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Abstract

Financial institutions are interconnected directly by holding debt claims against each other (the net-
work channel), and they are also bound by the market when selling assets to raise cash in distressful
circumstances (the liquidity channel). The goal of our study is to investigate how these two channels
of risk interact to propagate individual defaults to a system-wide catastrophe. We formulate a con-
strained optimization problem that incorporates both channels of risk, and exploit the problem structure
to generate the solution (to the clearing payment vector) via a partition algorithm. Through sensitivity
analysis, we are able to identify two key contributors to financial systemic risk, the network multiplier
and the liquidity amplifier, and to discern the qualitative difference between the two, confirming that the
market liquidity effect has a great potential to cause systemwide contagion. We illustrate the network
and market liquidity effects — in particular, the significance of the latter — in the formation of systemic
risk with data from the European banking system. Our results contribute to a better understanding of
the effectiveness of certain policy interventions. In addition, our algorithm can be used to pin down the
changes of the net worth (marked to market) of each bank in the system as the spillover effect spreads,
so as to estimate the extent of contagion, and to provide a metric of financial resilience as well. Our
framework can also be easily extended to incorporate the effect of bankruptcy costs.

Keywords: Systemic risk, financial network, contagion, market liquidity.

1 Introduction

The complex interconnectedness of the modern financial system binds financial institutions tightly together

to an unprecedented degree, such that failure at one or several institutions due to excessive idiosyncratic risk

taking can quickly propagate through it to set off cascading disasters. While the 2007-2009 US credit crisis

and the European sovereignty debt crisis have triggered much debate as to the causes, culprits, and lessons

learned, a growing body of literature points to the prominent roles played by two risk-transmission channels

in amplifying the severity of the crises. The first channel is the direct debt exposures among financial
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institutions. They hold heavy liabilities against each other and therefore a loss caused by one default will

be easily transmitted to the others. We refer to this as the network channel later in this paper. The second

channel for contagion, referred to below as the liquidity channel, is that institutions are also interconnected

indirectly through the market. A fire sale initiated by one distressed institution for the purpose of fund

raising, in particular under difficult aggregate economic conditions, will drive down the asset price sharply.

As the institutions across the system accumulate large positions in the assets of similar nature during normal

periods, such price decline will create a serious negative externality to the systemic stability in a crisis.

Our investigation reported here is primarily motivated by two issues. How should we quantitatively

characterize the systemic impacts of the two channels of risk, in particular through their interplay? How

should we discern the difference in strengths between the two channels in causing cascading contagion

in the financial system? Any insights we obtain in studying these issues will certainly contribute to our

understanding of financial systemic risk, help the development of risk and resilience metrics for financial

contagion, and inform regulatory practices and policies.

1.1 Contribution of the Current Paper

We use the same modeling framework as the one in [3], where the two channels of risk are clearly brought to

bear. A relative liability matrix captures the network effect — how the banks interact with each other via

interbank exposures; and an inverse demand function Q(·) captures the market liquidity effect — selling of

illiquid assets at one bank will negatively impact all other banks holding such assets, as the value of the assets

will be “discounted” by Q. Our model is, however, more general, in that we require minimal assumptions

on Q.

As one main contribution of the current paper, we reformulate the model to an optimization problem

with equilibrium constraints and develop a partition algorithm to solve for the maximal clearing payment

vector and asset price. The key idea underpinning the algorithm is that, we identify some “obvious” defaults

first, then adjust repayment and asset sales of each institution accordingly, and mark the asset values of the

institutions to the market-clearing security price to identify more defaults for the next round. This procedure

is iterated until no new default institutions are found. In this way, it reveals a hierarchy, or sequential order

relation, among the defaults. Through this lens, we can better examine the interplay of the two effects,

in particular, how the market liquidity is depleted by successive fire sales as defaults cascade and how the

depressed asset price in turn reinforces financial contagion.

The hierarchy structure of our partition algorithm enables us to develop estimates of the probability that

default at a given bank in the system causes defaults at other banks. From such estimation, we find that

two factors determine the systemic impact of each institution on the rest of the financial system. One is its

position in the topology of a liability network, or more specifically, how close it is to other banks in terms of

liability exposure. The other is its illiquidity concentration, how large portfolio of illiquid assets it is holding.

We synthesizes these two factors into a Katz centrality-like metric to measure the system’s resilience

2



against external shocks. The metric is computed from the banks’ net worths that are marked to the security

price after the liquidation of the failed banks. Hence, it features the global and first-hand impact the failed

banks yield to the system through the liquidity channel: low price depressed by their liquidation will impair

the capital base of all the others, making them more susceptible to further contagion. In this sense, it is

different from other centrality measures discussed intensively in the network literature that focuses more on

diffusion-type contagion through the local neighborhood structure. Moreover, the metric takes a product

form, showing that the network effect will magnify the price impact on equity value from the market in

a multiplicative manner. Although it is a common sense that the market value, as opposed to the book

value, of the net worth of a banking system better reflects its ability to weather adverse shocks, our finding

concretizes this qualitative idea into an economic metric and explicitly relates it to contagion probability

estimates.

To further discern the two effects, we apply sensitivity analysis, a standard tool in optimization area,

to investigate how the optimal equilibrium repayments and security price change in response to external

value shocks. It delineates these two channels clearly. The network effect takes the form of a linear factor

(i.e., a multiplier) in determining sensitivities of the equilibrium with respect to the shocks. In contrast, the

market liquidity effect takes the form of a denominator; and we call this an amplifier. In a given financial

system (i.e., the relative liability matrix P is fixed), the network multiplier has a finite value because the

impact through this channel decays exponentially in the course of transmission. However, as its structure

suggests, the liquidity amplifier has a potential to become dominantly large when the total sales of illiquid

asset approach what the market can absorb. The relationship between the liquidity amplifier and network

multiplier as they appear in the sensitivity measures is also a product, indicating once again that the two

effects are multiplicative in propagating the systemic risk.

The above comparison results lead to policy implications. Using the liquidity amplifier and network

multiplier, we assess the effectiveness of several intervention policies used in the crisis management, including

direct asset purchase and capital injection. We find that different policies have different regulatory focuses.

One interesting observation (see Theorem 9 in Section 4) is that the asset purchase program should have

a greater impact in improving the market liquidity than capital injection, but it may be less effective than

the latter to preempt massive failures in a highly leveraged system. In Appendix C.2, we also discuss an

undesirable pro-cyclical effect caused by the regulation of capital adequacy requirement. It is long observed in

the literature that this regulation exacerbates fire sales during market turbulence and has perverse effects on

stability. Our optimization framework provides an appropriate tool to characterize such adverse effects: this

requirement introduces an additional constraint to the original optimization problem and therefore makes

the solution more sensitive to external shocks.

Bankruptcy costs magnify the severity of systemic risk, through costs like legal and administrative fees

associated with restructuring failed banks and delays in payments and service disruptions to their creditors

and customers. We can easily extend our model to incorporate the effects of such non-market bankruptcy
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costs by introducing a fixed recovery rate on asset values when a bank defaults. The numerical result shows

that even a small bankruptcy cost will lead to an appreciable contagion effect in the presence of market

liquidity. This finding underscores the importance of orderly resolution of failed banks during a financial

crisis when the market liquidity condition is adverse.

The optimization-based method can be used to develop counterfactual simulation schemes to test the

resilience of financial systems against systemic shocks. Inclusion of the liquidity channel will contribute a

new aspect to such schemes, as we note that a majority of the existing simulation methodologies, such as

those reviewed in [50], account for only the network effect. In this paper, we perform numerical experiments

on the data released by the European Banking Authority after its 2011 EU-wide stress test to illustrate the

basic notions and methodologies of our formulation. The evidence from the experiments suggest that the

liquidity channel has a greater potential to trigger massive contagion than the network.

Note that the reason why we cannot observe a significant contagion effect in the numerical experiment is

that the interbank liabilities are just a very small fraction of the aggregate assets of the European banking

sector in the dataset we examine. A more proper interpretation of the experiment outcomes should be that

simple spillover effects through interbank lending will have only limited impact if the leverage that financial

institutions are allowed to take is controlled. In other words, it still will pose a considerable threat to the

systemic stability when the expansion of interbank claims goes unchecked as what the entire financial sector

experienced prior to the US credit crisis.

In addition, counterparty credit risk in over-the-counter (OTC) derivatives contributes to another form

of network interconnectedness. Due to the lack of information about the size of OTC derivatives taken by

the European banks in the dataset, one limitation of the current paper is that we do not incorporate the

impact of this particular interconnectedness, which will apparently affect our assessments on the systemic

risk in a financial system.

1.2 Related Literature

The contagion effect in a financial system has been well investigated in the literature. Some early papers,

such as [46], [40], [3], [28], and [41], study the economic origin of interbank networks. They demonstrate via

some highly stylized models how the network channel, a risk-sharing mechanism of a financial system under

normal conditions, will help to transmit the systemic crisis when there is a global shortage for liquidity. An

influential work of [23] quantifies the network effect in a fixed point model, showing that in theory the original

shortfall in the payment of a single institution can cascade through the interbank liability system. It triggers

a substantial body of investigation on the relationship between systemic risk and network topology. We refer

the reader to [30], [42], [31], [37], [43], [1], [6], and [24] for more details about the recent developments in

this direction. Another line of research, represented by [48], [36], [4], [33], and [14], primarily focuses on

the contagious effect of asset price. Their research indicates that defensive asset liquidation triggers a large

scaled fire sale, generating adverse welfare consequences for the entire system such as high price volatility,
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more bank defaults, and market inefficiency. [49] provides an excellent survey on models of counterpart

contagion and their application in systemic risk management. Most of the above literature concentrates on

one of the two effects. The current paper aims to establish a general framework to integrate both effects.

As noted in Section 1.1, our analysis builds up on the basis of a variation of the model presented in [3].

Their paper proposes a procedure to solve for equilibrium in two steps. First, they rely on a fixed-point based

mechanism to solve a market-clearing price. Then, with the price being fixed, they simplify the problem

down to computing repayments to clear the liability network. Clearly, the idea behind their approach is

to separate the two effects in order to solve them one by one. This separation idea focuses much on the

ultimate equilibrium and ignores how the interplay between the network and market liquidity shapes up its

formation. As a complement to their work, our optimization formulation and the related partition algorithm

derive many new insights in this regard.

Several other papers in the literature share similar modeling vehicles as the current one. [5] incorporate

the price impact through a model with exogenous default costs. With it, they execute simulation exercises

on random graphs to examine the impact of the degree of interconnectedness to the system stability in

the presence of liquidity risk. The model captures the cascade effect well, but does not suffice to reflect

the severity of contagion compared with our model in which defaults are endogenously determined. The

research of [7] explores the risk mitigation effect of a central clearing counterparty in an interbank market.

Our work focuses more on the methodology developments. All these studies complement each other from

different angles without much overlapping.

It is long known in the literature that only the factor of interbank liabilities itself cannot generate

significant contagion effect; see [29], [26], [19] for example for numerical experiments conducted on the

domestic interbank datasets from a variety of nations. [34] develop a general framework to derive estimates

for contagion probability using observable aggregate liability information. Their numerical experiments based

on a dataset of the European banking system also indicate that the network effect has only a very limited

impact. In addition, [47] show that the banks have a positive incentive to form a consortium to rescue

distressed financial institutions in order to avoid the costs caused by the liquidation of bankrupt banks.

All the above empirical and theoretical works call for a full investigation on other transmission channels

of the systemic risk than the network effect, especially the channels involving the price effect. One nice

contribution along this research line comes from [17]. They quantify the impact of loss-triggered fire sales on

the portfolios of financial institutions across the market. The forensic analysis in their paper on the Quant

Crash of August 2007 and the Great Deleveraging following the default of Lehman Brothers in September

2008 documents strong destabilizing effects caused by the market liquidity. [35] and [21] use detailed balance

sheet data for the European and US banking industry to study the influence of fire-sale spillovers on systemic

vulnerability, respectively. These literatures provide concrete examples of liquidity-based contagion. Our

paper aims to develop new analytical tools in this direction.
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1.3 Paper Organization

The rest of the paper is organized as follows. In Section 2, we present our optimization formulation and

develop the partition algorithm to solve for the maximal equilibrium. We then examine in Section 3 how

to derive estimates of contagion probability based on the net worth of the financial institutions, making

use of the insights gained from the algorithm. Section 4 presents the sensitivity analysis and discusses the

effectiveness of different intervention policies. Section 5 collects numerical experiments on the data from the

2011 EU-wide stress test. All the technical proofs are provided in the E-Companion.

2 The Optimization Approach of Systemic Risk Modeling

2.1 Notation

Throughout the paper all vectors are row vectors unless otherwise specified. In particular, any vector that

pre-multiplies a matrix is, naturally, a row vector, and this is the majority case below. Only occasionally will

we have cases in which a column vector post multiplies a matrix. The inner product of two vectors, u and

v, will be simply written as uv, with the understanding that u is a row vector and v a column vector. We

use I to denote the identity matrix; ei, the i-th standard basis vector of the Euclidean space; and 1 and 0,

vectors of all 1’s and all 0’s, respectively. For a matrix M and two index subsets I and J , MI,J represents

the submatrix of M consisting of the rows and columns indexed by I and J , respectively; and write MI if

I = J . The partial ordering between two vectors u and v, u ≥ v, is in the component-wise sense, and so

are their minimum and maximum, u ∧ v and u ∨ v. For a (non-negative) vector u, denote the sum of its

components (L1 norm) as |u|. In addition, we use P(·) and E(·) to indicate a probability measure and its

related expectation.

2.2 Model Formulation

We follow the framework of [3] to consider a financial system with n banks, indexed by i = 1, · · · , n.

Assume that each bank i invests at time 0 in three categories of assets: external projects such as loans

to households and non-financial sectors, marketable securities, and interbank debts. Table 1 illustrates a

detailed breakdown of the balance sheet of a representative bank in the system.

