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Sensitivity Computation
via Integration by Parts

Traditional Monte Carlo Sensitivity
Estimators and Their difficulties

The calculation of price sensitivities is a central
modeling and computational problem for derivative
securities. The prices of derivative securities are
observable in the market; however, price sensitivities,
the important inputs in the hedging of derivative
securities, are not. Models and computational tools
are thus required to establish such information which
the market does not provide directly.

Mathematically, price sensitivities or greeks are
partial derivatives of financial derivative prices with
respect to some specific parameters of the underly-
ing market variables. For instance, “delta” means
the sensitivity to changes in the price of the underly-
ing asset. More formally, suppose that the underlying
model dynamic under the risk neutral probability is
given by a stochastic differential equation (SDE) on
[0, T ],

dXt = µ(Xt ) dt + σ(Xt ) dWt, X0 = x (1)

where W is a standard Brownian motion. By the no-
arbitrage argument, the present value of a derivative
should be

V (x) = E[�(XT )|X0 = x] (2)

where � is the (discounted) payoff function. For nota-
tion at simplicity, we restrict attention to scalar X

and such � that depends only on XT in the arti-
cle. Then, the delta of such a model is defined as
dV (x)/dx.

The simplest and crudest approach to the Monte
Carlo estimation of greeks is via finite-difference
approximation. In other words, we simulate the
derivative prices at two or more values of the
underlying parameter and then estimate greeks by
taking difference quotients between these values.
Finite-difference estimators are easy to implement,
but are prone to large bias, large variance, and added
computational requirements.

To overcome the shortages of the finite-difference
method, traditionally there have been two categories

of methods for estimating sensitivities: methods that
differentiate paths and methods that differentiate
densities. The former one is known as the path-
wise derivative method or the infinitesimal pertur-
bation analysis in the literature and the latter is
usually referred to as the likelihood ratio method
(see Computation of Sensitivities in Monte Carlo
Methods). Both of them yield unbiased estimators. eqf13-004

But the former requires smooth conditions on the
payoff function �. It fails to provide any sensi-
ble estimators for options with discontinuous pay-
off functions such as digital options. The estima-
tor produced by the latter involves the transition
density function of XT , which is unavailable in
most circumstances when the dynamics (1) is not
trivial.

Method of Integration by Parts

Fournié et al. [7, 8] developed an approach to bypass
both the difficulties the traditional methods encounter.
It is based on the integration-by-parts formula, which
lies at the heart of the theory of the Malliavin
calculus. Here, we state several relevant conclu-
sions only and leave readers with interest to find
more on the detailed and rigorous treatment of the
Malliavin calculus and the related financial appli-
cations in Nualart [11] and Malliavin and Thal-
maier [10]. For notational simplicity, we use the
scalar case only in the article to demonstrate the
basic idea of the method and refer readers to the
relevant literature for more general and rigorous
treatments.

Let {Wt : 0 ≤ t ≤ T } be a standard Brownian
motion defined on a probability space (�,F, P ) and
let {Ft : 0 ≤ t ≤ T } be the filtration generated by W .
Consider a random variable F of the form

F = f

(∫ T

0
hu dWu

)
(3)

where f is a real function with some proper
smoothness and {hu : 0 ≤ t ≤ T } is an L2[0, T ]-
valued stochastic process on (�,F, P ). The Malli-
avin derivative of F is defined as a stochastic process
DF = {DtF : 0 ≤ t ≤ T }, where

DtF = f ′
(∫ T

0
hu dWu

)
· ht (4)
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Notice that
∫ T

0 hudWu is defined as the limiting sum-
mation

∑
u<T hu · dWu := ∑

u<T hu · (Wu+du − Wu).
So, one can view the Malliavin derivative as an ordi-
nary derivative of the random variable F with respect
to dWt , the small increment of the Brownian motion
over [t, t + dt], heuristically.

