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Abstract. Given limited network information, we consider robust risk quantification 
under the Eisenberg–Noe model for financial networks. To be more specific, motivated by 
the fact that the structure of the interbank network is not completely known in practice, we 
propose a robust optimization approach to obtain worst-case default probabilities and 
associated capital requirements for a specific group of banks (e.g., systemically important 
financial institutions) under network information uncertainty. Using this tool, we analyze 
the effects of various incomplete network information structures on these worst-case quan
tities and provide regulatory insights into the collection of actionable network information. 
All claims are numerically illustrated using data from the European banking system.

Funding: The work of D. Ahn was supported by the Hong Kong Research Grants Council, University 
Grants Committee [Early Career Scheme Grant 24210420]. N. Chen acknowledges funding support 
from the Hong Kong Research Grants Council, University Grants Committee [General Research 
Fund Grant 14207918 and General Research Fund Grant 14208620]. The work by K.-K. Kim was 
supported by the National Research Foundation of Korea [Grant NRF-2019R1A2C1003144]. 

Supplemental Material: The e-companion is available at https://doi.org/10.1287/opre.2020.0722. 

Keywords: risk quantification • financial network • robust optimization • information uncertainty

1. Introduction
Along with the evolution of interconnectedness in finan
cial systems, the importance of financial institutions’ 
exposure to losses arising from other institutions’ de
faults has increased significantly in recent years. The 
more banks are exposed to such losses, the more likely 
they are to suffer from the domino effects of financial fail
ures. As seen in the financial crisis of 2008, large financial 
institutions may face severe financial stress in quick suc
cession. Another example is the Greek sovereign debt cri
sis in 2010 when some European countries failed to make 
scheduled debt payments to their creditors such as the 
International Monetary Fund, resulting in significant 
stress on many European banks (Guerrieri et al. 2012).

Such repeating financial crises have provoked heated 
academic debates on how to measure, mitigate, and 
manage the aforementioned risk with a focus on the 
impact of the financial system’s network topology. 
Above all, Eisenberg and Noe (2001) have played a key 
role in those discussions. Specifically, the authors pro
vide a clearing mechanism that settles payment obliga
tions of financial institutions based on a fixed-point 
characterization. This mechanism effectively describes 
default cascades triggered by interbank liabilities in 

financial networks, leading to many subsequent studies. 
To name a few, Elsinger et al. (2006) develop an empirical 
approach to assess systemic risk, Capponi et al. (2016) 
analyze the effect of liability concentration on systemic 
losses, and Cifuentes et al. (2005) and Rogers and Veraart 
(2013) propose extended models incorporating asset fire 
sales and bankruptcy costs, respectively.1 Liu and Staum 
(2010) and Feinstein et al. (2018) conduct sensitivity anal
yses of clearing payments, and Barucca et al. (2020) study 
a network-based valuation model for interbank claims. 
See Birge et al. (2018) for a good review of this strand of 
the literature. Interested readers can also consult Gai and 
Kapadia (2010) and Elliott et al. (2014) for other models 
of default contagion in the networks.

Nonetheless, only a few papers use the Eisenberg–Noe 
model to investigate the impact of random losses in 
banks’ assets on their solvency, which is of practical 
importance to regulators. For example, Chen et al. (2016) 
find a lower bound of the probability that a shock to a 
single bank leads to other banks’ default. Khabazian and 
Peng (2019) provide a lower bound of the probability of 
bankruptcy in the system when all banks receive nor
mally distributed shocks. However, these works are not 
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applicable to the case of multivariate shocks following a 
general class of probability distributions.

Another limitation of the model is that it requires full 
information on interbank exposures in the network, 
which is rarely available in practice as commonly noted 
in three well-known surveys in this context (Capponi 
2016, Glasserman and Young 2016, Benoit et al. 2017). 
Instead, various types of partial information can be col
lected. For example, each bank’s aggregate interbank 
exposure can be generally known from the balance sheet. 
The Basel III framework requires banks to report large 
interbank exposures, defined as exposures greater than 
or equal to 10% of their Tier 1 capital (BCBS 2020a, c). 
Also, the Basel Committee annually investigates the 
interbank assets and liabilities of the so-called systemi
cally important financial institutions (SIFIs), but not all 
banks are examined.

To address the issue of incomplete network infor
mation, many studies have developed network recon
struction methods using the aggregate information of 
interbank assets and liabilities (e.g., Upper and Worms 
2004, Baral and Fique 2012, Drehmann and Tarashev 
2013, Halaj and Kok 2013, Musmeci et al. 2013, Anand 
et al. 2015, Cimini et al. 2015, Gandy and Veraart 2017). 
However, because these methods do not consider ran
dom shocks to financial institutions, they do not provide 
a clear answer to risk quantification (in particular, to the 
estimation of risk capital). Moreover, Anand et al. (2018) 
find that none of those methods are generally superior to 

the other methods and that the results highly depend on 
the jurisdiction of the data and the performance measure. 
See Squartini et al. (2018) for a systematic review of 
recent network reconstruction methods.

Several other works focus on connectedness between 
banks, which we call link information, to understand 
each bank’s risk contribution. For example, Kuzubaş et al. 
(2014), Das (2016), Bosma et al. (2019), and Bartesaghi 
et al. (2020) use the link information to rank the banks 
according to their systemic importance and identify SIFIs 
through the notion of network centrality. Still, the effects 
of random shocks are not discussed in those works.

To our knowledge, Glasserman and Young (2015) is so 
far the only paper that considers both random shocks 
and partial network information. They use the aggregate 
liabilities’ information to obtain upper bounds of banks’ 
default probability and expected loss, assuming that ran
dom shocks follow a particular type of distribution. 
However, little is known of a risk quantification method 
that can accommodate various types of incomplete net
work information and random shocks.

Motivated by these limitations, this paper studies 
robust risk quantification based on multivariate random 
shocks to financial institutions and incomplete network 
information under the Eisenberg–Noe model. In particu
lar, we provide a comprehensive framework for estimat
ing the worst-case default probabilities under different 
kinds of network information. In Figure 1, we illustrate 
the network information structures applicable to our 

Figure 1. (Color online) The Network Information Structures that this Work Covers 

Notes. The shaded area represents the network information that we address. The existing literature indicated here includes Upper and Worms 
(2004) (Maxe), Baral and Fique (2012) (Bara), Drehmann and Tarashev (2013) (Dreh), Halaj and Kok (2013) (Hala), Musmeci et al. (2013) (Musm), 
Kuzubaş et al. (2014) (Kuzu), Anand et al. (2015) (Anan), Cimini et al. (2015) (Cimi), Glasserman and Young (2015) (Glas), Das (2016) (Das), 
Gandy and Veraart (2017) (Gand), Bosma et al. (2019) (Bosm), Bartesaghi et al. (2020) (Bart), BCBS (2020a) (BIS1), and BCBS (2020c) (BIS2).
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framework and classify the aforementioned studies based 
on the partial information they consider. We particularly 
focus on the default event of a specific set of banks in
spired by the fact that regulators pay close attention to the 
solvency of SIFIs. Indeed, because the collapse of SIFIs 
could lead to a financial crisis, the Basel Committee devel
oped higher loss absorbency requirements for those insti
tutions to secure the financial system by preventing their 
bankruptcy (BCBS 2020b). The detailed contributions of 
this work are as follows. 

1. Mixed-integer linear program (MILP) formulation 
for worst-case default probabilities. We first characterize 
a bank’s default event with respect to a shock vector, 
assuming that full network information is available. 
This is then leveraged to formulate a mixed-integer lin
ear program that identifies the worst-case default event 
of one or more banks in a specific set, taking into ac
count all possible network configurations under limited 
network information. Our approach facilitates the unbi
ased estimation of the worst-case default probability 
and outperforms existing robust optimization methods 
that provide more conservative solutions or require 
computationally intractable procedures.

2. Worst-case risk capital. We compute the minimum 
capital amount required to keep all SIFIs solvent with a 
certain probability to protect the financial system from 
falling into a crisis, which we call worst-case risk capital.2
Specifically, we formulate a chance-constrained optimi
zation problem in which the worst-case default proba
bility of SIFIs is controlled by a cash injection strategy. 
The difficulty of solving the problem is alleviated by 
the shock propagation mechanism and sample average 
approximation (SAA).