Assets Liabilities and owner’s equity
External investments: βi External debt claim: bi
Interbank loans: Lki for k 6= i Interbank liabilities: Lij for j 6= i
Liquid securities: ȳi Equity: ei
Illiquid securities: s̄i

Table 1: The Balance Sheet of a Representative Bank in the Financial System

The system features two layers of interconnectedness discussed in the introduction. One is on its liability

side: every bank owes some amount of money to creditors inside and outside the network. From now on,

we will use ` := (`i) and P := (pij) to indicate the liability vector and the relative liability matrix of this
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network, respectively, where

`i := bi +
∑
j 6=i

Lij and pij := Lij/`i, i, j = 1, . . . , n. (1)

Note, P is a substochastic matrix (i.e., non-negative, and each row sum is ≤ 1). Assume throughout below,

the spectral radius of P is < 1; thus, I − P is invertible. In fact, I − P is an M -matrix; hence, all of

its principal sub-matrices are invertible and non-negative. Refer to [15], Chapter 5, for more details on

M -matrix.

The other layer of interconnectedness resides in the asset side of every bank. As shown in Table 1,

the assets that bank i initially owns are divided into liquid and illiquid securities, of amounts ȳi and s̄i,

respectively; refer to the discussion in Section 2.4 for a further clarification about this division. Assume that

the liquid security can be converted into cash at its face value. In contrast, should the bank sell an amount

si(∈ [0, s̄i]) of its illiquid asset, the corresponding proceeds it receives will be siq, where

q = Q (|s|) := Q

(∑
i

si

)
. (2)

with s = (s1, · · · , sn) recording the sale amounts of the illiquid asset from individual banks in the system.

Here we use the function Q to model the degree of illiquidity in the market; as such we assume it is continuous

and satisfies

Assumption 1. (i) Q(0) = 1; (ii) Q(·) ≥ 0 and Q(·) is non-increasing.

The non-increasing property of function Q captures the “discount for immediacy” in asset liquidation:

larger amounts of the illiquid security are sold in the market concurrently, lower level its price will be pushed

down to. Note the above conditions on Q is minimal. A special case of the Q function satisfying the above

assumption, Q(s) = exp(−γs) (with the constant parameter γ > 0), has been used by [3] and others.

Given a realization of β := (β1, · · · , βn), the value vector of the external investments from the system, our

objective is to find the clearing repayment x := (x1, · · · , xn), where xi denotes the amount bank i actually

pays to its creditors. Alongside, we also need to determine vectors of sales of liquid and illiquid securities

y = (yi) and s = (si), and the market-clearing price of the illiquid security q. First, the repayment of each

bank should comply with the principle of limited liability. Namely, it needs to pay all of its liabilities in

full if it can; or, if short of that, it should declare default and liquidate its available assets to repay debts.

Assume that all the debt claims are of equal seniority so that the banks’ repayments are proportional to

the amounts of their notional liabilities. Then, the total repayment received by bank i from all other banks

is
∑
j 6=i xjpji. In addition, bank i may sell amounts yi and si of liquid and illiquid securities to meet its

liability repayment, adding the total amount of cash available to this bank up to

βi +
∑
j 6=i

xjpji + yi + siq.
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Limited liability of the bank thus requires that

xi = `i ∧
(
βi + yi +

∑
j 6=i

xjpji + siq
)
. (3)

Second, the security markets should be cleared in the equilibrium. Assume that no short sales are allowed

in our model. Note that this assumption may limit us from modeling derivative positions. Future work is

needed to address this limitation. Assume that the banks will attempt to sell liquid assets first to raise

cash when they have shortfalls between the due liability `i and the incomes they received from the external

investments and the other banks’ repayments. Therefore, the total amount of the liquid security sale is given

by

yi = ȳi ∧ d1
i , with d1

i := [`i − (βi +
∑
j 6=i

xjpji)]
+, (4)

noting that such liquidation will be capped by ȳi under the no-short-sale rule. After a bank exhausts all of

its liquid holding, it will start to tap into illiquid security sale. The amount of the illiquid asset needed to

be sold is then

si = s̄i ∧ d2
i , with d2

i :=

{
[`i − (βi +

∑
j 6=i xjpji)− yi]+

q

}
. (5)

Given everything else the same, si tends to be larger when q is small in Eq. (5). Hence, a low price of the

illiquid security, depressed for instance by massive fire sales initiated by some major financial institutions,

will trigger the others to liquidate more to raise funds. In this sense, the market price q can yield a significant

negative externality to the banks in the system. To summarize the preceding model setting up, we define

Definition 2. A quadruple (x, y, s, q) is called a market-clearing repayment equilibrium if it satisfies the

market-clearing condition (2), the limited liability condition (3), and the asset sale equations (4) and (5),

for i = 1, . . . , n.

As shown in the following example, limited liquidity may cause multiple equilibria for the problem.

Example 3. Consider two banks 1 and 2 whose balance sheets are given in Table 2. Both of them are

holding 1 and 2 dollars (face value) of illiquid securities, i.e., s̄1 = 1 and s̄2 = 2. Their businesses are

partially financed by some borrowings from the creditors outside of the system with the notional values being

b1 = b2 = 1. Note that these two banks are interlinked only through the market channel. We assume that the

inverse demand function in this two-bank market is given by Q(s) = exp(−s).

Bank 1
External investments β1 External debt b1
Iliquid asset s̄1 Equity e1

Bank 2
External investments β2 External debt b2
Iliquid asset s̄2 Equity e2

Table 2: Balance sheets of the two-bank system in Example 3.

Suppose that β1 = 0.1 and β2 = 0.9. Apparently, both banks have to liquidate part (or all) of the assets

to raise cash to pay off the debts in the equilibrium, i.e., s1, s2 > 0. According to Definition 2, we need to
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solve the following equations to search for the repayment equilibria:

s1 = 1 ∧ 0.9

q
, s2 = 2 ∧ 0.1

q
, and q = exp(−(s1 + s2)), (6)

where $0.9 and $0.1 are the respective shortfalls for both banks. No interior solution to (6) exists. In fact,

suppose that it is not the case and we have s1 < 1 and s2 < 2 satisfying the above equations. That implies

s1q = 0.9, s2q = 0.1 ⇒ (s1 + s2)q = (s1 + s2) exp(−(s1 + s2)) = 1,

leading to a contradiction because

max
0≤s1≤1,0≤s2≤2

(s1 + s2) exp(−(s1 + s2)) = exp(−1) < 1. (7)

Therefore, either s1 = 1 or s2 = 2 must hold in any equilibrium. At least two possibilities will then

arise: (s1, s2) = (1, 0.4092) and (s1, s2) = (1, 2). In the first equilibrium, q = 0.2443, x1 = 0.3443 < 1 and

x2 = 1, meaning that bank 1 defaults but bank 2 does not. However, neither banks will survive in the second

equilibrium because q = 0.0498, x1 = 0.1498 < 1 and x2 = 0.9996 < 1 under it. �

Example 3 reveals that limited liquidity constitutes an important source of equilibrium multiplicity. The

total shortfall of the two banks amounts to $1, exceeding the maximal liquidity the market can provide as

shown by (7). In this situation, different liquidation order will lead to different equilibria. Suppose that we

force bank 1 to be liquidated first, i.e., letting s1 = 1. This reduces the equations in (6) down to solving

s2 exp(−(1+s2)) = 0.1. Clearly, s2 = 0.4092 is the solution in [0, 2] to the above equation, which leads to the

first equilibrium. However, if we specify that the default and liquidation of bank 2 occur first, we cannot find

any s1 ∈ [0, 1] satisfying s1 exp(−(s1 + 2)) = 0.9. The banking system will end up at the second equilibrium.

No direct debt exposure exists between the two banks in this example. Market illiquidity should be the sole

factor in triggering equilibrium multiplicity here.

[1] developed some sufficient conditions on Q for uniqueness of the clearing asset price and liability

payments in the model of [3]. One strong assumption needed there is that sQ(s) should be increasing

in s ∈ [0,
∑
i s̄i], which is not satisfied by the aforementioned exponential Q except for sufficiently small

constant γ. Our primary interest in this research is on how systemic risk develops under extreme market

environments, such as massive evaporation of market liquidity to absorb asset fire sales. In this sense, a

large value of γ in the exponential demand function Q should be more relevant for our purpose. Thus, we

omit this condition to maintain more flexibility in calibrating the model to a variety of liquidity situations.

2.3 The Optimization Approach

Observe that the failure of bank 1, the one with the largest shortfall in Example 3, is necessary, because it will

default no matter which equilibrium ultimately materializes. However, the default of bank 2, together with

the adverse social welfare outcome such as an extremely low market-clearing price for the illiquid securities

in the second equilibrium, can be avoided if we handle the resolution of failed banks properly. This motivates
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us to use an optimization formulation to study the maximum equilibrium. It will help to identify sources

of necessary defaults in a financial system so that we may adopt various intervention policies to preempt

contagion from them to the remaining part of the system. To this end, consider the following problem to

find an equilibrium with the greatest repayment vector:

max
x,s,y
|x| s.t. x = ` ∧ (β + y + sq + xP ), y = ȳ ∧ d1, s = s̄ ∧ (d2/q), q = Q(|s|). (8)

Here we rewrite the four conditions of Definition 2 into their respective matrix forms to simplify the notations.

In particular, the second and third constraints in the optimization problem (8) are corresponding to the asset

sale equations (4) and (5), where dj = (dj1, · · · , djn), j = 1, 2.

Consider any feasible solution (x, y, s, q) of (8). We can partition the n banks into two subsets: D = {i :

xi < `i} and N = {i : xi = `i}, i.e., default and non-default banks. Furthermore, yi = ȳi and si = s̄i if

i ∈ D. In fact, for such i,

xi = βi + yi + siq +
∑
j 6=i

xjpji < `i,

which implies that yi < d1
i and siq < d2

i . In view of the definitions of d1
i and d2

i in (4) and (5), we know that

yi = ȳi and si = s̄i.

Thus, once a partition (D,N ) is identified, the corresponding solution is partially determined by xN = `N ,

yD = ȳD, and sD = s̄D. Regroup the columns and rows of matrix P such that

P =

(
PD PD,N
PN ,D PN

)
.

Then, the maximization problem in (8) is reduced to the following:

max
D,N ,§D,†N ,∫N

|x|,

s.t. xD = βD + yD + sDq + xDPD + xNPN ,D, xN ≤ βN + yN + sN q + xDPD,N + xNPN , (9)

xN = `N , xD < `D, (10)

yD = ȳD, sD = s̄D, (11)

yN = ȳN ∧ d1
N , sN = s̄N ∧ (d2

N /q), q = Q(|s̄D|+ |sN |). (12)

The first equality constraint in (9) is an accounting identity the defaulting banks should comply with: the

total repayments they make on its left hand side equal the total incomes they receive on the right hand side.

The second inequality constraint in (9) will be referred to as surplus constraint below, which states that

the non-default banks should have sufficient funds to meet their liabilities. The second constraint in (10) is

automatically from the definition of D.

Now we develop a partition algorithm to solve the optimization problem (9-12). The idea is to generate

a sequence of tentative partitions, starting with D = ∅ and N = {1, 2, · · · , n} initially, until the optimal

one is finally reached. For any partition generated during this course, we have xN = `N , yD = ȳD, and

sD = s̄D according to the first constraint in (10) and the two equality constraints in (11). Meanwhile, we use
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the iterative routine developed below to solve for the remaining (xD, yN , sN , q) from the accounting identity

regarding xD in (9) and the market clearing constraint (12).

Check the feasibility of such obtained solution (x, y, s, q) against the constraints (9-12). Theorem 4 below

shows that xD < `D, suggesting that the tentative solution must satisfy the second constraint in (10). But,

some banks may violate the surplus constraint in (9). Thus, they must be moved into D. Repeat the above

procedure with the updated partition until no more defaults are identified. Obviously, the algorithm will

terminate in at most n steps. In the proof of Theorem 4, we also prove that the L1 norm of the repayment

vector x = (xD, xN ) obtained in each intermediate step is larger than the optimal value of problem (9-12).

The algorithm keeps reducing the L1-norm of these infeasible solutions by identifying more and more default

banks. When it stops, i.e., when the surplus constraint is satisfied, it will output a feasible (thus, optimal)

partition.

We rely on an iterative routine to determine (xD, sN , q) associated with a given partition (D,N ). (Note,

yN can be determined by xD via the first equality in (12).) Define H(·) to be a mapping from the space

R :=
∏
i∈D[0, `i] ⊗

∏
i∈N [0, s̄i] ⊗ [0, 1] to itself. For any z ∈

∏
i∈D[0, `i], t ∈

∏
i∈N [0, s̄i], and p ∈ [0, 1], we

have H : (z, t, p) 7→ (z′, t′, p′), in which

z′ = (βD + ȳD + s̄Dp+ zPD + `NPN ,D) ∧ `D, t′ = s̄N ∧
[`N − (βN + `NPN + zPD,N )− w]+

p

and p′ = Q(|s̄D|+ |t|) with

w = ȳN ∧ [`N − (βN + `NPN + zPD,N )]+.

Starting with (z0, t0, p0) = (`D,0N , 1), we generate a sequence of vectors {(zi, ti, pi) : i ≥ 1} by repeatedly

applying H to obtain (zi, ti, pi) := H(zi−1, ti−1, pi−1) for i ≥ 1. The appendix provides more details about

the properties of the mapping H. Utilizing these properties, we can show that the vector sequence must

converge. Let xD = limi→+∞ zi, sN = limi→+∞ ti, and q = limi→+∞ pi. From Lemma 11 in the appendix,

we know that these limits constitute a maximal solution to the following system of equations:

xD = βD + ȳD + s̄Dq + xDPD + `NPN ,D; (13)

yN = ȳN ∧ d1
N = ȳN ∧ [`N − (βN + `NPN + xDPD,N )]+; (14)

sN = s̄N ∧ (d2
N /q) = s̄N ∧

(
[`N − (βN + `NPN + xDPD,N )− yN ]+

q

)
; (15)

q = Q(|s̄D|+ |sN |). (16)

Evidently, the above equations ensure that the solution (xD, yN , sN , q) satisfy the accounting identity in (9)

and the market clearing constraint (12).