The Malliavin derivative satisfies the chain rule as
the ordinary derivative, that is, for any differentiable
real function φ, Dφ(F) = φ′(F ) · DF . Apply Dt on
XT defined by the SDE (1). Recall that

XT = Xt +
∫ T

t

µ(Xu) du +
∫ T

t

σ (Xu) dWu (5)

Xt depends only on the Brownian increments be-
fore t . Thus, DtXt = 0. By the chain rule,

Dt

(∫ T

t
µ(Xu) du

)
= ∫ T

t
µ′(Xu) · DtXu du. And

Dt

(∫ T

t

σ (Xu) dWu

)

= Dt(σ(Xt ) dWt +
∫ T

t+dt

σ (Xu) dWu)

= σ(Xt ) +
∫ T

t+dt

σ ′(Xu) · DtXu dWu (6)

So we have

DtXT = σ(Xt ) +
∫ T

t

µ′(Xu) · DtXu du

+
∫ T

t

σ ′(Xu) · DtXu dWu (7)

On the other hand, if one introduces a new process
Y such that it is the derivative of X with respect to
its initial value, that is, Yt = dXt/ dx, then

dYt = µ′(Xt )Yt dt + σ ′(Xt )Yt dWt, Y0 = 1 (8)

Comparing equations (7) and (8), we can see the
process {DtXu : t ≤ u ≤ T } should follow the same
SDE as Y but with different initial value at t . Thus,

DtXT = YT

Yt

· σ(Xt ) (9)

One of the most important properties of the
Malliavin derivative is the following duality property:

given a process h = {ht : 0 ≤ t ≤ T }, there exists a
random variable D∗(h) such that

E

[∫ T

0
Dt�(XT ) · ht dt

]
= E[�(XT ) · D∗(h)] (10)

for all functions � with some proper smoothness
conditions. Viewing D∗ as a “derivative” in the weak
sense – recall that the weak derivative in the PDE
theory is defined in this way – one can see that
equation (10) is exactly an analog to the integration-
by-parts formula in the ordinary calculus. In the
literature, D∗ is called the Skorohod integral. It is
easy to show that D∗(h) should be equal to the Ito
integral

∫ T

0 hudWu if h is adapted to the filtration Ft .
Equation (10) is the cornerstone for the develop-

ment of unbiased greeks estimators. Turn back to the
derivation of unbiased estimators for the delta. Con-
sider a smooth payoff function � first. Choose ht ≡
1
T
(Yt/σ (Xt )), which is adapted, in equation (10). By

the chain rule of D, the left-hand side of equation
(10) is

E

[∫ T

0
Dt�(XT ) · ht dt

]

= E

[∫ T

0
�′(XT ) · DtXT · 1

T

Yt

σ (Xt )
dt

]

= E[�′(XT ) · YT ] (11)

where the last step uses equation (9). The right hand
side of equation (10) equals

E

[
�(XT ) · 1

T

∫ T

0

Yt

σ (Xt )
dWt

]
(12)

So,

E[�′(XT ) · YT ] = E

[
�(XT ) · 1

T

∫ T

0

Yt

σ (Xt )
dWt

]

(13)

Using the pathwise derivative method, we can easily
derive that �′(XT ) · YT is an unbiased estimator
of the delta. Therefore we have another unbiased
estimator

dV

dx
= E

[
�(XT ) · 1

T

∫ T

0

Yt

σ (Xt )
dWt

]
(14)
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For any nonsmooth � such that E[(�(XT ))2] <

+∞, we can always find a sequence of differentiable
�(n) convergent to it in L2, that is, E[‖�(n)(XT ) −
�(XT )‖2|X0 = x] → 0 as n → +∞ for all x. Let
V (n)(x) = E[�(n)(XT )|X0 = x]. Following the
above arguments,

dV (n)

dx
= E

[
�(n)(XT ) · 1

T

∫ T

0

Yt

σ (Xt )
dWt

]
(15)

Using the Cauchy–Schwartz inequality, we can easily
show that the right-hand side of equation (15) con-

verges to E
[
�(XT ) · 1

T

∫ T

0
Yt

σ (Xt )
dWt

]
. Thus, equa-

tion (14) should hold for such � too. The advantage
of such an estimator is that it does not involve the
density functions of XT nor •does it require � to beQ1

smooth.

