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a b s t r a c t

In this paper we present a Laplace transform-based analytical solution for pricing double-barrier options
under a flexible hyper-exponential jump diffusion model (HEM). The major theoretical contribution is
that we prove non-singularity of a related high-dimensional matrix, which guarantees the existence and
uniqueness of the solution.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Barrier options are among the most popular exotic options
traded in financial markets. A barrier option offers the holder a
payoff like that of a vanilla option, contingent on whether or not
the underlying asset price process crosses some level(s)–called the
barrier(s)–before or at thematurity date. In this paperwe are going
to study the pricing problem of double-barrier options under a
flexible jump diffusion process for the underlying asset price.

The research of barrier options has been attracting a lot
of attention in computational finance. Most studies on barrier
option pricing are conducted under the Black-Scholesmodel (BSM)
(see, e.g., [1–3]). Despite its simplicity, the BSM has obvious
shortcomings but is a good description for the movements of the
underlying asset prices. It assumes the asset returns are normally
distributed and their variances remain constant. Empirical studies
invalidate such assumptions by suggesting two observations for
asset returns: the asymmetric leptokurtic feature, i.e., the actual
return hasmuch heavier tails than normal, and the volatility smile,
i.e., the volatility implied fromequity optionprices is not a constant
but presents a curve resembling a ‘‘smile’’.

In this paper we shall reinvestigate double-barrier option
pricing problems under a new asset price model, the so called
hyper-exponential jump diffusion model (HEM), proposed by Cai
and Kou [4] recently. The model assumes the asset return follows
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a jump diffusion process with Poisson jump intensity and hyper-
exponentially distributed jump sizes. It is appealing in two aspects.
The asset returns of the HEM have heavier tails than normal
distributions and then it is capable of generating smiles for equity
options matching the empirical data. On the other hand, it retains
some flexibility in modeling. As shown in Heyde and Kou [5], it
may be very difficult to distinguish empirically the exponential-
type tails from power-type tails even given a long period of daily
data (e.g., 20 years daily prices). So, a sensible asset model should
be more flexibility about the heaviness of the asset return tails.
Thanks to the property of hypo-exponential distributions, it can
approximate various distributions ranging from power tails to
exponential tails by fine tuning parameters in the model (see,
e.g., Feldmann and Whitt [6]).

Mathematically, the contributions of our work are twofold.
First, we obtain analytical solutions to the prices of the standard
double-barrier options in terms of Laplace transforms and then are
able to invert them numerically via some efficient and accurate
algorithms such as the Euler inversion algorithm proposed by
Abate and Whitt [7] and Choudhury, Lucantoni and Whitt [8].
Second, we show the existence and uniqueness of the solutions.
More precisely, our analytical pricing formulae involve solutions
of some high-dimensional linear systems and thus their existence
and uniqueness are reduced down to the non-singularity of the
associated high-dimensional matrix. We manage to prove the
matrix is invertible in this paper.

It is worth pointing out that similar technical issues also arise
in some related work such as Cai and Kou [4] and Sepp [9]. In [4],
Cai and Kou considered the single-barrier option pricing. They also
showed the existence and uniqueness of their solution through
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non-singularity of a simpler matrix, which turns out to be a sub-
matrix of ours in the double-barrier case. As a by-product of our
work, we can duplicate their conclusionwith a new proof. Sepp [9]
priced standard double barrier options under the Kou’s double
exponential jump diffusion model (Kou [10], Kou and Wang [11]).
The Kou’s model assumes a double exponential distribution for
jumps and therefore it is a special case of the HEM. In addition,
Sepp [9] did not prove the existence and uniqueness of his solution.

The rest of the paper is organized as follows. In Section 2, we
introduce the hyper-exponential jump diffusion model. Section 3
concentrates on deriving a general analytical formula relating to
the joint distribution of the first passage time of the HEM to two
flat barriers and the value of the HEM at the first passage time.
Section 4 presents the analytical solution to the pricing problem
of standard double-barrier options. Meanwhile, numerical results
are also provided via the Euler inversion algorithm.