3. Information sensitivity. We proceed to apply our 
results to various types of limited network information 
based on real-world data. For information to be gath
ered efficiently, we make the following suggestions on 
regulatory policies. 

a. When it comes to regulating some selected 
banks (e.g., SIFIs), gathering only those banks’ infor
mation would be one of the best options for regula
tors to take. Information from the other banks is 
found to have little impact on improving the worst- 
case quantities associated with the target banks. 
Given that data collection can be costly, this result 
helps effectively reduce the amount of information 
that regulators need to collect.

b. Another effective option is to collect informa
tion on large exposures because they are likely to 
be the main source of potential shock contagion. 
Our numerical analysis indicates that this informa
tion leads to small gaps between the associated 
worst-case quantities and the true quantities. This 
alternative, however, calls for a judicious choice of 
the threshold for large exposures to balance the 
cost of gathering information with its effectiveness.

c. In the case, it is difficult to require banks to 
report their full data; collecting only link informa
tion without exact amounts is a sensible alterna
tive, provided that the network has low density. 
Our study demonstrates that the worst-case quan
tities under this kind of information are close to 
the true quantities for sparse networks.3

d. It is unlikely that relying on only aggregate 
information or a part of target banks’ information 
will help. We observe a significant gap between 
the true quantities and the worst-case quantities 
under such information.

We note that the observations in contributions (3a) and 
(3b) share a common thread with Musmeci et al. (2013) 
and Cimini et al. (2015) because they numerically show 
the robustness of systemic risk estimates to partial net
work information. However, in contrast to those works, 
this paper considers random shocks for risk quantifica
tion and investigates how the difference between true 
and worst-case risk quantities varies according to various 
types of limited network information.

The remainder of the paper is organized as follows. 
Section 2 introduces the underlying model and de
scribes the problem formulation. In Section 3, we 
characterize the region for a shock vector to drive a 
specific bank to default using the notion of shock 
propagation. In Section 4, we obtain the worst-case 
default probabilities, which change according to the 
level of available information. In Section 5, we apply 
our results to the computation of the worst-case risk 
capital under incomplete network information. In Sec
tion 6, we verify the practical applicability of our 
results via numerical experiments using real-world 
data. Finally, Section 7 concludes the paper. All proofs 
and the source code used for numerical experiments 
can be found in the e-companion.

2. Problem Formulation
We begin this section by introducing the basic notations 
in this paper. All vectors are column vectors, denoted by 
bold symbols (e.g., u � (u1, : : : , ud)

⊤
∈ Rd). The Euclidean 

norm of a vector u is denoted by ‖u‖. We use 1, 0, and I 
for vectors of ones and zeros and the identity matrix in a 
suitable dimension, respectively. For any two vectors 
u, v ∈ Rd, u ≤ v means an entry-wise inequality, [u, v] �
{x ∈ Rd |u ≤ x ≤ v}, u ∧ v � (min{u1, v1}, : : : , min{ud, vd})

⊤, 
and u+ � (max{u1, 0}, : : : , max{ud, 0})⊤. For any matrix M, 
we denote by M�i the matrix obtained by eliminating 
its ith column and row (similarly defined for vectors). For 
any two index sets I ,J ⊂ {1, : : : , d}, vI is the vector 
obtained by restricting the entries of the vector v ∈ Rd to I , 
and MI ,J is the matrix obtained by restricting the com
ponents of the d×d matrix M to I × J . If I � J , we sim
ply write MI .
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2.1. The Model and Basic Assumptions
In this paper, we consider an n-bank financial system, 
where banks are indexed by 1, : : : , n, and adopt an 
extended framework of Eisenberg and Noe (2001). The 
extension comes from first, the existence of liabilities to 
entities outside the financial network and second, the 
inclusion of random shocks to the external asset values 
and bankruptcy costs. This modeling framework is pro
posed by Glasserman and Young (2015), and it consists 
of the following ingredients. 
• For each i,j, pij is the payment obligation from 

bank i to bank j, with pii � 0.
• For each i, ci, bi ≥ 0 are the external assets and the 

external liabilities of bank i, respectively.
• Each bank’s balance sheet is given by 

1. the asset side: ci +
P

j≠ipji;
2. the liability side: pi :� bi +

P
j≠ipij; and

3. the initial net worth (book value): wi :� ci+P
j≠ipji� pi.

• The proportion of bank i’s obligation to bank j is 
defined by aij :� (pij=pi)1{pi>0}.
• A random variable Xi is a shock to the external asset ci.
• The constant η ≥ 0 is a multiplier for bankruptcy 

costs, which will be introduced shortly.
After the shock, bank i’s external asset and its net 

worth become ci�Xi and wi�Xi, respectively. Here, 
1{pi>0} yields one if pi > 0 and zero otherwise. We denote 
the matrix of the relative liabilities by A � (aij) and the 
sum of the ith row of A by βi. The quantity βi is the 
so-called financial connectivity of bank i, measuring its reli
ance on funding sources inside the financial system. In 
this paper, we denote by x � (x1, : : : , xn) a realization of 
the random shock vector X � (X1, : : : , Xn).

In this framework, bank i defaults if bank i fails to pay 
its full liabilities pij and bi (i.e., if the asset side of its bal
ance sheet is not large enough to keep it solvent). Then, 
its assets are further reduced by bankruptcy costs propor
tional to its shortfall in payments, given by

η pi� ci� xi +
X

j≠i
pjaji

 !( )

, (1) 

where pj denotes the total debt payment of bank j. After 
deducting the bankruptcy costs, its residual assets are 
distributed to its creditors according to the pro rata allo
cation rule, where interbank liabilities pij and external lia
bilities bi have the equal priority.

Based on the mentioned features of this framework, 
the celebrated notion of the clearing payment vector 
p(x) ∈ Rn

+ is defined as a solution to the following implicit 
equation:

pi�pi ∧ ci�xi+
X

j≠i
pjaji�η pi�ci+xi�

X

j≠i
pjaji

 !( )+

,

i�1,: : : ,n: (2) 

Note that the term in the braces represents the amount of 
remaining assets after accounting for bankruptcy costs. 
Thus, (2) implies that each bank either meets its payment 
obligation or distributes all its remaining assets to the 
creditors. We note that the solvency condition for bank i 
is equivalent to pi(x) � pi; the default of bank i happens 
only when pi(x) < pi.

To facilitate our analysis, we impose the following 
modeling assumptions in the paper.

Assumption 1.
a. The initial net worth is positive and bounded by the 

external asset (i.e., 0 < wi ≤ ci for each i).
b. There does not exist any subset S of banks such that 

aij � aji � 0 for all (i, j) ∈ S × Sc.
c. 0 ≤ η < (maxi βi)

�1
� 1.

d. For each i, xi ≤ ci� ηpi=(1+ η).

Item (a) allows us to focus on the impact of a shock vec
tor on the system stability, and it also indicates that inter
bank assets are smaller than total liabilities. Assumption 
1(b) implies that the financial network is irreducible 
because if such set S exists, then banks in S can be re
garded as being outside the system and considered 
separately. Condition (c) makes the function p(x) unique 
(Glasserman and Young 2015), and item (d) prevents 
bankruptcy costs in (1) from exceeding the total assets so 
that taking the positive part in (2) becomes unnecessary.4

2.2. The Main Problem
In this paper, under the framework in Section 2.1, we 
focus on the probability that at least one bank in a specific 
set T defaults: that is,

P X ∈
[

i∈T
Di

 !

, (3) 

where Di is a set of shock vectors that make bank i 
default. Because of the shock propagation, for each i ∈ T , 
the default event Di of bank i results not only from the 
loss in the bank’s external assets but also, from its expo
sure to the loss in interbank transactions.

If we know full network information A and the distri
bution of X, then the default probability (3) can be easily 
estimated via Monte Carlo simulation; for l simulated 
shocks x1, : : : , xl, by solving (2), one can find clearing 
payments p(x1), : : : , p(xl), based on which the frequency 
of the target event is measured. Alternatively, Ahn and 
Kim (2018) introduce an efficient computational method 
for the probability (3) using conditional Monte Carlo and 
importance sampling. However, the public, banks, or 
regulators often face a lack of full network information 
and have only partial information about financial net
works. This poses a huge challenge to accurately assess 
the default probability (3) because of possible misspeci
fication of the target financial network. We provide a 
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simple example showing that the network misspecifica
tion leads to a misestimation of the default probability.

