ 4|I|, we have the constraint 1>(v,w) = 1− 1>u and v,w ≥ 0. However, by scaling up

arbitrarily by ε,τ , we include the nonnegative rays of (v,w). This leads to

y ∈Q∗n ⇔ y = (MI)>diag(aI)
−1u + (MJ )>v−w

for some u∈∆|I|, v ∈R|J |+ , and w ∈Rn−1
+ . But note that if 1>u = 1, then v = w = 0. Hence, more

precisely,

(u,v,w)∈
{

x∈R|I|+

∣∣∣ 1>x< 1
}
×
{
R|J |+ ×Rn−1

+ \(0,0)
}
∪
{

x∈R|I|+

∣∣∣ 1>x = 1
}
×{(0,0)}.

The set of vectors generated by this set via (EC.24) is
⋃
ε,τ Q∗ε,τ . However, it is clear that we can

take a sequence of (u,v,w) converging to an arbitrarily chosen element of ∆|I| × R|J |+ × Rn−1
+ .

Hence,

Q∗n =

{
y

∣∣∣∣∣ y = (I−A−n)>

diag(aI)
−1 0

0 I


u

v

−w, (u,v,w)∈∆|I|×R|J |+ ×Rn−1
+

}
.

The statement is then immediate using the previous corollary. �

Example EC.1. In general, the default region Di or equivalently the solvency region Si is not easy

to picture, nor computationally simple due to exponentially many half-spaces. Rather, the results

in Section EC.3 based on duality are helpful in visualizing the solvency region. For example, let us

consider a network with n= 3 with a13, a23 > 0. According to Theorem EC.4 in Section EC.3, the

solvency region for bank 3, S3, is equivalent to the region of x∈ [0,c] satisfying

x3 <w3 and y :=
x−3−w−3

w3−x3

∈

 1
a13
−a21
a23

−a12
a13

1
a23

42−R2
+ =: Q∗3.

Using this Q∗3, it is easy to see how S3 is affected by the relative liabilities A. See Figure EC.2 for

an illustration. For this, we use the setting in Example EC.3 and utilize γA instead of A where γ

is a positive multiplying factor. As γ gets bigger, a larger proportion of liabilities are concentrated
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Figure EC.2 The 2-dimensional simplex (left) is transformed to the polar dual Q∗3 (right) for the normalized

shock y: aij = 1/3 for all i 6= j and γ = 0.5,0.75,1,1.25,1.5.

on the inside of the network. The left side of Figure EC.2 represents the 2-dimensional simplex

∆2, and the right side shows the polar dual Q∗3 for different γ values: 0.5, 0.75, 1, 1.25, and 1.5.

We observe that Q∗3 gets smaller as γ increases. This is because more shocks are propagated as the

interconnectedness between banks increases.

Appendix EC.4: Supplementary Numerical Results

EC.4.1. Results using the Full EBA Dataset

In this subsection, we conduct numerical experiments similar to those in Section 6 using the full

dataset of the 2011 EBA stress test. We find that some small banks have problematic data, and

hence, we omit the ten smallest banks as a simple rule. The dataset of the remaining 80 banks is

given in Table EC.1. Note that for EAD, Section 6 uses the domestic exposure at default as in

Chen et al. (2016) since the network is composed of only German banks, whereas this section uses

the total exposure at default as in Glasserman and Young (2015). Our target banks include BE004,

FR013, FR014, FR015, FR016, DE017, DE018, IT041, NL047, ES059, SE084, GB088, GB089,

GB090, and GB091 since they were identified as G-SIBs by the Financial Stability Board in 2011.

Using the same network reconstruction method as in Section 6, we form complete, ring-like, and
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Table EC.1 Data of the largest 80 banks based on the 2011 EBA EU-wide stress test.