2. The model

We assume the asset price process {St : t ≥ 0} under the
risk-neutral probability measure P is defined as St := eXt . The
log-return process {Xt : t ≥ 0} follows the HEM given by

Xt = X0 + µt + σWt +
Nt∑
i=1

Yi, (1)

where X0 = log(S0), σ > 0, µ := r − σ 2/2 − λζ with
risk-free rate r > 0 and ζ = E[eY1 ]. {Wt : t ≥ 0} is a
standard Brownian motion, {Nt : t ≥ 0} is a Poisson process with
intensity λ. And {Yi : i = 1, 2, . . .} is a sequence of independent
identically distributed hyper-exponential random variables whose
probability density function is given by

fY (y) =
m∑
i=1

piηie−ηiy1{y≥0} +
n∑

j=1

qjθjeθjy1{y<0}, (2)

where pi ≥ 0, ηi > 1 for all i = 1, . . . ,m, qj ≥ 0, θj > 0 for all
j = 1, . . . , n, and

∑m
i=1 pi + ∑n

j=1 qj = 1. From (2), we can see
that there are m up-jumps and n down-jumps, among which the
ith up-jump occurs with probability pi and has an exponentially
distributed jump size with mean 1/ηi for i = 1, 2, . . . ,m, and the
jth down-jump occurs with probability qj and has an exponential
jump size with mean 1/θj for any j = 1, 2, . . . , n. We also assume
{Wt}, {Nt} and {Yi} are all independent.

It is easy to see that the infinitesimal generator of {Xt} is given
by

(Lu)(x) = 1
2
σ 2u′′(x) + µu′(x) + λ

∫ ∞

−∞
[u(x + y) − u(x)]fY (y)dy,

for any twice continuously differentiable function u(x) and the the
Lévy exponent of {Xt} is given by

G(x) := 1
t
log E[exp(xXt)]

= xµ + 1
2
x2σ 2 + λ

(
m∑
i=1

piηi

ηi − x
+

n∑
j=1

qjθj
θj + x

− 1

)

for any x ∈ (−θ1, η1). By some elementary calculus, we can show
for any given a > 0, the equation G(x) = a has exactly m + n + 2
real roots β1, . . . , βm+1, −γ1, . . . ,−γn+1 satisfying

0 < β1 < η1 < β2 < · · · < ηm < βm+1 < ∞, (3)
0 < γ1 < θ1 < γ2 < · · · < θn < γn+1 < ∞. (4)

We record this result for later references.

3. Distribution of the first passage time to two flat barriers

To price double barrier options,weneed the joint distribution of
first passage time of X to two barriers and the process value at the
first passage time. In this section,we are going to derive the Laplace
transform of the distribution. Define τ to be the first passage time
of Xt to two flat barriers h and H (h < H), i.e.,

τ := inf{t ≥ 0 : Xt ≥ H or Xt ≤ h}. (5)

From now on, use Ex and Px to represent the expectation and the
probability, respectively, when {Xt} starts from X0 ≡ x.

The joint distribution of τ and Xτ plays a crucial role when
pricing double-barrier options. Our idea is to get it via the Laplace
transform

Ex[e−aτ+θXτ ].
The following theorem reaches a more general result for any
expectations in the form of Ex[e−aτ f (Xτ )], where f could be any
nonnegative measurable function. The Laplace transform then
becomes a direct corollary of the theorem.

Theorem 3.1. Consider any nonnegative measurable function f such
that

∫ +∞
0 f (y+H)e−ηiydy and

∫ 0
−∞ f (y+ h)eθjydy are integrable for

all 1 ≤ i ≤ m and 1 ≤ j ≤ n. For any a > 0 and x ∈ (h,H), we have

Ex[e−aτ f (Xτ )] = �(x)N−1f, (6)

where �(x) is a row vector defined as

�(x) = (
eβ1(x−H), . . . , eβm+1(x−H) ,

e−γ1(x−h), . . . , e−γn+1(x−h)) , (7)

f is a column vector such that f = (f u0 , . . . , f um, f d0 , . . . , f dn )T ,

f u0 = f (H), f ui =
∫ +∞

0
f (y + H)e−ηiydy, 1 ≤ i ≤ m,

f d0 = f (h), f dj =
∫ 0

−∞
f (y + h)eθjydy, 1 ≤ j ≤ n; (8)

and N is an (m+ n+ 2) × (m+ n+ 2) non-singular matrix given by⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · 1 xγ1 · · · xγn+1

1
η1 − β1

· · · 1
η1 − βm+1

xγ1

η1 + γ1
· · · xγn+1

η1 + γn+1
...

. . .
...

...
. . .

...
1

ηm − β1
· · · 1

ηm − βm+1

xγ1

ηm + γ1
· · · xγn+1

ηm + γn+1
xβ1 · · · xβm+1 1 · · · 1
xβ1

θ1 + β1
· · · xβm+1

θ1 + βm+1

1
θ1 − γ1

· · · 1
θ1 − γn+1

...
. . .