Below is a summary of the algorithm:
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Partition Algorithm in the Presence of Asset Liquidation

• Step 0. Set D = ∅ and N = {1, . . . , n}.
• Step 1. Set xN = `N , yD = ȳD, and sD = s̄D. Use the preceding routine to solve (xD, yN , sN , q) from the

equation system (13-16). Let x = (xN , xD), y = (yN , yD), and s = (sN , sD).

• Step 2. Check the feasibility of the surplus constraint in (9) under (x, y, s, q). If it is satisfied, stop;
otherwise, identify the violating banks, move them into D (from N ), and go to Step 1.

Theorem 4. The above algorithm terminates in at most n iterations of Step 1. When it stops, it yields

an optimal partition (D∗,N ∗), along with the optimal solution x∗ = (`N∗ , x
∗
D∗), y

∗ = (y∗N∗ , ȳD∗), and

s∗ = (s∗N∗ , s̄D∗) for the problem (8).

As noted in the introduction, an important feature of the partition algorithm is that it generates a

sequential order relation among the defaults. It highlights the effect of market liquidity in propagating

contagion. To see this, consider the feasibility checking at the end of every step. The surplus constraint in

(9) can be restated as

[βN + yN + sN q + xDPD,N + xNPN ]− xN ≥ 0.

Note that the sum in the brackets is the asset value of these banks, marked to the market price q =

Q(|s̄D| + |sN |), and xN is their liability payments. Thus, it is equivalent to checking whether the market

values of these banks’ net worth remain nonnegative. The price impact that the defaults identified in the

previous steps yield is folded into q through their asset sale s̄D and will affect the contagion magnitude in

the subsequent steps.

We present a simple numerical example below to illustrate the algorithm.

Example 5. Figure 1 shows a system of two banks with a tandem structure. Bank 2 raises money from the

external investors and lends it to bank 1, then the credit flows to ultimate external debtors. Both two banks

Figure 1: A system of two banks.

own equity capital and illiquid assets. Table 3 displays more granular information about the composition of

the balance sheets of these banks at time 0. Still use Q(s) = exp(−γs) as the price impact model in this

Bank 1
External
investments

β̄1 = $50 Interbank
liability

L12 = $50

Illiquid
assets

s̄1 = $150 Equity
capital

e1 = $150

Bank 2
Interbank
lending

L12 = $50 External
debts

b2 = $50

Illiquid
assets

s̄2 = $50 Equity
capital

e2 = $50

Table 3: Balance sheets information of the 2-bank system. The numbers shown here are the notional values
of the banks’ assets and liabilities at time 0.
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market, in which γ = 0.02.

Suppose that bank 1 now suffers from a 40% loss in its external investment, i.e., the realized value of β1

is $30. Starting with a partition D = ∅ and N = {1, 2}, we apply the preceding algorithm to search for a

market-clearing equilibrium for this system. In the first round, after solving the equation system (13-16), we

have s = (150, 0), q = 0.0498, and x = (50, 50) corresponding to this initial partition. The surplus constraint

in (9) is violated at bank 1 under such (x, s, q) because

x1 = 50 > 30 + 150 · 0.0498 = β1 + s1q. (17)

We should include bank 1 into the default set and update the partition to D = {1} and N = {2}.

In the second round of algorithm execution, given bank 1 is already bankrupt, solving the equations (13-16)

again leads to s = (150, 50), q = 0.0183, and x = (32.745, 50). Checking the surplus constraint again on

bank 2, we will find that its equity value is already negative because 32.745 + 50 · 0.0183− 50 < 0. We have to

move it into D. Finally, the equilibrium is reached at s = (150, 50), q = 0.0183, and x = (32.745, 33.66). �

In this example, the default and the accompanying liquidation of bank 1 exerts a decisive influence to

the stability of this two-bank system, because of its large amount of illiquid asset holdings. Bank 1’s default

is fundamental in the sense that its failure is not caused by the interconnectedness of the system. The

algorithm identifies it in the first round of execution. The liquidation amount from this bank, according to

the computation result at the end of the first round, has already reached s1 = 150, which will significantly

drive the price of the illiquid asset from face value $1 down to only $0.0498. The depressed price then feeds

back to cause bank 2 to default in the next round. In fact, we can foresee the bankruptcy of bank 2 without

waiting until the second round. On one hand, marked to the price at the end of the first round, the equity

value of bank 2 is 50 + 0.0498 · 50− 50 = $2.49; on the other hand, the total repayment from bank 1 to bank

2 is at most $37.47 by the right hand side of (17), inflicting a loss of $12.53 to the latter one. Therefore, the

net worth of bank 2 is too thin to sustain the shock transmitted from its direct debt exposure to bank 1. It

will fail in the subsequent round as a result of contagion.

From this example, we can see that the ultimate equilibrium is not the only goal achieved by the partition

algorithm. More importantly, it can reveal the hierarchy structure of the forming process of the equilibrium.

Note that in the previous example, the price q changes its value from $1 at the beginning, to $0.0498 at the

end of the first round, and finally to $0.0183. We actually use different prices in each step of the algorithm

execution to identify defaults. In this way, the algorithm delineates clearly how the market liquidity is

depleted by successive fire sales as defaults cascade and how the depressed asset price in turn impairs the

net worth of a banking system to reinforce financial contagion.

2.4 Discussions

To simplify the analysis, we roughly group the banks’ assets to three subcategories, besides the interbank

loans, in this stylized model: external investments and liquid and illiquid securities. Further clarification is
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definitely needed to make our abstract classification more concrete, relating the model to realistic banking

balance sheet data.

We refer to liquid securities as the assets whose liquidation will not generate much price impacts. Typical

examples include cash and Treasury bills. The illiquid securities are also marketable, but their prices will

be subject to significant changes when fire-sold. Possible examples are sovereign, municipal, and corporate

bonds, asset and mortgage-backed securities, equities, and so on. Here we model the liquidity effect in

reduced form by suppressing price impacts on different classes of assets into a universal demand function

Q. This assumption is admittedly too strong to capture liquidity differentials across distinct asset classes.

For instance, liquidating large amounts of equities generally results in much smaller price impacts than

liquidating comparable quantities of non-agency asset backed securities (ABS).

In light of this limitation, we explore how different liquidity conditions about Q will change our numerical

results in the experiments below as a robust check. An assumption used in the benchmark case therein is that

all the illiquid securities in the system are roughly liquid as equities. Our estimate is somehow conservative,

given that most of the assets owned by banks in reality should be much less liquid than stocks. Meanwhile,

we vary the price-impact coefficients over a wide range of values to approximate recent empirical estimates

of price impacts in a variety of markets such as agency collateralized mortgage obligation (CMO) and

mortgage-backed securities (MBS), municipal and corporate bonds, and ABSs. One may refer to Section 5.1

for detailed discussion.

Furthermore, we are aware that the contagion effect caused by fire sale should greatly impact financial

institutions that hold mainly assets that would be marked to market, including hedge funds, investment

banks, and insurance companies. Recognizing that the holding ratio of these types of assets in a firm’s

portfolio may vary to a great extent across the system, we use some values consistent with the balance

sheet data of the European banking system released after the 2011 stress test to perform the numerical

experiments.

A large portion of assets owned by commercial banks is corporate or retail loans. They are typically not

marked to market. When one bank unwinds its loan portfolio, other banks would not have to change the

value they record for their own portfolios. We count such kind of assets as external investments. For bank

i, the quantity βi in the model therefore should be interpreted to be the realized value of these investments,

such as repayments received from the external loan borrowers and the proceeds from loan sales.

Resolving failed banks is costly. As argued in [52], liquidation of the assets owned by banks in default,

legal and administrative fees associated with restructuring or liquidating, delays in payments to creditors,

and service disruptions to the failed bank’s customers, all contribute to the costs associated with default and

magnify the severity of systemic risk. Our model mainly captures the first type of bankruptcy cost, but it

can be easily extended to incorporate the effects of other kinds of non-market bankruptcy costs. Introduce

a factor λ, 0 ≤ λ < 1 and replace Eq. (3) in Definition 2 by

xi =

{
`i, if `i ≤ βi + yi +

∑
j 6=i xjpji + siq,

λ[βi + yi +
∑
j 6=i xjpji + siq], otherwise.

(18)
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In words, we assume that a fraction of (1− λ) of bank i’s asset value will be destroyed when it defaults, due

to, say, costly reorganization procedure or the loss of firm-specific knowledge and reputation. Note that a

similar form of recovery rate is also used in [47]. We can show that the partition algorithm still applies in

this case, with a minor modification that in (13) xD now should be determined by

xD = λ[βD + ȳD + s̄Dq + xDPD + `NPN ,D].

3 Net Worth, Systemic Resilience, and Market Liquidity

In this section we intend to estimate the probability of contagion caused by the failure of a single bank, so

that we can quantify the systemic influence of each bank on the resilience of a banking system. [34] developed

a similar estimate in the presence of the network effect only. We extend their results to integrate the effect

of the liquidity channel here.

To start, consider a banking system satisfying the following initial condition:

βi + ȳi +

n∑
j=1

`jpji > `i, for all i. (19)

In words, every bank in this system at the beginning has sufficient liquid funds to meet its liabilities. No

defaults will occur in this circumstance. For all i, define the book value of bank i’s net worth as

e
(0)
i := βi + ȳi + s̄i +

n∑
j=1

`jpji − `i, (20)

by taking a difference between the bank’s total asset value and its notational liability as shown in Table 1.

Under (19), e
(0)
i > 0 for all i.

Then, suppose that a shock hits a representative bank, say bank 1, so that β1 changes to β1 − Y1, where

Y1 ∈ [0, β1] is a random variable. We kick off the partition algorithm with D = ∅ and N = {1, 2, · · · , n}.

Solve Eqs. (13-16) to calculate how much illiquid security should be sold for each bank under this tentative

partition. Denote s
(1)
1 and q(1) to be the calculation outcomes for the amount of illiquid asset sales of bank

1 and the market price of the illiquid asset, respectively. Observe that, if

β1 − Y1 + ȳ1 +

n∑
j=1

`jpji + s
(1)
1 q(1) < `1, (21)

bank 1 will violate the surplus constraint in (9); it thus will be partitioned into the default set D.

Use the initial net worth e
(0)
1 to derive a sufficient condition for (21). Note that s

(1)
1 ≤ s̄1 and q(1) ≤

Q(0) = 1. If Y1 > e
(0)
1 , it implies that

Y1 > β1 + ȳ1 +

n∑
j=1

`jpj1 + s̄1 − `1 ≥ β1 + ȳ1 +

n∑
j=1

`jpji + s
(1)
1 q(1) − `1;

the inequality (21) follows. The preceding simple analysis yields
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Proposition 6.

P(Bank 1 defaults) ≥ P(Y1 > e
(0)
1 ).

This proposition has a clear economic interpretation. When Y1 is overwhelmingly large, the shock will

consume all the net worth the bank possesses and cause it to become insolvent. In this sense, the failure of

bank 1 is fundamental, not resulted by the interconnectedness of the system.

The default of bank 1 may be contagious to a subset of other banks. Hence, one more interesting question

is how likely a contagion will be caused by this default. The following theorem establishes some probabilistic

estimates about the depth that cascading defaults can transmit in a given system. Mimicking what we did

in Example 5, define

e
(1)
i :=

(
βi + ȳi + s̄iQ(s̄1) +

n∑
j=1

`jpji − `i
)
∨ 0, for all i. (22)

In contrast to e
(0)
i , e

(1)
i represents the market value of bank i’s net worth, in which the illiquid asset is

marked not to its face value, but to the market price after bank 1 has sold out all its illiquid holdings. Thus,

it emphasizes the negative price pressure coming from the liquidation of bank 1. We have

Theorem 7. The probability that the shock on bank 1 causes bank j, j 6= 1, to default satisfies

P (Bank j defaults in the equilibrium | Bank 1 defaults) ≥ P

(
Y1 > e

(1)
1 +

1

z1j

n∑
i=2

e
(1)
i zij

)
,

where Z = (zij)i,j∈{1,··· ,n} = (I − P )−1. Moreover,

E (number of default banks | Bank 1 defaults) ≥
∑
j 6=1

P

(
Y1 > e

(1)
1 +

1

z1j

n∑
i=2

e
(1)
i zij

)
.

We call

e
(1)
1 +

1

z1j

n∑
i=2

e
(1)
i zij =

∑n
i=1 e

(1)
i zij

z1j
(23)

the resilience index of bank j against the shock on bank 1. Theorem 7 states that contagion from bank 1 has

a high probability to cause bank j to default if its resilience index is low. The index integrates the effects of

the two crucial risk transmission channels presented in this paper. We view the denominator as a measure

of exposure distance between banks 1 and j on the liability network. Note, I − P is invertible and we have

the following expansion

Z = (I − P )−1 = I + P + P 2 + · · · . (24)

When bank 1 receives one dollar loss, it will pass e1P of the loss to its first-order neighbors, where e1 =

(1, 0, · · · , 0). From them, the loss will be distributed to affect yet more banks: the creditors of these first-

order neighboring banks will receive a fraction of this e1P loss, namely e1P
2, and so on. Hence, z1j , the
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(1, j)-entry of matrix Z, reflects an aggregate impact of this one-dollar loss on bank j, taking into account all

the possible risk-transmission paths from 1 to j. The matrix of (I −P )−1 will be referred to as the network

multiplier below, because it captures the above amplification mechanism through the liability network. Such

notion is well known in the network literature (see, e.g., [43]). We will compare it with the liquidity effect

developed below in the next section.