Code Bank Name Total Assets EAD Equity (w) External Assets (c)
AT001 ERSTE BANK GROUP (EBG) 205.9 25.0 10.5 180.9
AT002 RAIFFEISEN BANK INTERNATIONAL (RBI) 131.2 30.4 7.6 100.8
AT003 OESTERREICHISCHE VOLKSBANK AG 44.7 10.8 1.8 34.0
BE004 DEXIA 548.1 228.2 17.0 319.9
BE005 KBC BANK 276.7 23.9 11.7 252.9
CY006 MARFIN POPULAR BANK PUBLIC CO LTD 42.6 7.9 2.0 34.7
CY007 BANK OF CYPRUS PUBLIC CO LTD 42.0 7.3 2.1 34.7
DK008 DANSKE BANK 402.6 75.9 14.6 326.7
DK009 JYSKE BANK 32.8 4.7 1.7 28.1
DK010 SYDBANK 20.2 3.7 1.2 16.6
DK011 NYKREDIT 175.9 8.6 6.6 167.3
FI012 OP-POHJOLA GROUP 74.7 8.2 5.2 66.5
FR013 BNP PARIBAS 1,998.2 90.3 55.4 1,907.8
FR014 CREDIT AGRICOLE 1,503.6 83.7 46.3 1,419.9
FR015 BPCE 1,000.7 35.0 31.9 965.7
FR016 SOCIETE GENERALE 1,051.3 100.0 27.8 951.3
DE017 DEUTSCHE BANK AG 1,905.6 194.4 30.4 1,711.2
DE018 COMMERZBANK AG 771.2 138.2 26.7 633.0
DE019 LANDESBANK B-W 374.4 133.9 9.8 240.5
DE020 DZ BANK AG DT.Z-G 323.6 135.9 7.3 187.7
DE021 BAYERISCHE LANDESBANK 316.4 97.3 11.5 219.0
DE022 NORDDEUTSCHE LANDESBANK-GZ 228.6 91.2 4.0 137.4
DE023 HYPO REAL ESTATE HOLDING AG 328.1 29.1 5.5 299.0

DE024 WESTLB AG, DÜSSELDORF 191.5 58.1 4.2 133.4
DE025 HSH NORDBANK AG 150.9 9.5 4.4 141.4
DE027 LANDESBANK BERLIN AG 133.9 49.3 5.2 84.6
DE028 DEKABANK DEUTSCHE GIROZENTRALE 130.3 41.3 3.4 89.0
GR030 EFG EUROBANK ERGASIAS S.A. 85.9 3.8 4.3 82.0
GR031 NATIONAL BANK OF GREECE 118.8 8.6 8.2 110.2
GR032 ALPHA BANK 66.8 3.5 5.3 63.3
GR033 PIRAEUS BANK GROUP 57.7 1.6 3.0 56.1
GR034 AGRICULTURAL BANK OF GREECE S.A. 31.2 1.7 0.8 29.6
HU036 OTP BANK NYRT. 35.2 2.5 3.3 32.7
IE037 ALLIED IRISH BANKS PLC 131.3 11.3 3.7 120.0
IE038 BANK OF IRELAND 156.7 17.3 7.0 139.5
IE039 IRISH LIFE AND PERMANENT 46.7 6.1 1.7 40.6
IT041 UNICREDIT S.P.A 929.5 106.7 35.7 822.8
IT040 INTESA SANPAOLO S.P.A 577.0 109.9 26.2 467.1
IT042 BANCA MONTE DEI PASCHI DI SIENA S.P.A 244.3 12.1 6.3 232.2
IT043 BANCO POPOLARE - S.C. 140.0 7.6 5.5 132.4
IT044 UNIONE DI BANCHE ITALIANE SCPA 130.6 19.8 6.6 110.8
NL047 ING BANK NV 933.1 111.8 30.9 821.3
NL048 RABOBANK NEDERLAND 607.5 37.5 27.7 569.9
NL049 ABN AMRO BANK NV 379.6 29.2 11.6 350.4
NL050 SNS BANK NV 78.9 0.4 1.8 78.5
NO051 DNB NOR BANK ASA 210.0 7.0 9.7 202.9
PL052 PKO BANK POLSKI 35.5 2.2 4.2 33.4

PT053 CAIXA GERAL DE DEPÓSITOS, SA 119.3 14.2 6.5 105.1

PT054 BANCO COMERCIAL PORTUGUÊS 100.0 7.7 3.5 92.3

PT055 ESPÍRITO SANTO FINANCIAL GROUP 85.6 8.7 4.5 77.0
PT056 BANCO BPI 43.8 5.5 2.1 38.4
ES059 BANCO SANTANDER S.A. 1,223.3 51.4 42.0 1,171.9
ES060 BANCO BILBAO VIZCAYA ARGENTARIA S.A. 540.9 110.5 24.9 430.5
ES061 BFA-BANKIA 327.9 39.5 13.9 288.4
ES062 CAJA DE AHORROS Y PENSIONES DE BARCELONA 275.9 5.5 11.1 270.3
ES063 EFFIBANK 54.5 4.1 2.7 50.4