...
...

. . .
...

xβ1

θn + β1
· · · xβm+1

θn + βm+1

1
θn − γ1

· · · 1
θn − γn+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with x := eh−H .

To prove Theorem 3.1, the most difficult part is to show the
non-singularity of the matrix N. The proof is long and tedious.
Due to the limitation of space, we just summarize the conclusion
in the following proposition and include its proof to an online
companion, which can be found in the second author’s homepage
(http://se.cuhk.edu.hk/people/nchen).

Proposition 3.1. For any {βi}m+1
i=1 and {γj}n+1

j=1 satisfying (3) and (4),
the matrix N is non-singular.
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With the help of Proposition 3.1,we can showTheorem3.1 now.

Proof of Theorem 3.1. Notice that τ is the first time the process X
exits the band (h,H). It may leave the band from the boundaries,
i.e., Xτ = H or Xτ = h; or it may jump across the boundaries when
leaving, i.e., Xτ > H or Xτ < h. Introduce a sequence of events:

F0 := {ω : Xτ = H}, G0 := {ω : Xτ = h}
and

Fi := {ω : Xτ − H > 0, YNτ ∼ Exp(ηi)}
for i = 1, 2, . . . ,m and

Gj := {ω : Xτ − h < 0, −YNτ ∼ Exp(θj)}
for j = 1, 2, . . . , n, indicating with which type of jump the
process jumps across the boundaries when exiting (h,H). The
events consist of a partition of the whole probability space and by
the law of total probability, we have

Ex[e−aτ f (Xτ )] =
m∑
i=0

Ex[e−aτ f (Xτ )1Fi ] +
n∑

j=0

Ex[e−aτ f (Xτ )1Gj ]. (9)

Emulating the proofs of Proposition 2.1 in [11], we can easily
show that conditional on Fi, τ and Xτ are independent and
moreover the overshoot Xτ − H is still exponentially distributed
withmean 1/ηi, thanks to thememoryless property of exponential
distribution. Thus, for any i = 1, 2, . . . ,m and j = 1, 2, . . . , n, we
have

Ex[e−aτ f (Xτ )1Fi ] = Ex[e−aτ1Fi ] · ηif ui . (10)

Ex[e−aτ f (Xτ )1Gj ] = Ex[e−aτ1Gj ] · θjf dj . (11)

Combining (9), (10) and (11),

Ex[e−aτ f (Xτ )] =
m∑
i=0

Ex[e−aτ1Fi ] · ηif ui +
n∑

j=0

Ex[e−aτ1Gj ] · θjf dj ,

(12)

with η0 = θ0 = 1.
On the other hand, we are also able to obtain closed-form

expressions for Ex[e−aτ1Fi ] and Ex[e−aτ1Gj ]. Note that for any a > 0
and any pure imaginary number b,

Mt := exp(−at + bXt) − exp(bX0)

− (G(b) − a)
∫ t

0
exp(−as + bXs)ds

is a zero-mean martingale. By the optional sampling theorem, we
know Ex[Mτ ] = 0, i.e.,

0 = Ex[exp(−aτ + bXτ )]
− ebx − (G(b) − a)Ex

[∫ τ

0
exp(−as + bXs)ds

]
.

(12) provides us an expression for Ex[exp(−aτ + bXτ )]. Substitut-
ing it in the right hand side of the above equality,

0 = Ex[e−aτ1F0 ]ebH +
m∑
i=1

Ex[e−aτ1Fi ]ebH
ηi

ηi − b

+ Ex[e−aτ1G0 ]ebh +
n∑

j=1

Ex[e−aτ1Gj ]ebh
θj

θj + b

− ebx − (G(b) − a)Ex
[∫ τ

0
exp(−as + bXs)ds

]
. (13)

Denote the right hand side of (13) by h(b). h(b) ≡ 0 for all
pure imaginary b. Define H(b) := ∏m

i=1(ηi − b) · ∏n
j=1(θj + b) ·

h(b). Then H(b) is well defined and analytic in the whole complex
domainC.H(b) equals zerowhen b is a pure imaginary number. By
the identity theorem of analytic functions in the complex domain
([12, Theorem 10.18]), we get H(b) ≡ 0 for all b ∈ C. Accordingly,
h(b) = 0 for all b ∈ C \ {−θn, . . . ,−θ1, η1, . . . , ηm}.