Example 1. Consider a five-bank financial network 
where wi� 2, pi � 8 for i � 1, : : : , 5, η � 0:1, and the mat
rix A of relative liabilities is given by aij�0.2 for all i ≠ j. 
Note that β1 �

: : : � β5 � 0:8. However, if only the 
aggregate information (β1, : : : ,β5) is available, one may 
incorrectly specify the network structure as, for exam
ple, a ring network or a star network. Table 1 provides 
four possible misspecified networks given the aggre
gate information. Assuming that the random shocks 
X1, : : : , X5 are independent and identically distributed 
and follow a lognormal distribution with parameters 
µ�0 and σ ∈ [0:2, 0:5], we demonstrate in Figure 2 that 
the default probabilities of bank 5 under the misspecified 
networks could deviate significantly from its true default 
probability. The star network and semicomplete network 
in Table 1 result in the smallest and largest default proba
bilities for bank 5, respectively, and the other networks in 
the table lead to values in between. The case of multiple 
target banks will be discussed in Section 4.

Given such network uncertainties that make the exact 
computation of (3) intractable, one would need to ex
plore its worst-case version while utilizing all incomplete 
but available network information. Hence, given each 
bank’s total liabilities (pi), external liabilities (bi), equities 
(wi), and partial network information, we aim at investi
gating the worst-case default probability:

P(X ∈ DA,T ): (4) 

Here, A is the set of all possible matrices of relative lia
bilities given the partial network information, which we 
call the network uncertainty set hereafter. The set DA,T :�

∪A∈A∪i∈T Di is a collection of shock vectors that might 
cause at least one bank in T to default in the worst case. 
We often suppress the subscript T if it is clear from the 
context. By definition, (4) bounds (3) from above, and 
they are equal when the full network information is 
known (i.e., when A is a singleton).

Remark 1. Given a lack of knowledge on the true net
work structure, for practical purposes, one might con
sider estimating the probability (3) with a reduced-form 
approach, such as a one-factor Gaussian copula model. 
This relies on each bank’s marginal default probability 

and the correlation coefficients between the common 
market factor and idiosyncratic factors without consid
ering network effects. However, if network effects are 
not accounted for, each bank’s marginal probability will 
depend only on losses in external assets, leading to the 
underestimation of the target probability.5

3. Shock Propagation
To facilitate the derivation of the set DA,T , we character
ize the solvency condition via the analysis of shock prop
agation in the following lemma.

Lemma 1. For each shock realization x, bank i is solvent if 
and only if Φi(x) ≤ wi, where

Φi(x) :� xi +max
z∈Qi

z⊤(x�i�w�i), (5) 

Qi :� {v�i ∈ Rn�1
+ |vI � (1+ η)(I� (1+ η)AI )

�1ai
I , vI c � 0, 

I ⊂ {1, 2, : : : , n} \ {i}}, ai is the ith column of A, and wi is 
bank i’s initial net worth defined in Section 2.1 for each 
i ∈ {1, 2, : : : , n}.

For each shock realization x, Φi(x) in (5) can be viewed 
as the total shock to bank i, which aggregates the direct 
shock to bank i (i.e., the first term on the right-hand side 
of (5)) and the indirect shock (i.e., the second term on the 
right-hand side of (5)) that indicates shock propagation 
from other banks to bank i. Based on the lemma, the set Di 
defined in Section 2.2 can be represented as Di � {x ∈
[0, c] |Φi(x) > wi}, which is the set of shock vectors that 
cause the total shock to bank i to exceed its net worth.6

To understand the role of the vector z in (5), we 
observe that for each shock realization x and for each i, 
there exists some I in {1, 2, : : : , n} \ {i} such that

Φi(x)�xi+(ai
I )
⊤
((I� (1+η)AI )

�1
)
⊤
((1+η)(xI �wI )),

(6) 

where the set I represents the set of insolvent banks. 
This implies that excess shocks of banks in I (i.e., 
xI �wI ) are increased by a factor (1+ η) and further 
amplified while circulating within the set I because 
(I� (1+ η)AI )

�1
� I+ (1+ η)AI + (1+ η)2A2

I+⋯. Then, 
the resulting shocks are transferred to bank i through ai

I . 
Note that the banks in the set I c do not affect bank i. 
Accordingly, the vector z in (5) captures the banks 
involved in shock propagation to bank i and the extent of 

Table 1. Possible Examples of Misspecified Networks in Example 1

Network type Ring Star Complete Semicomplete

Relative liability matrix 0 :8 0 0 0
0 0 :8 0 0
0 0 0 :8 0
0 0 0 0 :8
:8 0 0 0 0

2

6
6
6
6
4

3

7
7
7
7
5

0 0 0 0 :8
0 0 0 0 :8
0 0 0 0 :8
0 0 0 0 :8
:2 :2 :2 :2 0

2

6
6
6
6
4

3

7
7
7
7
5

0 :1 :1 :1 :5
:1 0 :1 :1 :5
:1 :1 0 :1 :5
:1 :1 :1 0 :5
:2 :2 :2 :2 0

2

6
6
6
6
4

3

7
7
7
7
5

0 :4 :2 :2 0
:2 0 :4 :2 0
:2 :2 0 :4 0
:4 :2 :2 0 0
:2 :2 :2 :2 0

2

6
6
6
6
4

3

7
7
7
7
5

Notes. The leading zeros are omitted in the matrices for ease of exposition. The naming convention of the networks is consistent with the 
literature except for the semicomplete network, whose name stems from the fact that its subnetwork consisting of banks 1–4 is a complete 
network.
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the propagated shocks, and thus, it can be interpreted as 
the impact of other banks’ excess shocks on bank i.7

Before concluding this section, we highlight that for 
each shock realization x, the condition that no bank in T 

defaults is given by Φi(x) ≤ wi for each i ∈ T , where Φi(x)
can be rewritten as
Φi(x) �max xi +

X

j∈T c
ζj(xj�wj)

s:t: ζj ≤ (1+ η)
 

aji +
X

k∈T c
ajkζk

!

∀j ∈ T c,

ζj ≥ 0 ∀j ∈ T c,
(7) 

and for each j ∈ T c, the optimal solution ζ∗j of (7) coincides 
with that of (5). Equation (7) holds because bank i in T is 
not affected by the other banks in T (i.e., ζ∗j � 0 for all j ∈
T \ {i} because of their solvency), and the vectors in Qi are 
the extreme points of the feasible set of the linear program. 
This result will be particularly useful in the next section 
for characterizing the worst-case total shock to multiple 
target banks under network information uncertainty.

4. Robust Quantification of Default 
Probabilities

In this section, we discuss tractable quantification of (4) 
under incomplete network information. Because Di �

{x ∈ [0, c] |Φi(x) > wi} by Section 3, for fixed sets A and 
T , one can derive that

DA,T � x ∈ [0, c]

�
�
�
�
�
max

i∈T
{Φi(x)�wi} > 0

( )

, 

where Φi(x) :�maxA∈AΦi(x) means the worst-case total 
shock to bank i for each shock realization x. A naive 

Monte Carlo estimation of the worst-case default proba
bility (4) requires solving a bilevel optimization problem 
for each shock realization x; the inner layer solves (7) to 
find Φi(x) given A, and the outer layer maximizes Φi(x)
over the set A. Such an optimization problem is, how
ever, difficult to solve in general. Hence, we first propose 
a tractable formulation of maxA∈AΦi(x) that facilitates 
the computation of (4) and then apply it to various exam
ples of partial information.

4.1. Main Result
We assume that total liabilities p1, : : : , pn and external lia
bilities b1, : : : , bn are given because their information is 
often available to the public in practice, which implies 
that βj � (pj� bj)=pj is known for all j. Also, individual 
interbank transactions are assumed to be partially (or not) 
observable. In particular, the amount of the liabilities pjk 
of bank j to bank k may be exactly known for some j, k. In 
some other cases, their positive lower bounds may be 
known instead of exact amounts; for example, if the liabil
ities between banks j and k are only known to exist, they 
would be at least as large as a very small amount (e.g., a 
dollar).