A more important part of the index lies in its numerator, which characterizes financial strength of bank

j in light of the interconnected balance sheets of the banking system. We may explain the intuition behind

it as follows. There are two factors defining the capability of a bank to absorb external shocks. One is the

net worth of this bank. The other is the net worths of its neighboring banks. Given the interconnectedness

of this financial system, a bank should be more able to weather negative shocks if all the banks that it

has exposures to have high-valued net worths: these strong neighbors will effectively prevent the contagion

originated by defaults occurring somewhere else in the system from affecting bank j. Bearing this intuition

in mind, we define an n-dimensional vector k = (k1, · · · , kn) such that

k = e(1) + kP. (25)

The entry kj , as a measure of the financial strength of bank j, combines both the bank’s net worth e
(1)
j and

the strength of its neighbors. Eq. (25) admits a closed-form solution: k = e(1)(I − P )−1 = e(1)Z. That is,

for each j, kj =
∑n
i=1 e

(1)
i zij , the numerator of our resilience index.

The vector k has a flavor of the centrality measure introduced in the literature of social network by [39];

see also [38] and [44] for references. [20] also presents a centrality-based threat index to measure the spillover

effect in a banking system described by [23]. We need to stress that these works are more interested in

diffusion-type contagion through the local neighborhood structure of a system. In addition to the network

effect, our measure k also features a global and direct impact through the liquidity channel. Recall that the

definition of e(1) is marked to Q(s̄1). Therefore, if a considerable fraction in the asset side of the banking

system is illiquid, the asset liquidation of bank 1 will directly generate a serious negative shock to e(1) via

the depressed price. The product form of k implies that, the loss on e(1) will be amplified by the network

multiplier (I − P )−1 to impair the financial strength of the system in a multiplicative manner.

The previous discussion shows that two factors determine the potential impact of a bank’s failure on the

rest of the financial system. The first is the relative position of the bank in the entire network, captured

by the multiplier (I − P )−1. The second is the concentration of illiquidity on the bank, whose liquidation

will yield a price impact of size Q(s̄1). Our analysis in this section synthesizes these two factors into one

resilience index, and more importantly, explicitly relates it to probability estimates of contagion. It is worth

mentioning that the index relies only on the balance sheet information of financial institutions, independent of

the distribution assumptions of external shocks. Therefore, our index allows us to maintain a high flexibility

in designing hypothetical adverse scenarios about external shocks to assess the systemic influence of one

specific failure.
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4 Sensitivity Analysis: Liquidity Amplifier

With the optimal partition (D∗,N ∗) and its related market-clearing equilibrium (x∗, y∗, s∗, q∗) obtained

from Theorem 4, we proceed in this section to characterize the sensitivity of x∗ and q∗ with respect to

small changes in the model parameters. (Here “small” means the partition set will not be affected.) One

important consequence of such analysis is that we identify a liquidity amplifier to capture the effect of asset

price to the systemic risk. Moreover, the analysis explicitly demonstrates the interplay of two amplification

mechanisms of liability network and market liquidity, whereby we are able to examine the effectiveness of

several intervention policies in preventing spillover of the systemic risk.

4.1 Liquidity Amplifier

Denote L∗ = {i ∈ N ∗ : s∗i > 0}. By it, we split the non-default banks further into two subgroups,

N ∗ = L∗∪(N ∗\L∗). The former subgroup of banks relies partly on illiquid asset sales to meet their liabilities,

whereas no illiquid asset liquidation is needed for the banks in the latter subgroup in the equilibrium. As

we can expect, the banks in L∗ should play a crucial role in the liquidity amplifier, because the competition

for the limited market liquidity among them will drive down the price of the illiquid security, yielding a

negative externality for the systemic resilience. In contrast, the banks in N ∗\L∗ should have no effect on

the equilibrium because they fully repay their liabilities and do not participate in asset sales. Therefore they

will not appear in the expression of the liquidity multipliers. More precisely, we have

Theorem 8. Assume that Q(·) is differentiable. Define γ = −Q′(|s∗|)/Q(|s∗|). Then, the sensitivity of the

market price q∗ with respect to the external investment value β is given by

∂q∗

∂βi
=

γ

1− γ
(
|s∗L∗ |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗1

) , for i ∈ L∗,

and

∂q∗

∂βi
=

γei(ID∗ − PD∗)−1PD∗,L∗1

1− γ
(
|s∗L∗ |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗1

) , for i ∈ D∗.

The sensitivity of the equilibrium repayment x∗ with respect to β is given by

∂x∗D∗

∂βi
=
∂q∗

∂βi
s̄D∗(ID∗ − PD∗)−1, for i ∈ L∗.

and

∂x∗D∗

∂βi
=
(
ei +

∂q∗

∂βi
s̄D∗
)

(ID∗ − PD∗)−1, for i ∈ D∗,

Moreover, all the sensitivities are nonnegative.

Theorem 8 presents complex knock-on effects due to the liquidity. To see that, consider the impact of

a reduction of $1 in βi to the market price of the illiquid security. If this reduction does not change the

equilibrium partition (namely, bank i is still in L∗ and paying fully its liabilities), the bank will have to sell
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an additional amount of 1/q∗ of illiquid security, at a price q∗ = Q(|s∗|) per unit, to compensate for this

reduction. This extra sale subsequently will lower the price of the illiquid asset by

Q(|s∗|)−Q
(
|s∗|+ 1

q∗

)
≈ −Q

′(|s∗|)
q∗

=
−Q′(|s∗|)
Q(|s∗|)

= γ.

This is the first-order liquidity effect.

Such a price decline will feed back into the incomes of the banks in L∗ through two channels. First,

it immediately causes a shrinkage in the sale proceeds of asset liquidation of those banks. Note that the

amounts of the illiquid security sold from the banks in L∗ are given by s∗L∗ . Hence the impact via this

channel is that these banks will receive γs∗L∗ dollars less, as the price declines by γ.

The second channel is from the network effect, more specifically, the repayments of the banks in D∗.

All the banks in this subgroup, defaulting in the equilibrium, are forced to liquidate all the asset holdings;

hence, s∗i = s̄i for i ∈ D∗. When the market price declines by γ, the values of these banks after liquidation

will decrease by γs̄D∗ . This initial loss caused exogenously by the market price decline will be amplified

endogenously through the interconnectedness of the liabilities among the banks in D∗. Denote λD∗ to be an

effective loss vector for the banks in D∗, whose jth entry is the sum of exogenous and endogenous losses to

bank j, j ∈ D∗. We have

λD∗ = γs̄D∗ + λD∗PD∗ ;

hence, λD∗ = γs̄D∗(ID∗ − PD∗)−1. Through the liability exposures between the subsets D∗ and L∗, this

λD∗ will ultimately result in a loss to the repayments to L∗ by γs̄D∗(ID∗ − PD∗)−1PD∗,L∗ . Hence, the total

income loss of the bank subgroup L∗ caused from the above two channels amounts to

(γs∗L∗ + γs̄D∗(ID∗ − PD∗)−1PD∗,L∗)1 = γ(|s∗L∗ |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗1).

They have to sell more to offset the impact of this loss, which further lowers the asset price by

γ · [γ(|s∗L∗ |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗1)],

which is the second-order price effect. Continuing to taking all orders of ripple effects into account, the

ultimate price decline should be

γ + γ
[
γ(|s∗L∗ |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗1)

]
+ γ

[
γ2(|s∗L∗ |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗1)2

]
+ · · · .

The sum of this geometric series is exactly the expression of ∂q/∂βi for i ∈ L∗ in Theorem 8. We can

interpret the other sensitivities in the theorem in a similar manner. The related discussion is skipped in the

interest of space.

Define a liquidity amplifier as

LA :=
γ

1− γ
(
|s∗L∗ |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗1

) . (26)
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As explained before, it characterizes how the market amplifies an initial price decline. This amplifier takes

the form of a denominator. It will become infinitely large when

|s∗L∗ |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗1

approaches 1/γ, a measure of the market depth. In contrast, the value of the network multiplier (ID∗−PD∗)−1

is finite if we fix the topology of our banking system. Therefore, the liquidity channel has a potential to play a

dominant role in affecting the equilibrium x∗ and q∗, especially when the market liquidity largely evaporates.

Many studies, including [13], [14], and [2], observe empirically that a liquidity-induced loss spiral, visualized

in Figure 2, significantly contributes to the severity of the 2007-2009 US crisis. [17] construct a quantitative

framework to analyze the impact of loss-triggered fire sales on systemic risk.

Positions 
Liquidation 

Price Decline Liquidity  
Problems Initial Losses 

Loss on  
Existing Positions 

Figure 2: A loss spiral due to the liquidity effect.

4.2 Intervention Policies

We now use the above sensitivity analysis as a tool to examine the effectiveness of policy intervention. Two

policies are studied for the purpose of idea illustration: (1) direct purchase of the illiquid asset by an external

player, e.g., the government, and (2) capital injection. In practice, central banks undertook both to alleviate

the negative impacts of financial crises. For instance, the US Treasury started in October 2008, shortly

after the collapse of Lehman Brothers, to inject $205 billion in the form of preferred stock to the financial

industry as a part of the Troubled Asset Relief Program (TARP). In 2009, US Treasury, in conjunction

with the Federal Reserve and FDIC, also launched the Public-Private Investment Program for Legacy Assets

(PPIP), designed to create partnerships with private investors to buy so called “toxic” assets such as legacy

commercial MBS and non-agency residential MBS.

The consequences of the above two policies can be modeled in our setting as modifications on the original

structure of the banks’ balance sheets (cf. Table 1). Suppose that the government injects $∆ to one of the

banks to mitigate its systemic impact. If it uses a direct asset purchase program, it pays cash in exchange

for some amounts of illiquid securities held by bank i. Two possibilities arise under this category: the

government may pay either the face value or the market price of the asset. As Figure 3 demonstrates, this

policy will result in an increment for the amount of liquid holding of bank i from ȳi to ȳi+∆ and meanwhile
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decrease its illiquid assets from s̄i to s̄i −∆ or s̄i −∆/q∗, depending on whether the government pays the

face value or market price. As for the capital injection, we assume that the bank uses $∆, infused by the

government in the form of equity capital, to scale up its liquid holding from ȳi to ȳi + ∆.

Assets	   Liabili+es	  

Debts	  

Equity	  

External	  
Investments	  

Illiquid	  	  
Securi+es	  

Liquid	  Securi+es	  

$Δ

Direct	  Asset	  Purchase	  

Assets	   Liabili+es	  

Debts	  

Equity	  

External	  
Investments	  

Illiquid	  	  
Securi+es	  

Liquid	  Securi+es	  

$Δ

Capital	  Injec+on	  

$Δ

Figure 3: Changes on a bank’s balance sheet caused by two intervention policies. The left plot shows the
direct asset purchase leads to an increase of $∆ in the part of liquid holdings of the bank and a decrease of
$∆ in its illiquid assets when the transaction is done under the face value. The policy of capital injection in
the right plot enhances the equity base of a bank by $∆.

Holding βi unchanged, we compute relative value changes in equilibrium, in particular, in terms of the

clearing price q∗Policy(∆) and repayment x∗Policy(∆), caused by the aforementioned balance sheet modifications.

Let

PEIPolicy := lim
∆→0

q∗Policy(∆)− q∗

∆
and PEIIPolicy := lim

∆→0

x∗Policy(∆)− x∗

∆

be two gauges of policy effectiveness. We compare them for different intervention schemes in Theorem 9.

Theorem 9. Fix i ∈ D∗. The policy effectiveness under direct asset purchase (DAP) on the market price

and capital injection is given by

PEIDAP, Market = LA, PEIIDAP, Market = LA · s̄D∗(ID∗ − PD∗)−1,

and

PEICapital = LA · ei(ID∗ − PD∗)−1PD∗,L∗1,

PEIICapital = ei(ID∗ − PD∗)−1 + PEICapital · s̄D∗(ID∗ − PD∗)−1,

respectively, where LA refers to the liquidity amplifier defined in (26). The effectiveness of the face-value

purchase is a weighted average of the above two, namely,

PE
I/II
DAP, Face = q∗PE

I/II
DAP, Market + (1− q∗)PEI/IICapital.

All the policies produce positive effectiveness, indicating that they can indeed influence the market

equilibrium in a desirable direction such as stabilizing the market price of the illiquid asset and reducing the
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spillover of the systemic risk. However, the theorem also reveals that different policies may have different

focuses. Note that we can show ei(ID∗ − PD∗)−1PD∗,L∗1 ≤ 1. Hence,

PEIDAP, Market ≥ PEICapital.

In other words, the direct asset purchase program should have more influence on the market price than

capital injection.

As for the repayment improvement, we find that PEIICapital is larger than PEIIDAP, Market when ei(ID∗ −

PD∗)
−1, the network multiplier, is sufficiently large. Recall that the number of defaults in the ultimate

equilibrium depends on the value of x∗ (i.e., how many x∗i < `i). Thus, capital injection should have a

greater effect in reducing the scale of contagious defaults in a highly leveraged banking system. From this

discussion, we can see that our analysis provides theoretical supports for the two-pronged approach taken

by the US Treasury, which aimed on two different, but related frontiers to alleviate the credit crisis.

We propose the following simple intuition to explain the differences between the policies. The asset

purchase program mainly utilizes the liquidity channel to propagate its impact, whereas the capital injection

program focuses more on the network channel. Calculating the value change in the bank’s total assets under

the policy of asset purchase, we find that

Total Asset Value (TAV) After Purchase = TAV Before Purchase + ∆− q∗ · ∆

q∗

= TAV Before Purchase.

Hence, the policy does not change the bank’s asset value and thereby will not result in a reduction in the

default probability for the recipient bank. In contrast, the capital injection program increases the total asset

value of the recipient bank by ∆, making it less likely to default. Therefore, the improvement effect of capital

injection on x∗ will be more significant.

The price impact is more related to the relative composition of liquid and illiquid assets for the banks.

To capture it, consider the liquidity ratio of a bank, which is defined as the ratio of a bank’s liquid holdings

over its total asset value. The direct asset purchase program increases the liquidity ratio of bank i from

ȳi/TAV to (ȳi+ ∆)/TAV , noting that the policy does not change the asset value as previously argued. The

improvement on this ratio under capital injection is only from ȳi/TAV to

(ȳi + ∆)/(TAV + ∆) < (ȳi + ∆)/TAV.