Replace b by βi and −γj in h(b) = 0, respectively. Note that βi
and −γj are all the roots to G(x) = a. We have the following linear
equations with respect to Ex[e−aτ1Fi ] and Ex[e−aτ1Gj ]:

eβix = Ex[e−aτ1F0 ]eβiH +
m∑
i=1

Ex[e−aτ1Fi ]eβiH
ηi

ηi − βi

+ Ex[e−aτ1G0 ]eβih +
n∑

j=1

Ex[e−aτ1Gj ]eβih
θj

θj + βi

and

e−γjx = Ex[e−aτ1F0 ]e−γjH +
m∑
i=1

Ex[e−aτ1Fi ]
ηie−γiH

ηi + γi

+ Ex[e−aτ1G0 ]e−γih +
n∑

j=1

Ex[e−aτ1Gj ]
θje−γih

θj − γi
.

Proposition 3.1 has already shown the non-singularity of N.
It follows that the above linear system regarding Ex[e−aτ1Fi ] and
Ex[e−aτ1Gj ] is solvable and(
Ex[e−aτ1F0 ], . . . , Ex[e−aτ1Fm ], Ex[e−aτ1G0 ], . . . , Ex[e−aτ1Gn ]

)

= �(x)N−1Diag
{

1
η0

, . . . ,
1
ηm

,
1
θ0

, . . . ,
1
θn

}
, (14)

where Diag
{

1
η0

, . . . , 1
ηm

, 1
θ0

, . . . , 1
θn

}
is a diagonal matrix. Plug-

ging (14) into (12) yields (6) immediately. �

From Theorem 3.1, we can obtain closed-form expressions for
the expectations of a variety of functions with respect to τ and
Xτ . For instance, choosing f (x) to be eθx with θ ∈ (−θ1, η1)
in the above theorem, it is easy to derive the Laplace transform
Ex[e−aτ+θXτ ], which is presented in the following corollary.

Corollary 3.1. For any θ ∈ (−θ1, η1), we have

Ex[e−aτ+θXτ ] = eθH ·
(

m+1∑
i=1

ωieβi(x−H) +
n+1∑
j=1

νje−γj(x−h)

)
(15)

where (ω1, . . . , ωm+1, ν1, . . . , νn+1)
T = N−1J(θ) and J(θ) =

(1, 1
η1−θ

, . . . , 1
ηm−θ

, xθ , xθ
θ1+θ

, . . . , xθ
θn+θ

)T .

4. Pricing double-barrier options

In this section, we are going to derive pricing formulae for
standard double-barrier options, based on the theoretical results
obtained in the last section.

4.1. Standard double-barrier options

The payoff of a standard double-barrier option is activated
(knocked in) or extinguished (knocked out) when the price of the
underlying asset crosses barriers. For example, a knock-out call
option will not give the holder the payoff of a European call option
unless the underlying price remains within a pre-specified range
before the option matures. More precisely, consider an interval
(L,U) and the initial asset price S0 is in it. The holder will receive
(ST − K)+1{τ>T } at the maturity T , where τ = inf{t ≥ 0 : St ≤
L or St ≥ U}. Under the risk-neutralmeasureP and the assumption
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Table 1
The Laplace inversion (EI Price) vs. the Monte Carlo simulation (MC Value). For unvarying parameters, the default choices are r = 0.05, m = n = 2, η1 = 30, η2 = 50,
θ1 = 30, θ2 = 40, p1 = p2 = q1 = q2 = 0.25, S0 = 100, U = 115, L = 80, T = 1, and ρ = 1. Parameters for the Laplace inversion method are A1 = A2 = 28.3,
(n1, n2) = (11, 38), and the scaling factor X = 1000; while the MC values along with the associated 95% confidence intervals are obtained by using 60,000 time steps and
simulating 100,000 sample paths.

Pricing knock-out call options
K λ σ = 0.2 σ = 0.3

EI price MC value 95% CI EI Price MC Value 95% CI

105
5 0.1052 0.1063 (0.1019, 0.1107) 0.01512 0.0158 (0.0141, 0.0175)
3 0.1156 0.1189 (0.1142, 0.1236) 0.01660 0.0175 (0.0157, 0.0193)
1 0.1270 0.1300 (0.1252, 0.1348) 0.01822 0.0190 (0.0171, 0.0209)

100
5 0.3456 0.3471 (0.3375, 0.3567) 0.05063 0.0522 (0.0484, 0.0560)
3 0.3804 0.3847 (0.3746, 0.3948) 0.05566 0.0575 (0.0535, 0.0615)
1 0.4191 0.4210 (0.4105, 0.4315) 0.06120 0.0615 (0.0574, 0.0656)

95
5 0.7812 0.7831 (0.7666, 0.7996) 0.1164 0.1182 (0.1116, 0.1248)
3 0.8606 0.8676 (0.8499, 0.8847) 0.1281 0.1306 (0.1236, 0.1376)
1 0.9487 0.9478 (0.9298, 0.9658) 0.1410 0.1413 (0.1341, 0.1485)

that the underlying asset follows the HEM, the price of such option
is given by e−rTE[(ST − K)+1{τ>T }|S0].