Let K denote the set of indices (j, k) such that the 
amount of pjk is exactly known. Similarly, we define K̃ as 
the set of indices (j, k) such that only a positive lower 
bound of pjk is known. Then, considering all aforemen
tioned cases, we construct the following network uncer
tainty set:

A �

(

Ã � (ãjk) ∈ Rn×n
+

�
�
�
�
�
ãjk � ajk ∀(j, k) ∈K,

ãjk ≥ ajk ∀(j, k) ∈ K̃,
Xn

k�1
ãjk � βj ∀j

)

, (8) 

Figure 2. (Color online) Bank 5’s Default Probabilities Under Different Network Structures in Example 1
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Notes. The left panel illustrates the bank’s default probabilities with different σ under the true network and the misspecified networks in Table 1. 
The right panel describes the relative differences between the default probabilities under the misspecified networks and under the true network. 
The Monte Carlo method with 105 replications is used for the estimation of the probabilities.
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where {ajk}(j, k)∈K are the known relative liabilities, and 
{ajk}(j, k)∈K̃ are positive constants representing the known 
lower bounds of the relative liabilities corresponding to 
K̃. As we shall see in Section 4.2, given the available net
work information, K, K̃, and {ajk}(j, k)∈K∪K̃ can be prop
erly determined so that the network uncertainty set A in 
(8) represents the set of all possible network configura
tions under that network information.

To facilitate discussions, we classify banks in T c ac
cording to the availability of their network information. 
For fixed i ∈ T , we denote by Gi

1 :� {j ∈ T c | (j, k) ∈K ∀k ∈
{i} ∪ T c} the set of banks whose liabilities to bank i and 
banks in T c are all known, by Gi

2 :� {j ∈ T c | (j, i) ∉K} the 
set of banks whose liabilities to bank i are not known, and 
by Gi

3 :� T c \ (Gi
1 ∪ Gi

2) the set of banks whose liabilities to 
bank i are known but whose liabilities to some banks in 
T c are unknown. Clearly, the three sets are disjoint, there 
is no priority among them, and T c � Gi

1 ∪ Gi
2 ∪ Gi

3. Based 
on these sets, we establish our main result on Φi(x) by 
applying the worst-case scenario to the potential shock 
propagation from bank j in T c to bank I (i.e., the right-hand 
side of the constraints in the linear program (7)) consider
ing the network uncertainty set A of relative liabilities.

Recall that ζj in (5) and (7) measures the impact of 
bank j’s excess shocks on bank i. Observe that for each 
j ∈ Gi

1, there is no uncertainty in its liabilities aji and 
{ajk}k∈T c (see Figure 3(a) in a four-bank system with T �
{4} and G4

1 � {1}). Thus, the corresponding constraints in 
(7) remain unchanged as follows:

0 ≤ ζj ≤ (1+ η) aji +
X

k∈T c
ajkζk

 !

for j ∈ Gi
1: (9) 

By contrast, if the direct link from bank j to bank i is 
not known (i.e., j ∈ Gi

2), one may intuit that the worst- 
possible network would concentrate all unknown lia
bilities of bank j on that direct link; Figure 3(c) shows 
the worst-case allocation of bank 2’s liabilities when we 
consider a four-bank system with T � {4} and G4

2 � {2}
(Figure 3(b)). Let β̃j :� βj�

P
{k | (j, k)∈K∪K̃}ajk, which rep

resents the sum of unknown relative liabilities of bank j. 
Then, the intuition implies that the worst-case version of 
the constraints in (7) could be written as

0 ≤ ζj ≤ (1+ η) β̃j +
X

k∈Kj∪K̃ j

ajkζk

0

@

1

A for j ∈ Gi
2, (10) 

where Kj :� {k ∈ T c | (j, k) ∈K} and K̃j :� {k ∈ T c | (j, k)
∈ K̃}.

On the other hand, if j ∈ Gi
3, because the direct link aji 

is known, the worst-possible network would allocate 
all unknown liabilities of bank j to the link to a bank in 
T c \Kj that has the greatest impact on bank i (i.e., 
arg maxl∈T c\Kj

ζl). For example, in a four-bank system 

with T � {4} and G4
3 � {3} (see Figure 3(d)), bank 3’s total 

unknown liabilities are allocated to its link to bank 1 if 
the impact of bank 1 on bank 4 is greater than that of 
bank 2 on bank 4 (i.e., ζ1 > ζ2) (see Figure 3(e)); other
wise, they are allocated to its link to bank 2 (see Figure 
3(f)). Hence, the associated worst-case constraints may 
correspond to

0≤ζj≤(1+η) aji+
X

k∈Kj∪K̃ j

ajkζk+ β̃j max
l∈T c\Kj

ζl

 !0

@

1

A for j∈Gi
3:

(11) 

The right-hand sides in (10) and (11) represent the 
worst-possible shock propagation from bank j to bank 
i. It is worth noting that banks in T are minimally liable 
because no unknown liabilities are allocated to the links 
between them.

These considerations of worst-possible network struc
tures help develop the tractable formulation of Φi(x) by 
maximizing the total shock to bank I (i.e., xi +

P
j∈T cζj 

(xj�wj) subject to the constraints on {ζj}j∈T c , which is 
formalized in the following theorem).

Theorem 1. Assume that every bank in T is solvent and 
that the network uncertainty set A satisfies (8). Then, for 
all x ∈ [0, c] and for each i ∈ T , Φi(x) is the maximum of 
xi +

P
j∈T cζj(xj�wj) among all impacts {ζj}j∈T c of banks 

in T c on bank i satisfying the worst-case shock propagation 
Constraints (9), (10), and (11). Further, the nonlinear Con
straints (11) can be written as the following equivalent lin
ear constraints:

0 ≤ ζj ≤ (1+ η) aji +
X

k∈Kj∪K̃ j

ajkζk + β̃jζl + 1� zjl

0

@

1

A

for j ∈ Gi
3, l ∈ T c \Kj;

X

l∈T c\Kj

zjl � 1 for j ∈ Gi
3;

zjl ∈ {0, 1} for j ∈ Gi
3, l ∈ T c \Kj,

8
>>>>>>>>>><

>>>>>>>>>>:

(12) 

where for each j ∈ T c, the binary variable zjl determines 
whether bank l has the greatest impact on bank i among banks 
in T c \Kj.

The maximization problem in Theorem 1, constructed 
by replacing (11) with (12), is an MILP that is much easier 
to solve than the original formulation maxA∈AΦi(x). 
Thus, it greatly facilitates the computation of P(X ∈ DA). 
Specifically, the Monte Carlo estimate for P(X ∈ DA) can 
be computed by solving the MILP for each i ∈ T and 
checking if maxi∈T {Φi(x)�wi} > 0. Although solving 
the MILP |T | times may seem time consuming, this is 
not a critical issue because the set T would often be a col
lection of SIFIs, and the number of SIFIs is limited in 
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practice. Also, we can relieve the computational burden 
by not solving the MILP for some shock realizations. 
Because maxi∈T {xi�wi} > 0 implies maxi∈T {Φi(x)�
wi} > 0, it is enough to solve the MILP only when xi ≤ wi 
for all i ∈ T . Later, we will see some cases that further 
improve the time efficiency of the algorithm by trans
forming it into linear programs or by obtaining Φi(x)
even without solving an optimization problem.

Remark 2. For the robust quantification of (3), one 
may consider two alternative approaches. The first 
method is to use the robust counterpart of the linear 
programming version of (2): max 1⊤p s.t. (I� (1+ η)
A⊤)p ≤ (1+ η)(c� x)� ηp, 0 ≤ p ≤ p, ∀A ∈A, where 
the result of Soyster (1976) can be applied. However, 
the solution turns out to be more conservative than 
ours. The second approach is to identify the worst 
possible network configuration in A that yields the 
largest default probability (i.e., maxA∈AP(X ∈ ∪i∈T Di)) 
using sample average approximation. However, this 
requires solving a large-scale bilevel nonlinear optimi
zation problem that is computationally intractable. In 
contrast, our method relies on solving a single-level 
MILP in Theorem 1, which is smaller in size and easier 
to solve. A numerical performance comparison is pre
sented in the appendix.