ES064 BANCO POPULAR ESPAÑOL, S.A. 129.2 14.8 6.7 114.4
ES065 BANCO DE SABADELL, S.A. 96.7 3.7 3.5 93.0
ES066 CAIXA D’ESTALVIS DE CATALUNYA 76.0 8.2 3.1 67.8
ES067 CAIXA DE AFORROS DE GALICIA 73.3 2.9 2.8 70.4
ES068 GRUPO BMN 69.8 7.7 3.3 62.1
ES069 BANKINTER, S.A. 53.5 2.1 1.9 51.3

ES070 CAJA ESPAÑA DE INVERSIONES 45.7 7.2 2.1 38.4
ES071 GRUPO BANCA CIVICA 71.1 7.4 3.7 63.6
ES072 CAJA DE AHORROS Y M.P. DE ZARAGOZA 42.7 1.8 2.3 40.9
ES073 MONTE DE PIEDAD Y CAJA DE AHORROS DE RONDA 34.3 2.6 2.5 31.7
ES074 BANCO PASTOR, S.A. 31.1 1.7 1.4 29.5
ES075 GRUPO BBK 44.6 1.9 3.0 42.7
ES076 CAIXA D’ESTALVIS UNIO DE CAIXES DE MANLLEU 28.3 1.8 1.1 26.5
ES077 CAJA DE AHORROS Y M.P. DE GIPUZKOA Y SAN SEBASTIAN 20.8 0.3 1.9 20.5
ES078 GRUPO CAJA3 20.1 1.9 1.2 18.2
ES083 CAJA DE AHORROS DEL MEDITERRANEO 72.0 5.0 1.8 67.1
SE084 NORDEA BANK AB 542.9 61.4 19.1 481.4
SE085 SKANDINAVISKA ENSKILDA BANKEN AB 212.2 26.0 9.6 186.3
SE086 SVENSKA HANDELSBANKEN AB 240.2 20.9 8.2 219.3
SE087 SWEDBANK AB 191.4 17.4 7.4 174.0
GB088 ROYAL BANK OF SCOTLAND GROUP PLC 607.4 105.5 59.0 501.8
GB089 HSBC HOLDINGS PLC 1,783.2 212.1 86.9 1,571.1
GB090 BARCLAYS PLC 1,725.7 53.9 46.2 1,671.8
GB091 LLOYDS BANKING GROUP PLC 1,006.1 29.2 48.0 976.8

All quantities are exhibited in billions of euros.
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Figure EC.3 The recovered interbank network structures from the EBA stress test data.

Complete Ring Core-Periphery

Note. The three structures represent complete, ring-like, and core-periphery networks, respectively. For each struc-

ture, nodes represent individual banks, and edges stand for their interbank exposures. Red nodes represent target

banks, and blue nodes denote core banks except target banks.

core-periphery networks, which are illustrated in Figure EC.3. In the case of the core-periphery

network, banks with total assets larger than 500 billion euros are selected as core banks. Further,

we consider six different network information: full network information, Top 5 banks’ information,

SIFIs’ information, large exposures’ information, link information, and aggregate information when

computing the worst-case quantities. For the top 5 banks’ information, we select FR013, FR014,

DE017, GB089, and GB090 based on the size of total assets. As noted in Section 4, we identify

large exposures whose size is greater than or equal to 10% of the corresponding bank’s equity;

Figure EC.4 exhibit large exposures in the three networks in Figure EC.3.

In Figures EC.5 and EC.6, under different network information and network structures, we

illustrate the worst-case default probabilities and risk capitals with α= 0.95. We assume that the

random shocks X1, . . . ,X11 follow Pareto distributions: for each i, the probability density function

of Xi is given by fi(x) = θ−1
i (1 +λx/θi)

−(1/λ+1), where θi = ci/c1 and λ∈ [1,2.5]. It is also assumed

that the shocks are independent and constrained to be in [0,c] as in Section 6. We arbitrarily set

ε = 0.0005 for the link information and η = 0 for all cases. Unlike the results in Section 6, there

exists a slight gap between the true quantities and the worst-case quantities based on the large
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Figure EC.4 Large exposures in the recovered interbank network structures from the EBA stress test data.

Complete Ring Core-Periphery

Note. The lines in the three figures represent large exposures in the complete, ring-like, and core-periphery networks

in Figure EC.3, respectively. Red nodes represent target banks, and blue nodes denote core banks except target banks.