We may use Corollary 3.1 to obtain a double Laplace transform
for the above expectation. For this purpose, change some variables:
let h := log(L/S0), H := log(U/S0) and κ := − log K . Then, the
expectation can be represented as

C(κ, T ) := Ex
[
(S0eXT − e−κ )1{τ>T ,S0eXT >e−κ }

]
.

Conduct a double Laplace transform on the new function C(κ, T )
with respect to κ and T . Note that the definition domains for κ and
T are (−∞, ∞) and (0, ∞), respectively. We have the following
theorem:

Theorem 4.1. For any 0 < ϕ < η1 − 1 and a > max{G(ϕ + 1), 0},
let

g(ϕ, a) =
∫ ∞

0

∫ ∞

−∞
e−ϕκ−aT C(κ, T )dκdT . (16)

Then,

g(ϕ, a) = Sϕ+1
0

ϕ(ϕ + 1)
1

a − G(ϕ + 1)(
1 − e(ϕ+1)H

(
m+1∑
i=1

ωie−βiH +
n+1∑
j=1

νjeγjh

))
, (17)

where

(ω1, ω2, . . . , ωm+1, ν1, ν2, . . . , νn+1)
T = N−1J(ϕ + 1).

Proof. For any fixed T , by the Fubini theorem, it is easy to show
that∫ ∞

−∞
e−ϕκC(κ, T )dκ

= Sϕ+1
0

ϕ(ϕ + 1)
· 1
a − G(ϕ + 1)

(1 − Ex[e−aτ+(ϕ+1)Xτ ]).

Applying Corollary 3.1 here, we can immediately obtain the
conclusion. �

Once we have the double Laplace transform, we apply some
numerical inversion algorithms to recover the value of the function
C(κ, T ) at some specific κ and T wewant to price. There are several
other double-barrier options such as knock-out put, knock-in call
or put traded in the market. The pricing formulae for them can be
obtained through similar derivations.

4.2. Numerical examples

In this section, we intend to price the above standard knock-
out call options by inverting the associated Laplace transforms (17)
numerically via the Euler inversion algorithm. This algorithm was
introduced by Abate and Whitt [7] and Choudhury, Lucantoni and
Whitt [8]. Petrella [13] gave some improvements in inverting a
two-sided Laplace transform. His method is faster and more stable
numerically than the original Euler inversion when dealing with
two-sided transforms, due to the introduction of a scaling factor.
In (17) the Laplace transform with respect to κ is two-sided. Thus
we use his algorithm in the following numerical examples.

In our numerical example, m and n are both 2 in the hyper-
exponential distribution (2). The numerical results for the standard
double-barrier options (denoted by EI Price) are given in Table 1,
where we also show the Monte Carlo simulation result (denoted
by MC Value) as a benchmark together with the associated 95%
confidence interval (denoted by 95% CI). We can see that all the
EI Prices stay within the 95% confidence intervals of the associated
MCValues. Besides, based on a PCwith Pentium(R) 4 CPU 2.80 GHz,
1 GB of RAM, the CPU time to produce one numerical result via
Euler inversion algorithm is only around 6 s, while it takes about
20 min to generate one MC Value. Consequently, we draw the
conclusion that the pricing method based on our analytical pricing
formulae as well as the Euler inversion algorithm is accurate
and efficient. It is worth mentioning that in Table 1, MC Values
tend to be greater than EI Prices partly because the Monte Carlo
simulation method overestimates the option prices due to the
systematic discretization bias. Since our main purpose is to study
the analytical solution rather than the Monte Carlo simulation
method.We refer the interested readers toMetwally andAtiya [14]
formore detailed discussions on the systematic discretization error
reduction.

From the table, we can also see that the option price decreases
as the strike K increases. This is intuitive because the payoff is a
decreasing function in K . Meanwhile, when either σ or λ increases,
the option price depreciates. That is because the option tends to be
more likely knocked out when the underlying is more volatile.
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