Remark 3. Given the network uncertainty set A, one 
might alternatively consider the worst-case “systemic 
default” probability (WSDP). Although there is no 

formal definition of systemic default, it is often under
stood as the default of all banks in the system (Tasca 
et al. 2014, Battiston et al. 2016, Roukny et al. 2018). In 
this case, the WSDP can be easily characterized under 
our model as long as X is a continuous random vector. 
First, a simple calculation shows that for each x and 
A, systemic default occurs if and only if s(x; A) > 0, 
where s(x; A) :� (1+ η)(I� (1+ η)A⊤)�1

(x�w) denotes 
the vector of each bank’s payment shortfall. Hence, simi
lar to (4), the WSDP can be defined by P(X ∈ D̃A), where 
D̃A :� ∪A∈A{x |s(x; A) > 0} is the set of shock vectors 
that could cause all banks to default in the worst case. 
Then, by Farkas’ lemma, it is not difficult to show 
that P(X ∈ D̃A) � P(Ψ(X) � 0), where Ψ(x) :�max{(w�
x)⊤j | (I� (1+ η)A)j ≥ 0 for all A ∈A}. Note that the 
optimization problem for Ψ(x) can be simply converted 
into a tractable linear program via a standard approach 
to robust linear optimization with polyhedral uncertainty 
(Bertsimas et al. 2011). Accordingly, the WSDP can be 
estimated in a manner similar to the estimation of P(X ∈
DA) discussed. See Section EC.1.3 in the e-companion for 
technical details.

4.2. Applications to Various Network Information
This subsection provides several examples of partial net
work information to illustrate the usefulness of the MILP 
formulation in Theorem 1 from the perspectives of indi
vidual banks and regulators.

Figure 3. (Color online) An Illustration of the Worst-Possible Networks with a Four-Bank System When T � {4}

(a) (b) (c)

(d) (e) (f)

Notes. We assume that all relative liabilities are known except for a23, a24, a31, and a32. Black solid arrows represent known liabilities (aij), and 
dashed arrows denote unknown liabilities (ãij). Red and blue solid arrows are the liabilities of banks 2 and 3, respectively, in the worst-possible 
network. (a) Bank 1’s liabilities. (b) Bank 2’s liabilities (unknown). (c) Bank 2’s liabilities (worst case). (d) Bank 3’s liabilities (unknown). (e) Bank 
3’s liabilities (worst case). (f) Bank 3’s liabilities (worst case).
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4.2.1. Individual Bank’s Information. Suppose that bank 
1 wants to estimate the worst-case default probability (4) of 
its counterparty bank n (i.e., P(X ∈ DA, {n}) � P(Φn(X)
> wn)) using all the information bank 1 has (i.e., K �

∪n
j�1 {(1, j), (j, 1), (j, j)} and K̃ � ∅). In practice, bank 1 

would compute such a probability conditional on itself 
remaining solvent prior to bank n’s bankruptcy. In this 
case, solving the MILP results in

Φn(x) � xn + (1+ η)
Xn�1

j�2
(βj� aj1)(xj �wj)

+ (13) 

because Gn
1 � Gn

3 � ∅ and Gn
2 � {2, : : : , n� 1}. This corre

sponds to the fact that, from bank 1’s perspective, the 
worst-case shock propagation to bank n occurs when all 
unknown liabilities of banks 2 to n�1 are associated 
with bank n. In this worst-case network structure, the 
condition that bank 1 is solvent before bank n’s default is 
given by x1 + (1+ η)

Pn�1
j�2 aj1(xj�wj)

+
≤ w1, and hence, 

we can estimate the said probability by sampling X from 
the distribution satisfying this condition. Note that the 
increase or decrease in the amount of bank 1’s lending to 
bank n does not affect (4) because Φn(x) and wn remain 
unchanged irrespective of these actions. However, if 
bank 1 allows bank n to roll over the loan, the probability 
will be reduced because it has the same effect as tempo
rarily increasing wn while keeping Φn(x) unchanged.

4.2.2. Multiple Banks’ Information. Suppose that regu
lators want to estimate banks’ default probabilities but 
have limited information obtained only from some of 
the banks. Let S denote the set of banks that provide 
their own information to the regulators. Then, we have 
K � (∪i∈S, j�1, : : : , n{(i, j), (j, i)}) ∪ (∪j∈Sc{(j, j)}) and K̃ � ∅. 
Given this situation, the MILP in Theorem 1 can be used 
for any S,T ⊂ {1, : : : , n}. We present two particular cases 
of S and T that would be of interest to regulators. We find 
that in those cases, the MILP can be greatly simplified. 
• The regulators might want to estimate the worst- 

case default probability (4) of the banks whose infor
mation is not available. Thus, let us assume that the 
target banks’ information is not available (i.e., T ⊂ Sc). 
Then, we have Gi

1 � S, Gi
2 � T c \S, and Gi

3 � ∅ for each 
i ∈ T , and thus, one can show that the MILP can be 
recast as the following linear program:

max xi +u⊤(xT c �wT c)

s:t:
�
(1+ η)�1I� Ã

�
u ≤ q, u ∈ R |T

c |
+ , (14) 

where

Ã � AS AS,T c\S

AT c\S,S 0

� �

and q � ai
S

bT c\S �AT c\S,S1

� �

:

• Given incomplete network information, even if 
the regulators observe the target banks’ information 
(i.e., T � S), the exact computation of their default 

probability (3) may not be feasible. In this case, we 
have Gi

1 � Gi
2 � ∅ and Gi

3 � T c for each i ∈ T , and hence, 
the MILP is equivalent to the following simple MILP 
formulation for i ∈ T :

max xi +u⊤(xT c �wT c)

s:t: (1+ η)�1u1⊤ � b̃T c u⊤ +Z ≤ (ai
T c + 1)1⊤,

Z1 � 1, diagZ � 0,

Z ∈ {0, 1} |T
c | × |T c | , u ∈ R |T

c |
+ , 

where we simplify the notation by adding a redundant 
constraint diagZ � 0.

4.2.3. Large Exposures’ Information. As discussed in 
Section 1, according to the Basel III framework (BCBS 
2020a), a bank’s large exposures greater than or equal to 
10% of the bank’s capital are likely to be reported to re
gulators. We can deal with such a case in the MILP formu
lation by letting K be the set of interbank transactions 
corresponding to large exposures and K̃ be an empty 
set. We will see in Section 6 and Section EC.4 in the 
e-companion that this information contains significant 
interbank liabilities that could largely affect network 
stability in practice, and thus, the worst-case default 
probabilities under this information are likely to be 
close to the true values.

4.2.4. Link Information. Recall that link information 
refers to the information on whether each interbank link 
exists or not. We assume that such link information is 
available, but the exact amount of interbank liabilities is 
not observed. Let K and K̃ �Kc denote the set of nonexist
ing links and the set of existing links, respectively. Then, 
for some ɛ > 0, the uncertainty set A can be given by

A �

(

Ã ∈ Rn×n
+

�
�
�
�
�

Xn

k�1
ãjk � βj ∀j, ãjk � 0 ∀(j, k) ∈K,

ãjk ≥ ɛ ∀(j, k) ∉K

)

: (15) 

Clearly, the uncertainty set A in (15) gets smaller as the 
set K becomes larger. This implies that the lower the net
work density, the closer the worst-case probability (4) 
under the link information is to the true probability (3). 
Note that the corresponding MILP problem is not as sim
ple as the equivalent formulations in the previous cases, 
but it is still easy to formulate and solve.

In the following theorems, we further observe the 
closeness between the probabilities (3) and (4) given the 
link information (15) in the presence of regularly varying 
shocks and lognormal shocks.8

Theorem 2. Suppose that A satisfies (15) for fixed K and 
ɛ > 0 and that Xi be a nonnegative random variable having 
a regularly varying distribution with index ρi > 1 for each i 
(i.e., for all t>0, limx→∞fi(tx)=fi(x) � t�ρi , where fi(·) is 
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the density function of Xi). Let Xm � X=m for m � 1, 2, : : : , 
and let ρ

∗
�mini∈H∪T ρi, where H is the set of banks that 

have a directed path to a bank in T . Assume that for large 
m, Xm

1 , : : : , Xm
n are independent and constrained to be in 

[0, c] almost surely. Then, for any A ∈A,

lim
m→∞

1
log m

log P(Xm ∈ DA)

� lim
m→∞

1
log m

log P Xm ∈
[

i∈T
Di

 !