Figure EC.5 The worst-case default probabilities under different network information and different network

structures.
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Note. The Monte Carlo method with 105 replications is used for the estimation of the probabilities. The legend in

the left subfigure applies to all the subfigures.

exposures’ information because each exposure gets smaller in relative terms as the network size

grows. We can also observe from Figures EC.3 and EC.4 that not many exposures are classified

as large exposures. Nonetheless, since the gap is limited, this information is still good enough

to approximate the true quantities, and thus, it demonstrates the effectiveness of collecting large

exposures for regulatory purposes. Since the other results have the same patterns as the associated

results in Section 6, we omit the explanation.
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Figure EC.6 The worst-case risk capitals under different network information and different network structures.

when α= 0.95
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Note. The number of samples (N) is 2,000. All subfigures share the same legend in the left subfigure.

EC.4.2. Examples of Shock Contagion

We introduce two examples to help the reader better understand the shock propagation and the

default region, respectively. In Example EC.2, using two simple networks, we exemplify the proce-

dure of contagion of shocks in the Eisenberg-Noe network model. In Example EC.3, we illustrate

how the default region of a specific bank changes with respect to its net worth.

Example EC.2. Let us first consider a network of n banks with the relative liability matrix A

with aij > 0 if and only if j = i + 1 for i = 1,2, . . . , n − 1 as described in the left side of Fig-

ure EC.7. Assume that η= 0. Careful counting would tell us that Qn = {ζ|ζ1 ≤ ζ2 ≤ · · · ≤ ζn−1, ζi =∏n−1

j=i aj(j+1) or 0, i= 1, . . . , n− 1}. It is then not difficult to see that the total shock to bank n is

Φn(x) = xn +
((

(x1−w1)+a12 +x2−w2

)+
a23 + · · ·+xn−1−wn−1

)+

a(n−1)n.

It shows that banks 1 to n− 1 sequentially add shocks if there is an overflow of shocks for each

bank. For the case of a star network in the right side of Figure EC.7, let n= 2m+ 1 for some m.

This network consists of one hub 1, debtors {2,4, . . . ,2m}, and creditors {3,5, . . . ,2m+ 1}. Then,

it is easy to see that Qn = {0}
⋃
{ζ|ζ1 = a1n, ζ3 = ζ5 = · · · = ζ2m−1 = 0, ζ2k = a(2k)1a1n or 0, k =

1, . . . ,m}. Thus, the total shock to bank n is equal to

Φn(x) = xn + a1n

(
x1−w1 +

m∑
k=1

a(2k)1(x2k−w2k)
+

)+

.
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Figure EC.7 A ring network with n banks (left) and a star network with an odd number (n) of banks (right).

Figure EC.8 A graphical illustration of Φ3(x) in a 3-bank network.

Note that the summation inside the second term is the indirect shock to bank 1 from other banks.

This shows that the fraction a1n of the excess shock at bank 1 affects bank n if bank 1 cannot

afford to cover shocks, whereas it takes two steps for a shock at bank 2k to affect bank n.

Example EC.3. Figure EC.8 presents the amount of the total shock Φ3(x) for w3 = 1,1.4, and 3

with respect to x1 and x2 in the case of a three-bank network with c1 = c2 = 7, w1 =w2 = 2.5, and

A =


0 1/3 1/3

1/3 0 1/3

1/3 1/3 0

 .
Since our interest lies in the indirect shock, we assume x3 = 0 and η = 0 in this example. The

default region D3 gets smaller for increasing w3, and Φ3(x) is zero when x1 <w1 and x2 <w2. The

further the point (x1, x2) is away from the origin, the bigger the total shock is. Also, the shaded

region can be divided into 3 parts: a trapezoid adjacent to x1-axis, a trapezoid adjacent to x2-axis,

and the other part. Those three parts correspond to (6) when I is {1},{2}, and {1,2}, respectively.
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EC.4.3. Auxiliary Numerical Results

Figure EC.9 The default probability (3) for T = {1,2} in Example 1 with Gaussian copula models.
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Note. We assume the 5-bank homogeneous financial network in Example 1 and apply the same shock distribution

used in that example to estimate the marginal default probability as well as the probability (3) under our network

model. The left panel illustrates the banks’ default probabilities under our network model and the Gaussian copula

models with different correlation coefficients ρ, whereas the right panel describes the ratios of the default probabilities

associated with the copula models to the probability under our network model.