That explains why the liquidity improvement of capital injection should be less obvious than the former.

Of course, the previous discussion concerns only the benefits of these policies. We do not intend to make

any claims here regarding the optimality of policy selection. To provide a more comprehensive assessment for

the purpose of policy recommendation, one should count the costs of these interventions, which is absent so

far in our sensitivity analysis. However, it still shed insights about effectiveness comparison between policies

with different regulatory focuses.
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5 Numerical Experiments

We undertake some numerical experiments on the data of the 11 Germany banks that participated in the 2011

EU-wide stress test. In light of incomplete information disclosed from our dataset, we see these experiments

more like illustrative of the aforementioned methodologies and notions. Nevertheless, we do find that the

market liquidity has the potential to become a prevailing force to trigger a massive contagion under the

current market environment.

5.1 The Data and Network Reconstruction

Ninety banks in 21 countries were involved in the exercise of the 2011 stress test organized by the European

Banking Authority (see [27]). For each, the authority reports the total assets and core tier 1 capital after the

effects of mandatory restructuring plans publicly announced and fully committed before 31 December 2010.

In addition, the EBA reports each bank’s total claims (exposure at default, EAD) on domestic and foreign

institutions, corporations, retail customers, and commercial real estate. Table 4 contains some relevant

information extracted from the EBA’s report.

Bank Bank Name Total Asset Capital Domestic Interbank EAD/ Total Assets
Code (A) Interbank EAD (E) (E/A%)

DE017 DEUTSCHE BANK AG 1,905,630 30,361 47,102 2.47%
DE018 COMMERZBANK AG 771,201 26,728 49,871 6.47%
DE019 LANDESBANK B-W 374,413 9,838 91,201 24.36%
DE020 DZ BANK AG DT.Z-G 323,578 7,299 100,099 30.94%
DE021 BAYERISCHE 316,354 11,501 66,535 21.03%

LANDESBANK
DE022 NORDDEUTSCHE 228,586 3,974 54,921 24.03%

LANDESBANK -GZ
DE023 HYPO REAL 328,119 5,539 7,956 2.42%

ESTATE HOLDING AG
DE024 WESTLB AG 191,523 4,218 24,007 12.53%

DUSSELDORF
DE025 HSH NORDBANK AG 150,930 4,434 4,645 3.08%

HAMBURG
DE027 LANDESBANK 133,861 5,162 27,707 20.70%

BERLIN AG
DE028 DEKABANK 130,304 3,359 30,937 23.74%

DEUTSCHE GIROZENTRALE

Table 4: Data of German banks from the 2011 EBA Stress Test Report. All the quantities are in million
euros.

The EBA data contains only aggregate information about the banks’ assets and capital. The detailed

breakup about bilateral interbank exposures for each participant bank is not available. Hence, we need

to reconstruct the banking system model from the data before performing numerical experiments. To this

end, assume that each bank’s interbank liabilities equal its interbank assets, and the domestic interbank

EAD of each one is held by some other banks in the table. These assumptions concentrate the interbank

liabilities within these 11 banks, leaving us a closed system to be constructed. In so doing, we actually bias

the experiments in favor of the network-caused contagion. To ensure that the resulted models are consistent

with the above aggregate-level data, we search for an appropriate liability matrix L = (Lij), Lii = 0, such
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that

li =
∑
j:j 6=i

Lij and aj =
∑
i:i6=j

Lij , (27)

where li and aj are the interbank liability of bank i and the interbank asset of bank j, respectively. Both

values can be obtained from the column of interbank EAD in Table 4.

Of course, an infinite number of matrix candidates can satisfy the requirement (27). In order to further

fix the network configuration, we consider the following three stereotypes of structures:

A. Complete: Every bank has bilateral exposures with every other banks in the system.

B. Ring-like: Every bank concentrates its exposure to its neighboring banks.

C. Core-periphery: The 11 banks are divided into two groups: core and periphery. The core banks connect

widely with all the other banks in the system, whereas the banks in the periphery have exposure to

the core banks only.

As reported by some empirical studies, such as [8] and [18], interbank markets are typically tiered in the sense

that most banks do not lend to each other directly but through money center banks acting as intermediaries.

Hence, Structural type C may resemble more closely the reality of the banking industry.

However, two other types of network structure are also considered in the experiments. The conventional

wisdom in the literature is that incomplete networks are more prone to large-scale contagion than complete

networks, as the latter structure helps diversify away the loss caused by failed banks. For instance, [3] use

exactly a complete graph and a ring-like graph as the representatives of the two opposite extremes in the

spectrum of graph completeness to assess the influence of network diversification on financial contagion. In

light of this given background, the purpose of including types A and B here is definitely not to claim that

they are realistic reflections of the true German financial system, but to facilitate numerical comparisons

between the impacts of different network topologies and the market liquidity to systemic stability. Figure 4

shows the reconstruction results under all the three structure types.

Figure 4: The recovered interbank liability networks from the EBA stress test data. The nodes in the graphs
represent individual banks. The arrow from bank i to j represents a claim of bank i on bank j.
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Take type A as an example to show how we recover the network by using an entropy-minimizing estimation

method developed in [8] from the EBA data. The recovery details under the other two are similar and thus

deferred to Appendix C.1 in the interest of space. Define a matrix Y = (yij) such that yij = liaj , the product

of bank i’s interbank liability and bank j’s interbank asset, for all i and j. Such Y should be corresponding

to a complete-graph structure in which interbank liabilities and assets are independently distributed among

the banks. Noting that Y may violate the consistency constraint (27), we then attempt to find a matrix L

to solve the following minimization problem:

min
L

∑
i,j

Lij ln(Lij/yij) (28)

subject to the constraint (27), Lii = 0, and Lij ≥ 0 for all i, j. In this way, we ensure that the obtained L

is as close as possible to the complete structure specified by Y and meanwhile it is also consistent with the

data we observe from the EU report.

We need to put the amounts of illiquid holdings and the price impact function Q in the recovered networks

to incorporate the liquidity effect. The EBA data shows that the total exposure of major European banks

to sovereign bonds is about 2.3 trillion euros (approx. 13% of aggregate banking sector assets), mortgages

4.7 trillion euros (approx. 20%), and corporate loans 6.7 trillion euros (approx. 29%). Correspondingly, we

assume that θ = 10%, 30%, 60% of the total assets of each bank (i.e., the first column of Table 4) are illiquid

in the following experiments, by progressively adding the above three classes to the list of assets that can be

sold (thus subject to the price impact). Note that, based on the same set of EBA stress test data, [35] use

similar approximations (see Table 6 therein) to assess the impact of sizes of sellable assets on their estimates

of the bank vulnerability to fire sales.

In addition, suppose that the inverse demand function for the illiquid asset takes a linear form Q(s) =

1 − νs. In Appendix C.2, we take another form, an exponential Q, to assess the impact of functional form

to the results. Use ν = 1× 10−13 as a benchmark case. It means that 10 billion euro asset sales results in a

price change of 10 basis points. [5] reports that this number is close to the liquidity of a broad spectrum of

stocks. Therefore, by taking such ν, we implicitly assume that all the assets owned by the banks are roughly

as liquid as equities. Given that most of the banking assets in reality are much less liquid, we are likely

biasing low the liquidity effect for the system. To examine how the value of ν changes our numerical results,

we also perform the experiments under ν = 0.5 × 10−13 and 3 × 10−13, which are corresponding to 5 and

30 basis-point price changes per 10 billion euro sale, respectively. The former is in a neighborhood of price

impact for agency CMO and MBS and the latter is close to the liquidity of average corporate bonds and

some ABSs used by some empirical research (see [21]). Finally, we estimate βi, the total value of external

investments for each bank, by subtracting the interbank EAD and the illiquid asset from the total asset of

a bank.
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5.2 Contagion via Market Liquidity

In this subsection, we compare the effects of network and liquidity as two important transmission channels

for the systemic risk. Our numerical experiments point out that the market liquidity has the potential to

trigger a massive contagion. Given the fact that interbank lending accounts for a relatively small fraction

in the total assets of each bank as disclosed by the EBA data, we find that, absent the liquidity channel,

the failure of one bank hardly affects the others. But, a significant contagion effect can be observed once we

introduce sufficient illiquidity into the system.

Figure 5: The number of defaults under different shock sizes. The vertical axis is the default number in the
repayment equilibrium. The percentages in the horizontal axis are the relative size of an external shock Y
to the total asset of Bank DE017. In the first, second, and third rows, we specify the illiquid asset ratios as
θ = 10%, 30%, and 60%, respectively, while in the first, second, and third columns, we use the market depth
as ν = 0.5× 10−13, 1× 10−13, and 3× 10−13.

Figure 5 illustrates the number of defaults in equilibrium when different sizes of external shocks are

applied on the external projects of a bank. In this set of experiments, we assume that Bank DE017 loses the

value of its external investment β by an amount of Y . As the shock size of Y increases, the bank fails and its

failure will spill over to affect other banks. When both θ and ν are small (the plot in the northwest corner),
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no notable contagion effect occurs in any of the three structured networks even under a large external shock:

only the recipient bank of shocks, DE017, defaults in the equilibria and no other defaults are caused by its

failure. From this, our experiments corroborate the findings in the recent empirical and simulation studies

on network stress testing that interbank liabilities alone can barely generate contagion. As we increase the

values of θ or ν, i.e., the market gets more illiquid, the plots indicate that the severity of contagion becomes

acute. In most of the plots, even a relatively mild external shock to the asset of DE017 can trigger a large

number of banks to fail.

As revealed by the last column of Table 4, interbank exposures contribute a very small fraction of the

total asset values of these 11 banks. When one bank fails, the loss it causes to its interbank debt holders

will be at most the total amount of its bilateral debt exposures, no matter what kind of network structures

are used in our simulation. Therefore, the impact from this channel to the system will be not significant for

this given dataset. [34] derive some estimates of network-triggered contagion probability only based on the

information of the banks’ aggregate liability amounts. Their results also point out that the network effect

will be very limited for a system with only small amounts of interbank liability exposures. Compared with

the network effect, the liquidity can produce a global influence on every participant through the asset market

price, not necessarily confined to those banks with direct exposure to the defaulting one. As a complement

to their work, our numerical experiments show that fire sales can generate substantial losses from contagion.

Once a contagion is triggered, the networks in the experiments also demonstrate a well-documented

robust-yet-fragile property, although its impact is somehow mild compared with the liquidity effect. Take the

benchmark case (the central panel in Figure 5) as an illustration. We find a “phase transition” phenomenon;

that is, the number of defaults in the system with type-A structure is smallest under small shocks, whereas

it changes to the least stable network among the three structures as the shock size becomes large. Our

explanation to this observation is that the well-interconnectedness in complete networks indeed has a double-

edged effect. The banks may utilize its diversification effect to divert small external shocks; and on the other

hand, it will serve as an efficient conduit to transmit losses when the shock size is sufficiently large. [1]

theoretically identify two shock regimes in which the complete network is the most and least stable. Their

analysis is mainly based on symmetric networks. Our numerical results show that such property of highly

interconnected financial networks may still exist even in the presence of fire sale and asymmetric network

structure. Nevertheless, we need to stress that this phenomenon occurs only for a market with intermediate

degree of liquidity. As shown by the plot in the southeast corner, this difference caused by the network will

be dominated by the liquidity effect for a highly illiquid market.

At the end of this subsection, we perform more experiments by changing the shock recipient to another

bank DE020 to further highlight the role of liquidity contagion. In contrast to DE017, DE020 owns the largest

amount of interbank EAD among the 11 banks. However, as indicated by Figure 6, the interbank EAD is

apparently not as contagious as the market liquidity. The number of defaults in this set of experiments are

significantly less than the second row of Figure 5, which uses the same combination of θ and ν. Obviously,
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Figure 6: The number of defaults when DE020 is shocked. The vertical axis is the default number in the
repayment equilibrium. The percentages in the horizontal axis are the relative size of an external shock Y
to the total asset of the bank. The liquidity parameters in the three plots are (θ, ν) = (30%, 0.5 × 10−13),
(30%, 1× 10−13), and (30%, 3× 10−13), respectively.

this follows from the assumption that the banks universally hold 30% of illiquid assets in the system. Under

it, the amount of illiquid holdings of DE017 is larger than that of DE020 merely due to its larger size of

total assets. The figure suggests that, in a highly illiquid market, the failure of an institution holding a large

amount of illiquid assets may pose a greater threat to the system stability than the failure of an institution

with large interbank exposures.

5.3 Net Worth as an Indicator of Systemic Resilience

We now consider the importance of net worth, especially its market value, as a gauge of systemic resilience

in the presence of the liquidity channel. Use the benchmark case with the type-A structured network as an

example. Assume that an external shock hits on DE017 such that 20% of its total assets are lost. Running

the partition algorithm, we obtain an equilibrium in which seven banks ultimately default. As the sole

shock recipient, the failure of Bank DE017 is fundamental: the size of external shock on it is given by

Y1 = 20% × 1, 905, 630 = 381, 126, exceeding its net worth e
(0)
1 = 30, 361. According to the analysis in

Section 3, the bank will be identified by the partition algorithm into the default set D in the first iteration.

The bankruptcy of DE017 will cause three more rounds of cascade (i.e, three more rounds of augmentations

in the algorithm execution) through the system. Table 5 illustrates the hierarchy of contagion under the

shock.

Default order Banks Failing in Each Round Cumulative Failures up to the Round
0-order DE017 DE017
1st-order DE022, 023 DE017, DE022, DE023
2nd-order DE020, 024 DE017, DE022, DE023, DE020, DE024
3rd-order DE019, 028 DE017, DE022, DE023, DE020, DE024,

DE019, DE028

Table 5: Hierarchy of cascades under a 20% shock to the asset of DE017. The liability network is type A.
The liquidity parameters are assumed to be θ = 30% and ν = 1× 10−13.