��ρ
∗
+ 1: (16) 

Theorem 3. Suppose that A satisfies (15) for fixed K and 
ɛ > 0 and that Xi follow a lognormal distribution with para
meters µi and σi for each i. Let Xm � X=m for m � 1, 2, : : : , 
and let σ∗ �maxi∈H∪T σi, where the set H is defined as in 
Theorem 2. Assume that for large m, Xm

1 , : : : , Xm
n are inde

pendent and constrained to be in [0, c] almost surely. Then, 
for any A ∈A,

lim
m→∞

1
(logm)2

log P(Xm ∈ DA)

� lim
m→∞

1
(logm)2

log P Xm ∈
[

i∈T
Di

 !

��
1

2σ2
∗

:

The theorems commonly indicate that under the link 
information (15), the probabilities (3) and (4) are asymp
totically equivalent as the shock size gets smaller in the 
sense that for any A ∈A,

lim
m→∞

log P(Xm ∈ ∪i∈T Di)

log P(Xm ∈ DA)
� 1:

This not only highlights the importance of the link infor
mation but also, allows us to use (4) as a proxy of (3) 
when it comes to small but heavy-tailed shocks. The set 

H can be identified using the link information (15) and 
represents the set of banks that may affect the banks in 
T .9 Also, (�ρi) and σi indicate the heavy tailedness of the 
shock Xi. Thus, among the shocks that could affect the 
banks in T , the one with the heaviest tail has the most 
powerful influence on the probabilities (3) and (4). See 
Section EC.2 in the e-companion for more discussions on 
the two theorems.

4.2.5. Aggregate Information. Suppose that individual 
interbank liabilities are not observed at all and that only 
the aggregate information (β1, : : : ,βn) is available, which 
is the case in Glasserman and Young (2015, 2016). Then, 
K � {(1, 1), (2, 2), : : : , (n, n)} and K̃ � ∅. In this case, it is 
easy to see that Φi(x) � xi + (1+ η)b⊤T c(xT c �wT c)

+ for 
i ∈ T , and the worst-case default probability becomes

P(X ∈ DA)

� P
�

max
i∈T
{xi �wi + (1+ η)b⊤T c(xT c �wT c)

+
} > 0

�
:

(17) 

Thus, we do not solve an optimization problem for esti
mating this probability, which helps us reduce the compu
tation time greatly. Note that (17) is analogous to the result 
of Glasserman and Young (2015); in fact, both coincide 
given a single shock and a single target bank. However, 
we consider a multivariate shock vector X and the target 
event ∪i∈T Di in (17), whereas their result is based on a sin
gle shock to a specific bank and the target event ∩i∈T Di.

4.2.6. Comparison of Network Information Effects. We 
revisit the underlying network in Example 1 to illustrate 
how the worst-case default probability (4) changes ac
cording to the network information. In Figure 4, we pre
sent the estimated values of (4) with the target sets {1, 2} 

Figure 4. (Color online) The Worst-Case Default Probabilities Under Different Types of Network Information 
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Notes. The figure exhibits the worst-case default probabilities (4) for T � {1, 2} (left panel) and T � {5} (right panel) with different σ under differ
ent types of network information. The Monte Carlo method with 105 replications is used for the estimation of the probabilities.
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and {5} under five different types of network informa
tion: full network information, bank 1’s information, tar
get banks’ information, link information, and aggregate 
information. The same shock distribution in Example 1 is 
assumed. For the link information, we arbitrarily set 
ɛ � 0:05. Note that all interbank liabilities in this example 
are large exposures, equal to 80% of banks’ capital, mean
ing that the large exposures’ information is exactly the 
same as the full information.

In the left panel of Figure 4, we observe that the esti
mate of (4) given bank 1’s and bank 2’s information is 
closer to the true value (3) than the estimate of (4) given 
bank 1’s information. This corresponds to our intuition 
that more information would lead to a better estimate. 
Also, in both panels, the information of target banks in T 

gives the best approximation, implying that the firsthand 
shock propagation is likely to dominate the whole shock 
propagation in financial networks. We shall see in Sec
tion 6 that these observations are consistent even in the 
case of real-world financial networks.

The magnitude of the differences between the true and 
worst-case default probabilities (up to 50% in this example) 
greatly depends on several inputs, including partial net
work information, shock distributions, bankruptcy costs, 
the size of interbank liabilities, and the number of target 
banks. However, no matter how large or small the gap is, 
our methodology allows us to compare the effects of differ
ent types of network information on the proximity between 
the true and worst-case default probabilities, which eventu
ally gives us practical insights into information collection.

5. Worst-Case Risk Capital
The higher loss absorbency requirements in the Basel III 
framework ask global systemically important banks (G- 
SIBs) to hold additional capital to reduce their default 
probabilities. The task of gauging this risk capital poses a 
challenge when full network information is not available. 
In this section, we apply the main results in Section 4 so 
as to estimate the minimum additional capital amount, 
which we call worst-case risk capital, required to keep all 
SIFIs solvent with probability α.

Let T be the set of SIFIs, which is assumed to be given, 
and fix α ∈ [0, 1). Then, using the probability (4), our 
problem can be mathematically formulated as follows:

min
X

i∈T
νi

s:t: P
�

max
i∈T
{Φi(X)�wi� νi} > 0

�
≤ 1� α,

νi ≥ 0, i ∈ T : (18) 

Note that the left-hand side of the first constraint of (18) 
is the probability (4) with wi + νi instead of wi for i ∈ T . 
The optimal solution to (18), say nα, limits the probability 
(4) to 1� α, and the total amount να◦ :�

P
i∈T ν

α
i is the 

worst-case risk capital. However, (18) is a joint chance- 

constrained optimization problem that is known to be 
difficult to solve; because the probability does not have a 
closed form in general, it is hard to check the feasibility of 
the probabilistic constraint, and even if it is feasible, the 
feasible region might not be convex.

To tackle this issue, in the following theorem, we pro
pose an SAA of Problem (18) assuming that the random 
shock vector X can be sampled.

Theorem 4. Assume that X is a continuous random shock 
vector and that x1, : : : , xN are its independent and identi
cally distributed samples. Let V be the set of optimal solu
tions of (18) and M be a sufficiently large constant such 
that Φi(X) <M almost surely for all i ∈ T . If (nN, zN)

solves the following MILP:

min
X

i∈T
νi

s:t:
XN

j�1
zj ≤N(1� α),

wi + νi +Mzj ≥ Φi(xj), i ∈ T , j � 1, : : : , N,
0 ≤ νi ≤M, i ∈ T ,
zj ∈ {0, 1}, j � 1, : : : , N, (19) 

then νN
◦ :�

P
i∈T ν

N
i → ν

α
◦ and infnα∈V‖n

N � nα‖→ 0 with 
probability 1 as N→∞.

Theorem 4 provides significant computational benefits 
because the new Problem (19) is much easier to solve 
than the original Problem (18), and the approximation 
quality improves as the sample size increases. Further
more, the random vector X can be a general continuous 
probability distribution, and hence, shocks to banks are 
possibly correlated.

Demange (2018) and Ahn and Kim (2019) study tracta
ble mathematical programs for the optimal capital injec
tion under the Eisenberg–Noe framework. However, 
those approaches essentially differ from ours. First, their 
policies are scenario-based solutions and do not adopt 
any probabilistic approach (i.e., each deterministic shock 
scenario may lead to a different capital allocation). Sec
ond, they do not take incomplete network information 
and SIFIs’ default into special consideration.

In Figure 5, using Example 1 again, we describe the 
worst-case risk capital under different types of network 
information, different σ, and different N for the set 
T � {1, 2}. In the left panel of the figure, we observe the 
impact of network information on estimating the risk 
capital, which is similar to the results in Figure 4. The 
right panel, on the other hand, numerically shows that 
the risk capital is underestimated when the sample size 
is small but converges rapidly as the sample size in
creases. In general, the small sample size would lead to 
the underestimation of the (worst-case) default probabil
ity and risk capital because default events are rare.
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Remark 4. One may also consider convex approxima
tion (Hong et al. 2011), robust approximation (Yuan 
et al. 2017), and scenario approaches (Calafiore and 
Campi 2005, 2006) to overcome the intractability of 
Problem (18). However, those methods either require 
more distributional assumptions or lead to conserva
tive bounds only. As long as we can sample the ran
dom vector, it is relatively easier to apply the SAA 
than the other methods. See Luedtke and Ahmed 
(2008) and Pagnoncelli et al. (2009) for more details on 
the SAA for joint chance-constrained optimization.