Implementation and Some Extensions

To implement equation (14), we discretize [0, T ]
into grids: 0 = t0 < t1 < · · · < tN = T , where ti =
iT /N . Simulate the underlying process X and the
derivative process Y simultaneously by

X̂ti = X̂ti−1 + µ(X̂ti−1)�t + σ(X̂ti−1)�Wi,

X̂0 = x (16)

Ŷti = Ŷti−1 + µ′(X̂ti−1)Ŷti−1�t + σ ′(X̂ti−1)Ŷti−1�Wi,

Ŷ0 = 1 (17)

where �t = T/N and �Wi = Wti − Wti−1 ∼
N(0, �t). Then, approximately we have a delta
estimator

�(X̂T ) · 1

T

N∑
i=1

Ŷti−1

σ(X̂ti−1)
�Wi (18)

All the above derivations can be generalized to
the cases in which X and W are both vectors, which
has been shown by Fournié et al. [7]. They also
established unbiased estimators for other greeks for
European style options contingent on multidimen-
sional underlying assets, such as the vega, the price
sensitivity with respect to the underlying volatility;
the rho, the sensitivity with respect to the riskless
interest rate; the gamma, the second-order sensitiv-
ity with respect to the underlying price. One crucial

assumption they needed is that the underlying model
is elliptic, that is, σ(x) is a symmetric positive defi-
nite matrix function.

It is worth mentioning that the integration-by-parts
method is still applicable for the market where the
ellipticity assumption does not hold. For instance,
the interest rate market has a high-dimensional
state space constituted by the values of bonds at
a large number of distinct maturities and a low-
dimensionality variance driven by a few noise sources
(Brownian motions). Under this setting, σ(x) cannot
be positive definite because it has more rows than
columns. Malliavin and Thalmaier [10] provide the
details on how to develop the corresponding unbiased
estimators.

A lot of research has already been done so
far in the literature to extend the seminal work
of Fournié et al. [7]. Among others, Davis and
Johansson [5], El-Khatib and Privault [6], and Bally
et al. [1] considered greeks in a market driven by
jump-diffusion processes; Gobet and Kohatsu-Higa
[9], Bernis et al. [3] derived greek estimators for
lookback and barrier options; Bally et al. [2] applied
the Malliavin calculus method to pricing and hedging
American options.

As shown here, Malliavin estimators have been
derived directly for diffusion processes, but imple-
mentation typically requires simulation of a discrete-
time approximation. This raises the question of
whether one should discretize first and then differenti-
ate, or differentiate first and then discretize. Chen and
Glasserman [4] illustrated that both approaches will
lead to the same estimators in several important cases,
but the first approach uses only elementary techniques
such as likelihood ratio and pathwise derivative
methods.
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Abstract: Derivative price sensitivities, or greeks, play an important role in the practice of risk management
to quantify the potential effects of the changes of underlying market parameters on the values of derivatives.
However, how to calculate them efficiently is a challenging problem for computational finance.

An obvious approach is to simulate replications of the model at perturbed parameters and then to use finite
difference to form estimators. While this method has its own merits depending on the circumstances, it usually
yields estimators with often unacceptably high variances, unless major computational efforts are made in terms
of long calculation times. To obtain estimators with lower variance, traditional methods either differentiate
the payoff functions of derivatives or differentiate the probability density of the underlying price. The former
approach fails when the payoff functions are discontinuous while the latter meets difficulty if the explicit form
of the density is not available.

The integration-by-parts method overcomes both shortcomings of the traditional methods. It shifts the
differential operator from the payoffs to the underlying diffusions in order to remove the smoothness
requirement on the payoff functions. This method can be traced back to the Malliavin calculus in the field of
stochastic analysis.
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