One interesting observation is that DE023 defaults at so early a stage, although its interbank exposure

to DE017 is relatively small compared with the other banks; refer to the technical appendix for the detailed

liability matrix. To understand this, we compare in Table 6 the net worths of every bank before and after
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the failure of bank 1. Under ν = 1 × 10−13, an illiquid market environment, the impact that the failure of

DE017 exerts on the net worths of the other banks is prominent. In particular, DE022 and 023 would lose

98.7% and 100% of their net worth values, respectively. Note that the resilience indices for these two banks

decline respectively to 204, 299 and 190, 684, far less than the magnitude of the shock Y1. Using Theorem 7,

we can infer that DE022 and 023 will default immediately after DE017 fails.

Banks e
(0)
i e

(1)
i Loss ratio Resilience

DE017 30,361 - - -
DE018 26,728 13,494 49.51% 4,167,518
DE019 9,838 3,413 65.31% 680,653
DE020 7,299 1,746 76.07% 411,792
DE021 11,501 6,072 47.20% 1,477,794
DE022 3,974 51 98.70% 204,299
DE023 5,539 0 100% 190,684
DE024 4,218 931 77.92% 793,171
DE025 4,434 1,844 58.41% 6,581,028
DE027 5,162 2,865 44.50% 1,784,500
DE028 3,359 1,123 66.57% 746,698

Table 6: Net worth changes caused by the default of DE017. The parameters used are the same as those in
Table 5. The net worths e(0) and e(1) for each bank are computed according to (20) and (22), respectively.

The loss ratio is defined as (e
(0)
i − e

(1)
i )/e

(0)
i . We use (23) to compute the resilience for the banks.

This experiment serves as another strong supportive evidence that the liquidity contagion should not be

neglected in the study of financial systemic risk. It shows that the price decline due to the asset liquidation

of DE017 weakens the capital bases of the two banks to such an extent that they will not have sufficient

cushion to sustain even a moderate shock propagated from DE017. Meanwhile, it also demonstrates that

the market value of equity capital should be more accurate to reflect systemic resilience of a banking system.

To see this, we compute the resilience indices of DE022 and 023 again, replacing e(1) with e(0). The values

are 1,569,848 and 11,658,341, respectively, which are much stronger than the size of the external shock.

In general, if we taking the difference between e(0) and e(1), we have

e
(0)
j − e

(1)
j = s̄j(1−Q(s̄1)) ≥ 0, for all j 6= 1. (29)

By the non-negativeness of P ,∑n
i=1 e

(1)
i zij

z1j
=

[e(1) + e(1)P + e(1)P 2 + · · · ]j
[I + P + P 2 + · · · ]1j

≤ [e(0) + e(0)P + e(0)P 2 + · · · ]j
[I + P + P 2 + · · · ]1j

=

∑n
i=1 e

(0)
i zij

z1j
.

Therefore, the resilience of a bank would be seriously inflated if we used e(0) to calculate it. As shown in

the experiment, using the book value of net worth will underestimates the true systemic danger and can be

misleading in the presence of the liquidity channel.

5.4 Bankruptcy Cost

Figure 7 displays the impacts of bankruptcy costs discussed in Section 2.4. If we assume that, in addition

to the loss caused by asset liquidation, a fixed fraction of the failed banks’ value will be destroyed during

the procedure of bankruptcy, the risk amplification effect in the banking system is more significant. For
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given external shock Y and market liquidity environment (θ, ν), smaller λ (i.e., less recovery rate) will lead

to higher number of failures.

An interesting finding from the figure is that, without the liquidity channel, bankruptcy costs must be

very large in order to have an appreciable impact on the equilibrium. For instance, the number of default

banks in the type-C structure (the green dot-dash line) exceeds 4 when λ is less than 0.61 in the left plot

in which ν = 0. In contrast, when ν = 0.5× 10−13 (the central plot), more than 4 banks will default in the

equilibrium even for λ = 0.93. In other words, a relatively small bankruptcy cost can be easily magnified

by the market liquidity to a great threat to the systemic stability. In this sense, this numerical example

Figure 7: The number of defaults under different bankruptcy cost λ. The vertical axis is the default number
in the repayment equilibrium and the horizontal axis is the value of λ. Here we apply a shock with size 4%
to the asset of DE017. Assume that the illiquid asset ratio in the system is θ = 30%. The price impacts
used in the plots, from left to right, are ν = 0, 0.5× 10−13, and 1× 10−13, respectively.

underscores the importance of orderly resolution of failing banks in avoiding costly bankruptcy procedures

and preventing systemic risks, especially during a financial crisis when the market is in turmoil.

6 Conclusions

This paper develops an equilibrium-constrained optimization approach to model the systemic risk in a

banking system. In the literature of social networks and epidemiology, contagion of rumors, deceases, and

so on, typically follows a diffusion process through the local neighborhood structure of a network; refer to,

e.g., [22]. Hence, the network effect there is the predominant force. A distinct feature of the financial system

is that two banks may not have any counter-party relationship at all, but they are still connected through a

global channel, the market. Our formulation can incorporate both two important channels, the network and

market liquidity, for the transmission of financial systemic risk. We present a partition algorithm to solve the

equilibrium, by which we unify and extend the fixed-point-based approaches proposed in some major studies

about financial networks. The numerical experiments in the paper reveal that, as the on-going de-leveraging

practice in financial institutions has already significantly shrunk their mutual liability exposure, the market

effect may overtake the former to become a dominant force to trigger large-scale financial contagion.

We illustrate the network and liquidity effects with data on the European banking system. In spite of

the crude estimates we use to recover the system from the limited information disclosed by the test dataset,
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the message conveyed from the experiments is unequivocal: the market liquidity have a potential to play

a dominating role in the development of the systemic risk. This echoes the concern of European Banking

Authority chair Andrea Enria in his opening statement of the publication of the stress test results, in which

he warned that a possible further deterioration in investors’ risk appetite for sovereign debts during the

ongoing EU sovereign crisis might create a liquidity problem for such assets and thus impair the net worth

of the banks with sizeable exposures to them.

Several directions are of special interest for us to pursue in the future. First, we assume that the entire

liability network, captured by the matrix P , is known for the purpose of solving for the ultimate equilibrium.

However, the data observable from the market typically contain at best incomplete information about it. This

calls for a need to develop some methodologies to handle systemic risk modeling with uncertain data. In this

aspect, our optimization formulation provides a very appealing platform, because it can be easily extended

to accommodate data uncertainty with the help of a rapidly burgeoning literature of robust optimization

(see, e.g., [10], [12] and the references therein).

The second research direction is to endogenize the decision of network formation and illiquid asset holding

in the banking system toward building a dynamic model, as opposed to the static model presented in the

paper. Such types of models would shed more insights on the problem of how to monitor the accumulation

of systemic risk within the system.
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Appendices

A Proof of Main Results

A.1 Proofs for the Results in Section 2

Recall the definition of H and the sequence of {(zi, ti, pi), i ≥ 1} generated by it in Section 2.3. Endow a

weak order < on R in the sense that (z, t, p) < (z̃, t̃, p̃) if z ≥ z̃, t ≤ t̃, and p ≥ p̃. We need several technical

lemmas to establish the main result, Theorem 4.

Lemma 10. For any two real numbers a and b, if a ≤ b, then (a− (a+ ∧ d))+ ≤ (b− (b+ ∧ d))+ for any real

d.

Proof. Proof. We have

(a− (a+ ∧ d))+ = [(a− a+) ∨ (a− d)]+ = [(−a−) ∨ (a− d)]+,

where a− is defined to be max{−a, 0}. Since a ≤ b, −a− ≤ −b− and a − d ≤ b − d. Then, the right hand

side of the above equality should be less than

[(−b−) ∨ (b− d)]+ = (b− (b+ ∧ d))+.�

Lemma 11. (i) Function H is increasing on R relative the weak order <.

(ii) The sequence {(zi, ti, pi), i ≥ 1} is decreasing in the sense of the weak order <. Therefore, the limits

xD := limi→+∞ zi, sN := limi→+∞ ti, and q := limi→+∞ pi exist.

(iii) For any other fixed-point (z, t, p) of function H, we have (xD, sN , q) < (z, t, p).

Proof. Proof. (i) Suppose that we have (z, t, p), (z̃, t̃, p̃) ∈ R, (z, t, p) < (z̃, t̃, p̃). Because z ≥ z̃, zPD ≥ z̃PD

and zPD,N ≥ z̃PD,N due to the non-negativeness of the matrices PD and PD,N . Hence,

z′ = (βD + ȳD + s̄Dp+ zPD + `NPN ,D) ∧ `D ≥ (βD + ȳD + s̄Dp̃+ z̃PD + `NPN ,D) ∧ `D = z̃′

and

w = ȳN ∧ [`N − (βN + `NPN + zPD,N )]+ ≤ ȳN ∧ [`N − (βN + `NPN + z̃PD,N )]+ = w̃.

Lemma 10 and the assumption p ≥ p̃ implies that

t′ = s̄N ∧
[`N − (βN + `NPN + zPD,N )− w]+

p
≤ s̄N ∧

[`N − (βN + `NPN + z̃PD,N )− w̃]+

p̃
= t̃′.

Furthermore, we can obtain

p′ = Q(|s̄D|+ |t|) ≥ Q(|s̄D|+ |t̃|) = p̃′

from the monotonicity of Q and t ≤ t̃. So far, we have shown H(z, t, p) < H(z̃, t̃, p̃).
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(ii) Notice that (z0, t0, p0) = (`D,0N , 1). According to the definition of H, (z0, t0, p0) < (z1, t1, p1). By the

monotonicity of H established in Part (i), we have (z1, t1, p1) = H(z0, t0, p0) < H(z1, t1, p1) = (z2, t2, p2).

Repeatedly applying H, we can show that the sequence {(zi, ti, pi), i ≥ 1} must be decreasing.

(iii) Consider any fixed point of H denoted by (z, t, p). We know that (z0, t0, p0) < (z, t, p). Invoking the

same arguments used in Part (ii), (zi, ti, pi) < (z, t, p) for all i ≥ 1. As the limits of the sequence, we know

that (xD, sN , q) < (z, t, p). �

Lemma 11 establishes that (xD, sN , q) must be a maximal fixed point of H. To justify that this triplet

also solves the equation system (13-16), we have to show

Lemma 12. For any partition generated by the algorithm, we have xD < `D.

Proof. Proof. Use induction. The statement of the lemma is trivially true for the initial partition the

algorithm starts with because D = ∅. To complete the inductive arguments, we assume that xD < `D for

some intermediate partition (D,N ) and its related fixed point (xD, sN , q). Denote (D′,N ′) to be the next

partition we obtain after the feasibility check in Step 2. Note that D′ includes new banks for which the

surplus constraint (cf. the second one in (9)) is violated under (xD, yN , sN , q), namely,

D′ = D ∪

i : i ∈ N , `i > βi + yi + siq +
∑
j∈D

xjpji +
∑
j∈N

`jpji

 .

Certainly we have D ⊆ D′, N ⊇ N ′, and N = N ′ ∪ (D′\D). Denote (x′D′ , s
′
N ′ , q

′) to be the greatest fixed

point under this new partition obtained as Part (ii) of Lemma 11 instructs.

We show first that x′D < `D. To this end, consider the following parameterized function H̃ on R̃ :=∏
i∈D[0, `i]⊗

∏
i∈N [0, s̄i]⊗ [0, 1], where (z′, t′, p′) = H̃(z, t, p) such that

z′ = (θ1 + s̄Dp+ zPD) ∧ `D, t′ = s̄N ∧
[`N − (θ2 + zPD,N )− w]+

p
, p′ = Q(|s̄D|+ |t|),

with

w = ȳN ∧ [`N − (θ2 + zPD,N )]+

for some parameters θ1 and θ2. Notice that (xD, sN , q) and (x′D, s
′
N , q

′) are the maximal fixed points of H̃

with the parameter sets being

(θ1, θ2) = (βD + ȳD + `NPN ,D, βN + `NPN ) (30)

and

(θ′1, θ
′
2) = (βD + ȳD + x′D′\DPD′\D,D + `N ′PN ′,D, βN + x′D′\DPD′\D,N + `N ′PN ′,N ). (31)

respectively.

Lemma 10 implies that the function H̃ is increasing in the parameter θ1 and θ2, i.e., for any θ1 ≥ θ′1 and

θ2 ≥ θ′2, we have H̃(z, t, p; θ1, θ2) < H̃(z, t, p; θ′1, θ
′
2) for any (z, t, p) ∈ R. By the celebrated Tarski’s theorem
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(see, e.g., Corollary 2.5.2 of [7]), we know that the maximal fixed point of H̃ should be increasing in (θ1, θ2).

On the other hand, (θ1, θ2) and (θ′1, θ
′
2) defined as above satisfy

θ1 = βD + ȳD + `NPN ,D = βD + ȳD + `D′\DPD′\D,D + `N ′PN ′,D

≥ βD + ȳD + x′D′\DPD′\D,D + `N ′PN ′,D = θ′1

and

θ2 = βN + `NPN = βN + `D′\DPD′\D,N + `N ′PN ′,N

≥ βN + x′D′\DPD′\D,N + `N ′PN ′,N = θ′2,

where we use the fact that `D′\D ≥ x′D′\D. Therefore, (xD, sN , q) < (x′D, s
′
N , q

′). From this, we have

x′D ≤ xD < `D.