Before we end this section, we briefly discuss the 
applicability of our SAA approach to the measure
ment of external creditors’ risk exposure to the finan
cial system. If we regard the set of external creditors 
as node 0 and denote the associated relative liabilities 
of bank i by ai0 for each i, then a slight modification to 
Lemma 1 suffices to show that the creditors’ worst- 
case losses are equal to Φ0(x) :�maxA∈AΦ0(x), where 
Φ0(x) :�max{z⊤(x�w) | (I� (1+ η)A)z ≤ (1+ η)a0, z ∈
Rn
+} and a0 � (a10, a20, : : : , an0)

⊤, which can be computed 
using an MILP similar to the one in Theorem 1. Thus, 
the associated value-at-risk, VaRα(Φ0(X)) �min{y ∈ R+
|P(Φ0(X) > y) ≤ 1� α}, can be estimated via Theorem 4. 
According to Rockafellar and Uryasev (2000), given 
the samples Φ0(x1), : : : ,Φ0(xN), the conditional value- 
at-risk of the worst-case losses can be approximated 
as CVaRα(Φ0(X)) ≈min{y ∈ R+ |Φ0(xj) + {N(1� α)}�1 
PN

j�1 zj ≤ zj + y, zj ≥ 0, j � 1, : : : , N}:

6. Numerical Experiments
To demonstrate how our theoretical results in Sections 4
and 5 can be applied in practice, we use data from the 
2011 EU-wide stress test conducted by the European 

Banking Authority (EBA). For illustration, we restrict our 
focus to 11 German banks that participated in the test as 
in Chen et al. (2016) and Gandy and Veraart (2017). Our 
numerical results based on the full data set can be found 
in Section EC.4 in the e-companion. Note that both data 
sets lead to the same conclusions.

The data set of the German banks is provided in Table 2. 
We use the numbers in the first column of Table 2 for the 
subscripts of variables (e.g., DE017’s net worth is denoted 
by w1 � 30, 361). Because this data set does not report each 
bank’s bilateral interbank exposures, we adopt the three 
types of reconstructed networks used in Chen et al. (2016): 
complete, ring-like, and core-periphery networks (see 
Figure 6). This reconstruction is based on an entropy- 
minimization method in Upper and Worms (2004), assum
ing that each bank’s interbank assets and liabilities are 
equal to its exposure at default (EAD).10 We refer the 
reader to Chen et al. (2016) for more details. For the core- 
periphery network, DE017, DE018, DE019, and DE020 are 
selected as the core banks according to the size of the total 
assets. The matrices of the relative liabilities for these net
works are presented in Section EC.4.3 in the e-companion.

We assume that the random shocks X1, : : : , X11 follow 
Pareto distributions, taking into account that heavy- 
tailed shocks could lead to large shock propagation. 
Note that if only a little shock propagation occurs, it is 
obvious that the worst-case default probability and risk 
capital under partial information are almost identical to 
the true quantities. For each i, the probability density fi 
of Xi is assumed to depend on the amount of external as
sets as follows: fi(x) � θ�1

i (1+λx=θi)
�(1=λ+1), where θi �

ci=c1 and λ ∈ [1, 6]. It is also assumed that the shocks are 
independent and constrained to be in [0, c] to satisfy the 
modeling assumption in Section 2.

Figure 5. (Color online) The Worst-Case Risk Capital Under Different Types of Network Information 
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Notes. The left panel exhibits the worst-case risk capital νN
◦ for T � {1, 2} with n � 10,000; α � 0:95, 0:99; and different σ under five types of net

work information in Figure 4. The right panel shows the worst-case risk capital νN
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We set Deutsche Bank (DE017) and Commerzbank 
(DE018) as target banks (i.e., T � {DE017, DE018}) 
because they were the two largest banks in terms of asset 
size and were identified as G-SIBs by the Financial Stabil
ity Board in 2011. Further, we consider seven types of 
network information: full network information, DE017’s 
information, DE018’s information, DE017 and DE018’s 
information, large exposures’ information, link informa
tion, and aggregate information. Recall that the worst- 
case quantities under full information correspond to the 
true quantities and that those under partial information 
should be larger than the true values.

In Figures 7 and 8, we observe the impact of network 
information on the worst-case default probabilities (4) 
and risk capitals (18) as in Figures 4 and 5, respectively. 
We arbitrarily set ɛ � 0:002 for the link information and 
η�0 for all cases. We find that most interbank exposures 
are large exposures because of the small network size, 
and hence, the worst-case analysis under large expo
sures’ information is hardly different from the quantities 
under full information. Although this observation does 
not extend to the case of larger networks, the ex
periments with the full EBA data set show that large 

exposures’ information remains useful in larger net
works; see Section EC.4.1 in the e-companion. This result 
is associated with contribution (3b) in Section 1.

Notably, the impact of link information on approxima
tion quality is highly sensitive to the network structure. 
Although it is most effective under the ring network, the 
performance hardly improves under the complete net
work. This confirms that the value of the link information 
is greater for a sparse network than for a dense network, 
as previously inferred from the corresponding uncer
tainty set (15). This corresponds to contribution (3c) in 
Section 1.

More importantly, it is consistently observed that the 
target banks’ information results in the best approxima
tions, whereas the aggregate information and the infor
mation of a single target bank do not help much, which 
pertains to contributions (3a) and (3d) in Section 1. The 
figures nevertheless show that the information of DE018 
is more useful than that of DE017 regardless of the net
work structure, which is because DE018 has greater 
financial connectivity than DE017 (see Table 2).

In contrast to the result in Figure 5, Figure 8 shows that 
the worst-case risk capital is close to the true risk capital 

Table 2. Data of German Banks from the 2011 EBA EU-Wide Stress Test

No. Code Bank name Total assets EAD Equity External assets

1 DE017 Deutsche Bank AG 1,905,630 47,102 30,361 1,858,528
2 DE018 Commerzbank AG 771,201 49,871 26,728 721,330
3 DE019 Landesbank B-W 374,413 91,201 9,838 283,212
4 DE020 DZ Bank AG 323,578 100,099 7,299 223,479
5 DE021 Bayerische Landesbank 316,354 66,535 11,501 249,819
6 DE022 Norddeutsche Landesbank 228,586 54,921 3,974 173,665
7 DE023 Hypo Real Estate Holding AG 328,119 7,956 5,539 320,163
8 DE024 WestLB AG Dusseldorf 191,523 24,007 4,218 167,516
9 DE025 HSH Nordbank AG Hamburg 150,930 4,645 4,434 146,285
10 DE027 Landesbank Berlin AG 133,861 27,707 5,162 106,154
11 DE028 DekaBank Deutsche Girozentrale 130,304 30,937 3,359 99,367

Note. All quantities are exhibited in millions of euros.

Figure 6. (Color online) The Recovered Interbank Network Structures from the EBA Stress Test Data 

DE017

DE018

DE019

DE020

DE021 DE024

DE025

DE027

DE028

DE017

DE018

DE019

DE020

DE021 DE024

DE025

DE027

DE028

DE027

DE028

DE021

DE022

DE023

DE022 DE023 DE022 DE023
DE024 DE025

DE020

DE019

DE017

DE018

Notes. The three structures represent complete, ring-like, and core-periphery networks from left to right, respectively. For each structure, nodes 
represent individual banks, and edges stand for their interbank exposures.
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in most cases and that the degree of proximity increases 
as α increases. This seemingly conflicting phenomenon 
stems from the nature of factors that affect shock propa
gation and that of the data we use. Figure 9 provides two 
scatterplots of the samples of (Φ1(X),Φ2(X)) under full 
information and aggregate information, respectively. 
The figure tells us that large Φi’s are driven by direct 
shocks but that small Φi’s are driven by indirect shocks. 
Hence, the shock propagation has more effects on 

computing the risk capital for smaller α. Note that in 
the figure, the default probability estimate counts the 
number of samples outside the region [0, w1] × [0, w2], 
whereas for risk capital, (να1 ,να2 ) is determined to limit 
the number of samples outside the region [0, w1 + να1 ] ×
[0, w2 + να2 ] to at most N(1� α). In addition, compared 
with the case in Figure 5, the financial connectivities of 
the target banks are relatively small (see Table 2), which 
strengthens the impact of direct shocks.