Table EC.2 The matrices of relative liabilities for the complete network.

DE017 DE018 DE019 DE020 DE021 DE022 DE023 DE024 DE025 DE027 DE028
DE017 0 0.0026 0.0053 0.0060 0.0036 0.0029 0.0004 0.0012 0.0002 0.0014 0.0015
DE018 0.0065 0 0.0143 0.0162 0.0097 0.0077 0.0010 0.0032 0.0006 0.0037 0.0041
DE019 0.0274 0.0291 0 0.0678 0.0405 0.0325 0.0043 0.0133 0.0025 0.0154 0.0174
DE020 0.0357 0.0381 0.0782 0 0.0530 0.0425 0.0056 0.0174 0.0032 0.0202 0.0227
DE021 0.0222 0.0236 0.0485 0.0549 0 0.0263 0.0035 0.0108 0.0020 0.0125 0.0141
DE022 0.0241 0.0257 0.0527 0.0598 0.0357 0 0.0038 0.0117 0.0022 0.0136 0.0153
DE023 0.0022 0.0024 0.0048 0.0055 0.0033 0.0026 0 0.0011 0.0002 0.0012 0.0014
DE024 0.0118 0.0126 0.0258 0.0293 0.0175 0.0140 0.0018 0 0.0011 0.0067 0.0075
DE025 0.0028 0.0030 0.0062 0.0070 0.0042 0.0033 0.0004 0.0014 0 0.0016 0.0018
DE027 0.0200 0.0213 0.0437 0.0496 0.0296 0.0237 0.0031 0.0097 0.0018 0 0.0127
DE028 0.0228 0.0243 0.0498 0.0565 0.0337 0.0270 0.0036 0.0111 0.0021 0.0129 0

The shaded components represent the amount that can be inferred from the large exposures’ information.
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Table EC.3 The matrices of relative liabilities for the ring-like network.

DE017 DE018 DE019 DE020 DE021 DE022 DE023 DE024 DE025 DE027 DE028
DE017 0 0.0170 0 0 0 0 0 0 0 0 0.0081
DE018 0.0428 0 0.0242 0 0 0 0 0 0 0 0
DE019 0 0.0494 0 0.2007 0 0 0 0 0 0 0
DE020 0 0 0.2314 0 0.0851 0 0 0 0 0 0
DE021 0 0 0 0.0883 0 0.1300 0 0 0 0 0
DE022 0 0 0 0 0.1764 0 0.0354 0.0327 0 0 0
DE023 0 0 0 0 0 0.0247 0 0 0 0 0
DE024 0 0 0 0 0 0.0392 0 0 0.0248 0.0642 0
DE025 0 0 0 0 0 0 0 0.0317 0 0 0
DE027 0 0 0 0 0 0 0 0.0934 0 0 0.1219
DE028 0.1201 0 0 0 0 0 0 0 0 0.1236 0

The shaded components represent the amount that can be inferred from the large exposures’ information.

Table EC.4 The matrices of relative liabilities for the core-periphery network.

DE017 DE018 DE019 DE020 DE021 DE022 DE023 DE024 DE025 DE027 DE028
DE017 0 0.0014 0.0027 0.0030 0.0056 0.0046 0.0007 0.0020 0.0004 0.0023 0.0026
DE018 0.0035 0 0.0072 0.0080 0.0149 0.0123 0.0018 0.0054 0.0010 0.0062 0.0069
DE019 0.0138 0.0146 0 0.0313 0.0585 0.0483 0.0070 0.0211 0.0041 0.0244 0.0272
DE020 0.0176 0.0187 0.0361 0 0.0750 0.0619 0.0090 0.0270 0.0052 0.0312 0.0349
DE021 0.0342 0.0363 0.0700 0.0778 0 0 0 0 0 0 0
DE022 0.0383 0.0407 0.0784 0.0871 0 0 0 0 0 0 0
DE023 0.0039 0.0041 0.0079 0.0088 0 0 0 0 0 0 0
DE024 0.0201 0.0213 0.0411 0.0457 0 0 0 0 0 0 0
DE025 0.0050 0.0053 0.0102 0.0113 0 0 0 0 0 0 0
DE027 0.0337 0.0358 0.0690 0.0767 0 0 0 0 0 0 0
DE028 0.0381 0.0405 0.0781 0.0868 0 0 0 0 0 0 0

The shaded components represent the amount that can be inferred from the large exposures’ information.
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