Turn to prove x′i < `i for i ∈ D′\D. From the definition of set D′, we know that

`i > βi + yi + siq +
∑
j∈D

xjpji +
∑
j∈N

`jpji (32)

for such i. It implies that, for i ∈ D′\D,

[`i − (βi +
∑
j∈N

`jpji +
∑
j∈D

xjpji)− yi]+ > siq ≥ 0;

hence, si = s̄i and yi = ȳi. Consequently, by (32),

`D′\D > βD′\D + ȳD′\D + s̄D′\Dq + `NPN ,D′\D + xDPD,D′\D

= βD′\D + ȳD′\D + s̄D′\Dq + `D′\DPD′\D + `N ′PN ′,D′\D + xDPD,D′\D, (33)

where we split the index set N into a union of D′\D and N ′ in the second equality. Using the facts that

xD ≥ x′D, q ≥ q′, the right hand side of (33) is greater than

βD′\D + ȳD′\D + s̄D′\Dq
′ + `D′\DPD′\D + `N ′PN ′,D′\D + x′DPD,D′\D.

Then,

`D′\D(ID′\D − PD′\D) > βD′\D + ȳD′\D + s̄D′\Dq
′ + `N ′PN ′,D′\D + x′DPD,D′\D.

Multiplying a nonnegative matrix (ID′\D − PD′\D)−1 on both sides of the above inequality will yield that

`D′\D > (βD′\D + ȳD′\D + s̄D′\Dq
′ + `N ′PN ′,D′\D + x′DPD,D′\D)(ID′\D − PD′\D)−1.

Note that the right hand side of the above inequality equals to x′D′\D. That implies x′D′\D < `D′\D. In

summary, we have x′D′ < `D′ . �

Proof. Proof of Theorem 4. In light of Lemmas 11 and 12, to complete the proof, what we need to establish

is that, for any partition (D,N ) generated sequentially from the algorithm, the corresponding equilibrium
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(x, y, s, q) associated with it is greater than any optimal solution to the problem (8). Therefore, when the

algorithm terminates at a primal feasible partition, this partition should be optimal.

Use induction again to show the above claim. Denote (x̃, ỹ, s̃, q̃) to be any market-clearing repayment

equilibrium satisfying (8). It defines a partition for {1, 2, · · · , n} as follows: D̃ := {i : x̃i < li} and Ñ := {i :

x̃i = li}. The algorithm starts with a partition such that D = ∅ and N = {∞,∈, · · · , \}. The corresponding

x = xN = ` obviously dominates x̃, i.e., x ≥ x̃. Take the notations in the proof of Lemma 12. Suppose that

for an intermediate partition (D,N ), the corresponding (x, s, q) < (x̃, s̃, q̃) with respect to the partial order

< such that (x, s, q) < (x̃, s̃, q̃) if and only if x ≥ x̃, s ≤ s̃ and q ≥ q̃ for all 1 ≤ i ≤ n. Following the algorithm

instructions, we identify some new defaults and augment the default set from D to D′. To accomplish the

inductive step, we need to show that (x′, s′, q′), the equilibrium corresponding to the new partition (D′,N ′)

dominates (x̃, s̃, q̃) in the sense of the weak order <.

From the inductive assumption that xD ≥ x̃D, we know that D ⊆ D̃; hence N = (D̃\D) ∪ Ñ . For any

i ∈ D′\D, the inequality (32) in the Proof of Lemma 12holds. Therefore,

`i > βi + ȳi + s̄iq +
∑
j∈N

`jpji +
∑
j∈D

xjpji

= βi + ȳi + s̄iq +
∑
j∈Ñ

`jpji +
∑

j∈D̃\D

`jpji +
∑
j∈D

xjpji, (34)

where we split the sum across the set N into two using the observation that N = (D̃\D) ∪ Ñ . Because

`D̃\D ≥ x̃D̃\D, xD ≥ x̃D, and q ≥ q̃, the right hand side of (34) will be greater than

βi + ȳi + s̄iq̃ +
∑
j∈Ñ

`jpji +
∑
j∈D̃

x̃jpji.

The above quantity in turn is larger than x̃i according to the first constraint in (8) which x̃ satisfies.

Consequently, D′\D ⊆ D̃ and we have D′ ⊆ D̃ in conjunction with D ⊆ D̃. As the complement set of D′,

N ′ ⊇ Ñ .

With this relationship in mind, we can use the Tarski’s fixed point theorem again to compare (x′D′ , s
′
N ′ , q

′)

and (x̃D′ , s̃N ′ , q̃). More specifically, consider H ′ onR′ :=
∏
〉∈D′ [′, `〉]⊗

∏
〉∈N ′ [′, ∫̄〉]⊗[′,∞], where (z′, t′, p′) =

H ′(z, t, p) such that

z′ = (θ1 + s̄D′p+ zPD′) ∧ `D′ , t′ = s̄N ′ ∧
[`N ′ − (θ2 + zPD′,N ′)− w]+

p
, p′ = Q(|s̄D′ |+ |t|)

with

w = ȳN ′ ∧ [`N ′ − (θ2 + zPD′,N ′)]
+

for some parameters θ1 and θ2. (x′D′ , s
′
N ′ , q

′) is its fixed point with the parameter

(θ′1, θ
′
2) = (βD′ + ȳD′ + `N ′PN ′,D′ , βN ′ + `ÑPÑ ,N ′ + `D̃\D′PD̃\D′,N ′),

whereas (x̃D′ , s̃N ′ , q̃) is a fixed point of H ′ with the parameters

(θ̃1, θ̃2) = (βD′ + ȳD′ + `ÑPÑ ,D′ + x̃D̃\D′PD̃\D′,D′ , βN ′ + `ÑPÑ ,N ′ + x̃D̃\D′PD̃\D′,N ′).
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From θ′i ≥ θ̃i, i = 1, 2, we know that (x′D′ , s
′
N ′ , q

′), as the greatest fixed point of H ′ with parameter (θ′1, θ
′
2),

dominates the greatest fixed point of H ′ with parameter (θ̃1, θ̃2). Therefore, (x′D′ , s
′
N ′ , q

′) < (x̃D′ , s̃N ′ , q̃).

From the definition, we also know that y′Ñ ≤ ỹÑ . Furthermore, for i ∈ N ′, x′i = `i ≥ x̃i; for i ∈ D̃,

ỹi = ȳi ≥ y′i and s̃i = s̄i ≥ s′i. Hence, we have finished the inductive step. The theorem is proved. �

A.2 Proofs for the Results in Section 3

Indeed, we can establish a more general result about the contagion estimates than Theorem 7. Assume that

a multiple of failures are already caused by the shock on bank 1 in the banking system. Denote D to be a

collection of all those defaulting banks. 1 /∈ D. Let eDi be the equity value of bank i, after all the banks in

D ∪ {∞} sell out the illiquid holdings, i.e.,

eDi =

βi + ȳi + s̄iQ(|s̄D|+ s̄1) +

n∑
j=1

`jpji − `i

 ∨ 0.

Let ZD = (zij)i,j∈Dc = (IDc − PDc)−1. We have

Theorem 13. For any j /∈ D ∪ {∞},

P(Bank j defaults | D ∪ {∞} default) ≥ P

(
Y1 − eD1 >

∑
i/∈D,〉6=∞ eDi zij

z1j

)
.

Moreover,

E(# of default banks | D ∪ {∞} default) ≥
∑
j /∈D

P

(
Y1 − eD1 >

∑
i/∈D,〉6=∞ eDi zij

z1j

)
.

It is easy to see that Theorem 7 is a special case of the above theorem by taking D = ∅.

Proof. Proof of Theorem 13. Given that the banks in D ∪ {∞} default in the ultimate equilibrium, their

liquidation amounts of the illiquid security should be si = s̄i for i ∈ D ∪ {∞}. Consider any k 6= 1, the

equilibrium repayment of bank k when bank 1 receives a shock of size Y1, satisfies

xk ≤ βk + yk + skQ(|sD|+ s1 + |sDc\{1}|) +
∑
j∈D

xjpjk +
∑
j∈Dc

xjpjk

≤ βk + ȳk + s̄kQ(|s̄D|+ s̄1) +
∑
j∈D

`jpjk +
∑
j∈Dc

xjpjk, (35)

where the first inequality is due to the limited liability condition in the definition for market clearing equi-

librium, and the second inequality uses the facts that si = s̄i for i ∈ D, yk ≤ ȳk, sk ≤ s̄k, and Q(·) is

decreasing. Meanwhile, the repayment of bank 1

x1 ≤ β1 − Y1 + ȳ1 + s̄1Q(|s̄D|+ s̄1) +
∑
j∈D

`jpj1 +
∑
j∈Dc

xjpj1. (36)

40



Rewriting (35) and (36) in a matrix form, we have

xDc ≤ βDc − Y1e1 + ȳDc + s̄DcQ(|s̄D|+ s̄1) + `DPD,Dc + xDcPDc,Dc . (37)

From the definition of eD,

eDi =

βi + ȳi + s̄iQ(|s̄D|+ s̄1) +

n∑
j=1

`jpji − `i

 ∨ 0 ≥ βi + ȳi + s̄iQ(|s̄D|+ s̄1) +

n∑
j=1

`jpji − `i,

which implies, for any i ∈ Dc,

βi + ȳi + s̄iQ(|s̄D|+ s1) ≤ eDi + `i −
∑
j∈D

`jpji −
∑
j∈Dc

`jpji.

Substituting the above inequality into (37), we have

xDc ≤ eDDc − Y1e1 + `Dc(IDc − PDc) + xDcPDc . (38)

In junction of the non-negativeness of the matrix ZD = (IDc − PDc)−1, the inequality (38) implies that

xDc ≤ (eDDc − Y1e1)ZD + `Dc .

In particular, for any j /∈ D ∪ {∞},

xj ≤ eD1 z1j +
∑

i∈Dc,〉6=∞

eDi zij − Y1z1j + `j . (39)

On the other hand, note that the condition

Y1 − eD1 >

∑
i/∈D,〉6=∞ eDi zij

z1j

implies that

(Y1 − eD1 )z1j >
∑

i/∈D,〉6=∞

eDi zij . (40)

Combining (39) and (40) will lead to xj < `j , in other words, bank j defaults. So far we have established

that

{Banks in D ∪ {∞} default} ∩

{
Y1 − eD1 >

∑
i/∈D,〉6=∞ eDi zij

z1j

}
⊆ {Bank j defaults}.

Therefore,

P(Bank j defaults) ≥ P

(
Banks in D ∪ {∞} default, Y1 − eD1 >

∑
i/∈D,〉6=∞ eDi zij

z1j

)
. (41)

It is easy to show that the events,

{Banks in D ∪ {∞} default} and

{
Y1 − eD1 >

∑
i/∈D,〉6=∞ eDi zij

z1j

}
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are positively correlated in the sense that

P

(
Banks in D ∪ {∞} default, Y1 − eD1 >

∑
i/∈D,〉6=∞ eDi zij

z1j

)

≥ P(Banks in D ∪ {∞} default)P

(
Y1 − eD1 >

∑
i/∈D,〉6=∞ eDi zij

z1j

)
. (42)

In fact, recall that we established in the proof of Theorem 4 that the equilibrium repayment x is increasing

with respect to the value of β. Therefore, for two shocks Y1 and Y ′1 , Y1 < Y ′1 , we have x ≥ x′, where x and

x′ are the corresponding equilibrium repayments under the two shocks respectively. If the banks in D∪{∞}

default under shock Y1, i.e., xi < `i for all i ∈ D ∪ {∞}, then x′i < `i, meaning that this bank will also fail

under a larger shock. In this sense, the indicator function 1{Banks in D ∪ {∞} default} is an increasing function

of Y1. Meanwhile, 1{Y1>a} is obviously an increasing function in Y1. Invoking Proposition 7.2.1 of [6], we

know that the inequality (42) must be true. From (41),

P(Bank j defaults | D ∪ {∞} default) ≥ P

(
Y1 − eD1 >

∑
i/∈D,〉6=∞ eDi zij

z1j

)
.�

A.3 Proofs for the Results in Section 4

Proof. Proof of Theorem 8.Recall that in the equilibrium the banking system is divided into three subgroups:

D∗, L∗, and N ∗\L∗. The amounts of asset liquidation from D∗ and L∗ are s̄D∗ and s∗L∗ , respectively, whereas

the banks in N ∗\L∗ do not need to sell any assets to raise funds. We have

q∗ = Q(|s∗|) = Q(|s∗L∗ |+ |s̄D∗ |).

Therefore, for i ∈ D∗,

∂q∗

∂βi
= q∗

′ ∑
k∈L∗

∂s∗k
∂βi

= q∗
′ ∂s∗L∗

∂βi
1. (43)

Furthermore, since s∗k satisfies s∗k = d∗k/q
∗ for k ∈ L∗, we know that

q∗s∗k = d∗k = `k − (βk + ȳk +
∑
h∈D∗

x∗hphk +
∑
j∈N∗

`jpjk). (44)

Taking derivatives with respect to βi on both sides,

q∗
∂s∗k
∂βi

+ s∗k
∂q∗

∂βi
= −

∑
h∈D∗

∂x∗h
∂βi

phk = −∂x
∗
D∗

∂βi
PD∗,k.

Sum the above equalities over k ∈ L∗. We obtain

q∗
∂s∗L∗

∂βi
1 +

∂q∗

∂βi
|s∗L∗ | = −

∂x∗D∗

∂βi
PD∗,L∗1. (45)

From (43) and (45), we can solve

∂q∗

∂βi
=
(
− q∗

q∗′
− |s∗L∗ |

)−1 ∂x∗D∗

∂βi
PD∗,L∗1. (46)
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On the other hand, the repayment vector x∗D∗ in the largest equilibrium admits the following representation:

x∗D∗ = (βD∗ + ȳD∗ + s̄D∗q
∗ + x∗N∗PN∗,D∗)(ID∗ − PD∗)−1. (47)

Taking partial derivative with respect to βi on the expression of x∗D∗ , we have

∂x∗D∗

∂βi
=
(
ei +

∂q∗

∂βi
s̄D∗
)

(ID∗ − PD∗)−1. (48)

Finally, substituting (48) into (46) and recollecting terms will lead us to the first equality in the theorem

statement.

Next we proceed to derive ∂q∗/∂βi for i ∈ L∗. Similarly, we start from (43). Taking derivatives with

respect to βi on both sides of (44) for i ∈ L∗ will lead to

q∗
∂s∗k
∂βi

+ s∗k
∂q∗

∂βi
= −ei −

∂x∗D∗

∂βi
PD∗,k, ∀k ∈ L∗.