Figure 7. (Color online) The Worst-Case Default Probabilities for T � {DE017, DE018}Under Different Network Information 
and Different Network Structures 
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Notes. The Monte Carlo method with 105 replications is used for the estimation of the probabilities. The legend in the left panel applies to all of 
the panels.

Figure 8. (Color online) The Worst-Case Risk Capitals for T � {DE017, DE018}Under Different Network Information and 
Different Network Structures 
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7. Conclusion
In this paper, we addressed robust risk quantification 
under the Eisenberg–Noe model with incomplete net
work information. Particularly, we provided an MILP 
problem to identify worst-case shock propagation to a 
specific group of banks from other banks, based on 
which worst-case default probabilities are quantified. In 
response to recent changes in financial regulations, we 
also expanded our approach to the problem of comput
ing risk capital, which secures SIFIs against the worst- 
case shock propagation. We formulated the problem 
using chance-constrained optimization and suggested a 
sample average approximation scheme for computa
tional tractability. Our numerical observations revealed 
the impact of partial information on the worst-case 
default probability and risk capital. They were found to 
be potentially useful in estimating the true quantities in 
the presence of certain network data, such as target 
banks’ information, large exposures’ information, or link 
information.

This work opens up several interesting directions for 
further investigation. First, analyzing the difference bet
ween true and worst-case default probabilities and its 
sensitivity to information availability could be insightful. 
Second, relaxing specific modeling features, such as 
extending to the Eisenberg–Noe model with fire sales, 
would be interesting. Further, based on the mapping 
from the shock vector x to the loss Φi(x), one may explore 
the problem of selecting the most likely shock scenario 
given the loss outcome, which is called reverse stress test
ing. Lastly, assuming that unknown interbank liabilities 
are random, one might tackle the issue of incomplete 

network information differently by finding a confidence 
interval of the total loss given a shock realization.
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Appendix. Comparison with Different Approaches
In Table A.1, we compare the performance of our ap
proach with that of the two alternative methods for the 
robust quantification of (3) in Remark 2 denoted by robust 
LP and bilevel NLP, respectively. We consider two differ
ent networks: the core-periphery network constructed by 
the data of 11 German banks in Section 6 and that con
structed by the full EBA data with 80 European banks in 
Section EC.4.1 in the e-companion. We use the same target 
banks as in those sections. We assume Pareto distributions 
for random shocks, where λ� 4 for the small network case 
and λ� 2 for the large network case. Based on 1,000 pre
sampled shock realizations, we apply different approaches 
to estimate the worst-case default probabilities under SIFI 
information and aggregate information, and thus, the com
putation times in Table A.1 do not include sampling times. 
We use the Dell PowerEdge R630 server with a Dual Intel 
Xeon E5-2697 2.6-GHz CPU and 128 GB of RAM.

Our approach shows outstanding performance compared 
with the two alternative methods. In particular, robust LP is 
computationally fast, but it can be easily seen in Table A.1
that the estimates are too conservative to be used in practice. 

Figure 9. (Color online) The Distributions of (Φ1(X),Φ2(X))with Full Information (Left Panel) and Aggregate Information 
(Right Panel) 

Notes. The complete network is used for the illustration. We set λ � 4. Each rectangle represents the region in which the total shocks to DE017 
and DE018 are completely covered by their net worths and the corresponding risk capital allocated to each of them.
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Bilevel NLP turns out to be much slower than our method. 
More importantly, we find that this method may often pro
duce unreliable estimates despite such high computational 
costs and may fail to distinguish SIFI and aggregate informa
tion as seen in their identical estimates. Note that in the case 
of aggregate information, our approach is fast and accurate 
because it does not require solving an MILP; see (17).

Furthermore, we numerically examine the practical validity 
of our worst-case default probabilities. We revisit the example 
of 11 German banks in Section 6 and assume that only aggre
gate information is available. We first generate 106 network 
structures that satisfy the condition in the set A with K �

{(1, 1), (2, 2): : : , (n, n)} and K̃ � ∅ based on a homogeneous 
random graph model, in which every possible edge occurs 
independently with probability 1/2. Given 105 shock realiza
tions, we estimate the default probabilities for each network 
structure and obtain their 99%, 99.9%, and 99.99% quantiles. 
In other words, we have an empirical distribution of the tar
get default probability based on a million different network 
structures. Figure A.1 compares our worst-case default proba
bilities with those quantiles when T � {DE017, DE018}. We 

use the core-periphery network in Section 6 for the full infor
mation benchmark. We observe that the 99.9% and 99.99% 
quantiles are close to our worst-case default probabilities with 
aggregate information. This implies that our worst-case de
fault probabilities are not overly conservative. We also note 
that the more information that is available (e.g., SIFI informa
tion), the smaller the gap is between our worst-case default 
probabilities and the quantiles, which further highlights the 
value of information on interbank liabilities.

Endnotes
1 Capponi and Larsson (2015) and Capponi and Weber (2023) dis
cuss fire-sale spillover effects between banks with applications to 
capital constraints and portfolio diversification, respectively.
2 Although the concept of the risk capital we consider is analogous 
to systemic risk measures that address capital injection to each bank 
(Feinstein et al. 2017, Biagini et al. 2019), our approach differs in 
that we consider the worst-case capital requirement against incom
plete network information.
3 Because interbank networks typically have a core-periphery struc
ture (in ’t Veld et al. 2020), the entire interbank network is generally 
sparse, but the network of core banks could be relatively dense in 
practice. In this case, link information may not be useful for approx
imating the true quantities.
4 Based on the empirical data, Ahn (2020) points out that conditions 
3 and 4 are not restrictive from the practical point of view.
5 See Figure EC.9 in the e-companion for the five-bank financial net
work in Example 1.
6 This lemma also allows us to visualize the default region and to 
understand an explicit form of the total shock; see Sections EC.3 
and EC.4.2, respectively, in the e-companion. Such analyses are 
hardly possible if the set Di is represented by p(x), in which x is 
implicitly entangled.
7 The vector z can be viewed as a dual of the weighted Bonacich 
centrality in network analysis (see, e.g., Candogan et al. 2012). This 
centrality is used as a measure of how influential each single node 
is in a network, whereas z captures the influence of other nodes on 
a particular node.
8 Based on empirical observations, it is widely accepted that finan
cial shocks have heavy tails in practice; see, for example, Bradley 
and Taqqu (2003) and McNeil et al. (2015).
9 See Section EC.2 in the e-companion for its mathematical definition.
10 The EAD quantifies a bank’s total claims on all other banks, and 
hence, it is considered as the size of its interbank assets. As 

Table A.1. Estimates and Estimation Times Under Different Approaches for the Robust Quantification of (3) in Remark 2

Methods

SIFI information Aggregate information

Estimate Time (seconds) Estimate Time (seconds)

Small network
Our approach 0.053 4.902 0.071 0.003
Robust LP 0.062 3.498 1 0.346
Bilevel NLP 0.053 3.038 × 102 0.053 4.634 × 102

Large network
Our approach 0.083 31.139 0.097 0.009
Robust LP 0.120 4.203 1 0.415
Bilevel NLP 0.083 1.985 × 104 0.083 3.004 × 104

Note. Robust LP means the method of using the robust counterpart of (2), and bilevel NLP represents the method of using a bilevel nonlinear 
program to find the worst possible network configuration that yields the greatest default probability.

Figure A.1. The Worst-Case Default Probabilities and Three 
Different Quantiles of the Default Probabilities 
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Note. The Monte Carlo method with 105 replications is used for the 
estimation of the probabilities.
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interbank liabilities are not reported in the EBA data, their size is 
roughly assumed to be equal to the EAD or its perturbed value in 
the literature (Glasserman and Young 2015, Chen et al. 2016, Gandy 
and Veraart 2017, Veraart 2020, Amini and Feinstein 2023).
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