From it, we have

q∗
∂s∗L∗

∂βi
1 +

∂q∗

∂βi
|s∗L∗ | = −1− ∂x∗D∗

∂βi
PD∗,L∗1. (49)

Note the difference between (49) and (45). Following similar arguments as the proof of the first half from

now on, we can show the second equality in the theorem.

Finally, we can easily get the last two equality in the theorem statement through taking partial derivative

with respect to βi on the expression of x∗D∗ which is shown in equation (47). �

Proof. Proof of Theorem 9. Notice that

PEIDAP, Market =
∂q∗

∂ȳi
− 1

q∗
∂q∗

∂s̄i
, PEIIDAP, Market =

∂x∗D∗

∂ȳi
− 1

q∗
∂x∗D∗

∂s̄i
;

PEICapital =
∂q∗

∂ȳi
, PEIICapital =

∂x∗D∗

∂ȳi
;

and

PEIDAP, Market =
∂q∗

∂ȳi
− ∂q∗

∂s̄i
, PEIIDAP, Market =

∂x∗D∗

∂ȳi
− ∂x∗D∗

∂s̄i
.

Therefore it suffices to derive ∂q∗/∂ȳi, ∂x
∗
D∗/∂ȳi, ∂q

∗/∂s̄i, and ∂x∗D∗/∂s̄i. Since the proof is highly similar

as Theorem 8, we only present the calculation related to the first two sensitivities here for the interest of

space.

On one hand, we can obtain

∂q∗

∂ȳi
=
(
− q∗

q∗′
− |s∗L∗ |

)−1 ∂x∗D∗

∂ȳi
PD∗,L∗1, (50)

invoking the same arguments leading to (46). On the other hand,

∂x∗D∗

∂ȳi
=
(
ei +

∂q∗

∂ȳi
s̄D∗
)

(ID∗ − PD∗)−1 (51)

from the expression of x∗D∗ . Then we can solve for ∂q∗/∂ȳi and ∂x∗D∗/∂ȳi by substituting (51) into (50). �
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B Capital Adequacy Requirement and Contagion

It is long known in the literature that the capital adequacy requirement has a potentially destabilizing effect.

Under a wide range of market conditions, prudential regulations such as liquidity or capital requirements

enhance the resilience of a financial system against external shocks. However, they may have an unexpected

effect of forcing financial institutions to sell assets at times of market turbulence. Such forced sales press

down the asset price further, resulting in adverse impacts to the capital bases of other institutions when their

assets are marked to market at the new price. With a weaker capital level, more institutions are induced

to sell assets to meet the requirement of the externally imposed regulations. In this way, the combination

of market liquidity and capital adequacy constraint forms another endogenous channel that amplifies the

initial shock.

In this section, we intend to demonstrate that the optimization formulation and the related partition

algorithm provide an appropriate tool to capture analytically this undesirable spillover effect. To fix the

idea, we assume that every solvent bank in the ultimate equilibrium must satisfy the following capital

adequacy constraint

βi + ȳi + s̄iq +
∑
j 6=i xjpji − xi

βi + (ȳi − yi) + (s̄i − si)q +
∑
j 6=i xjpji

≥ R (52)

for some pre-specified ratio R.

The numerator in (52) is the value of the bank’s equity after it makes its repayments and marks the

illiquid assets to the equilibrium price q, whereas the denominator reflects the marked-to-market value of its

assets after the bank sells yi units of liquid assets and si units of illiquid assets. Intuitively, when a bank

receives a negative shock on its equity value, causing a decline in the value of the numerator in (52), the

bank may be forced to liquidate its assets to meet the minimum capital ratio R. The underlying assumption

is that the assets are sold for cash, and that cash does not attract any capital requirement.

Add the constraint (52) to the original optimization formulation (8). The partition algorithm is still

applicable to solve this extended problem. Indeed, the inequality (52) can easily be transformed into an

linear constraint, which will not bring about too much structural change to the problem. More specifically,

it is easy to see that the total amount of liquid assets that the bank needs to sell now is given by yi = ȳi∧d1
i ,

where

d1
i = [`i − (βi +

∑
j

xjpji)]
+ ∨

[
`i − (1−R)(βi + ȳi + s̄iq +

∑
j xjpji)

R

]+

. (53)

After it sells amount yi of liquid assets, the amount of illiquid asset sales should be si = s̄i ∧ (d2
i /q), with

d2
i = [`i − (βi +

∑
j

xjpji)− yi]+ ∨
[
`i − (1−R)(βi + ȳi + s̄iq +

∑
j xjpji)

R
− yi

]+

. (54)

The differences between the original definitions of d1 and d2 and (53) and (54) reflect additional liquidation

needs caused by the capital adequacy requirement. With these changed d1 and d2, we can run the same

partition algorithm to obtain the maximal equilibrium.
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Recall from the optimization theory that for a general optimization problem, an additional constraint

will introduce an additional positive Lagrange multiplier, making the solution more sensitive. Performing

sensitivity analysis on this extended problem, we have

∂q∗

∂βi
=

γ

1− γ
(
|s∗L∗1 |+ |s

∗
L∗2
|+ s̄D∗(ID∗ − PD∗)−1(PD∗,L∗11L∗1 + 1−R

R PD∗,L∗21L∗2 ) + 1−R
R |s̄L∗2 |

) , for i ∈ L∗1,

with

L∗1 =

{
i ∈ N ∗ : s∗i > 0,

βi + ȳi + s̄iq
∗ +

∑
j x
∗
jpji − `i

βi + ȳi − y∗i + (s̄i − s∗i )q∗ +
∑
j x
∗
jpji

> R

}
and

L∗2 =

{
i ∈ N ∗ : s∗i > 0,

βi + ȳi + s̄iq
∗ +

∑
j x
∗
jpji − `i

βi + ȳi − y∗i + (s̄i − s∗i )q∗ +
∑
j x
∗
jpji

= R

}
.

Compared with the result in Theorem 8, several additional terms appear in the denominator, causing this

sensitivity to be larger than the one without the constraint (52).

We attribute this greater sensitivity to a new amplification channel opened by the capital requirement

policy. To see this, like what we did in explaining Theorem 8, consider the impact of a $1 negative shock in

βi to the equilibrium price q∗. This shock causes bank i to sell more, depressing the price by a factor of γ.

As observed in Section 4, the price decline will create a loss to the banks in L∗1 amounting to

γ(|s∗L∗1 |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗11L∗1 ), (55)

and hence they are obliged to sell part of their assets to compensate the loss for the purpose of meeting

the liability repayments. On the top of such sales, the banks in L∗2 are also forced to liquidate their illiquid

holdings. From the numerator part of the ratio, the price decline creates a loss of

γ(s̄L∗2 + s̄D∗(ID∗ − PD∗)−1PD∗,L∗21L∗2 )

on their equity values. Note that the capital ratio constraint is binding for those banks in the equilibrium.

Therefore, it will trigger them to reduce the asset sizes, calculated as the denominator indicates, by an

amount of
1

R
· γ(s̄L∗2 + s̄D∗(ID∗ − PD∗)−1PD∗,L∗21L∗2 )

to maintain the capital ratio at the level R, or equivalently, to liquidate additionally

1−R
R
· γ(s̄L∗2 + s̄D∗(ID∗ − PD∗)−1PD∗,L∗21L∗2 ) + γ|s∗L∗2 | (56)

worth of the illiquid asset. In total, the extra sale amount induced by the price decline in this round will be

the sum of (55) and (56). Continuing the argument through all the rounds of ripple effects, we will reach

down to the expression of ∂q∗/∂βi.
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C Supplement for Numerical Experiments

C.1 Details of Network Reconstruction

To create a network of structure type B, we specify a sparse configuration for Y . The idea is to concentrate

the liability exposures of one bank to one of its neighboring bank, as long as it does not exceed the minimum

of the total amounts of the interbank liabilities and assets of both banks. This requires us to force the

column/row sums of Y to its super- and sub-diagonal entries as much as possible. More formally, we use a

greedy algorithm as follows to define Y : let yii = 0 for all i and

f o r i = 1 to n do
f o r j = 1 to n do

i f (j 6= i) then
yij ← min{li, aj} ;
li ← li − yij and aj ← aj − yij .

The algorithm can be viewed as a variant of the northwest corner rule in the literature of transportation

problem or Monge problem. Under some regularity conditions, people use the rule to couple two random

variables with known marginal distributions so as to produce largest covariance between them; see Chapter

8 of [4] for a more comprehensive discussion. Once the matrix Y is obtained, we substitute it into the

optimization program (28) to find a feasible liability matrix L.

Finally, we proceed to present how we construct a network with a core-periphery structure, which may

resemble the market reality more closely. [8] find strong evidences from the balance sheets data at the end

of 1998 that the German interbank deposit market was organized in two tiers. The lower tier consisted

of saving and cooperative banks, and the upper tier consists of the head institutions of two giro systems

(Landesbanken and cooperative central banks) and commercial banks. The banks in the lower tier had

very few direct linkages with banks in the same tier, whereas the upper tier banks maintained wide lending

relationship with a variety of other banks including banks in other categories.

The information about the types of the counterparty banks in interbank lending transactions is available

in their dataset so that they can identify the upper tier banks from their estimation more precisely. In

contrast, our dataset provides very limited information about the banks identification. We group the 11

banks into 2 classes simply according to the sizes of their interbank EAD: DE019, DE020 and DE021 as the

core and the remaining 8 as the periphery. The above specification of the core and periphery banks surely

is not an accurate reflection of the real market situation. The underlying assumption is that the large EAD

values of the specified core banks should be resulted by their wide bilateral exposures to the other banks.

We also try different specifications in the experiments and find that they do not have qualitative impacts on

our conclusion.

After the classification of core and periphery banks is fixed, we let yij = 0 if banks i and j both belong

to the periphery class and yij = liaj otherwise. The program (28) is invoked again to solve for a feasible

liability matrix L. Tables 7 - 9 show the reconstruction outcomes under all the three structure types.
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DE017 DE018 DE019 DE020 DE021 DE022 DE023 DE024 DE025 DE027 DE028
DE017 0 4857 9971 11306 6753 5413 712 2213 413 2573 2891
DE018 4857 0 10625 12047 7196 5768 758 2358 440 2741 3081
DE019 9971 10625 0 24734 14774 11841 1557 4841 904 5628 6325
DE020 11306 12047 24734 0 16751 13427 1766 5489 1025 6382 7172
DE021 6753 7196 14774 16751 0 8020 1055 3279 612 3812 4284
DE022 5413 5768 11841 13427 8020 0 845 2628 491 3055 3434
DE023 712 758 1557 1766 1055 845 0 346 65 402 452
DE024 2213 2358 4841 5489 3279 2628 346 0 201 1249 1404
DE025 413 440 904 1025 612 491 65 201 0 233 262
DE027 2573 2741 5628 6382 3812 3055 402 1249 233 0 1632
DE028 2891 3081 6325 7172 4284 3434 452 1404 262 1632 0

Table 7: The Liability matrix of the complete network.

DE017 DE018 DE019 DE020 DE021 DE022 DE023 DE024 DE025 DE027 DE028
DE017 0 31855 0 0 0 0 0 0 0 0 15247
DE018 31855 0 18016 0 0 0 0 0 0 0 0
DE019 0 18016 0 73184 0 0 0 0 0 0 0
DE020 0 0 73185 0 26915 0 0 0 0 0 0
DE021 0 0 0 26915 0 39620 0 0 0 0 0
DE022 0 0 0 0 39620 0 7956 7345 0 0 0
DE023 0 0 0 0 0 7956 0 0 0 0 0
DE024 0 0 0 0 0 7345 0 0 4645 12017 0
DE025 0 0 0 0 0 0 0 4645 0 0 0
DE027 0 0 0 0 0 0 0 12017 0 0 15690
DE028 15247 0 0 0 0 0 0 0 0 15690 0

Table 8: The Liability matrix of the ring-link network.

DE017 DE018 DE019 DE020 DE021 DE022 DE023 DE024 DE025 DE027 DE028
DE017 0 0 16673 18340 12089 0 0 0 0 0 0
DE018 0 0 17653 19418 12800 0 0 0 0 0 0
DE019 16673 17653 0 2242 1478 19440 2816 8498 1644 9807 10951
DE020 18340 19418 2242 0 1625 21385 3098 9348 1809 10788 12046
DE021 12089 12800 1478 1625 0 14096 2042 6162 1192 7111 7940
DE022 0 0 19440 21385 14096 0 0 0 0 0 0
DE023 0 0 2816 3098 2042 0 0 0 0 0 0
DE024 0 0 8498 9348 6162 0 0 0 0 0 0
DE025 0 0 1644 1809 1192 0 0 0 0 0 0
DE027 0 0 9807 10788 7111 0 0 0 0 0 0
DE028 0 0 10951 12046 7940 0 0 0 0 0 0

Table 9: The Liability matrix of the core-periphery network.
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C.2 Contagion via Market Liquidity using an Exponential Demand Function

As a robust check, we use an exponential demand function in this appendix to assess the impact of functional

forms of Q to our results. Still assume that the illiquid holding counts for 30% of the total asset of each bank

in the system, i.e., θ = 30%. Let Q(s) = exp(−γs), an exponential demand function that is widely used

in the literature of systemic risk (see, e.g., [1], [3], [5]). We consider three cases in the following examples:

γ = 0.52× 10−13, 1.08× 10−13, and 3.94× 10−13. For comparison purposes, we choose such values that they

can result in comparable price impacts as what we used in Section 5. Note that the total amount of the

illiquid assets owned by the banking system is 1,456,349.7 million euros under the assumption of θ = 30%

(30% of the sum of the first column of Table 4). With γ = 0.52×10−13, the market price of the illiquid asset

will decline to $0.927 from its face value $1 when every bank in the system sells out all its illiquid holdings;

or equivalently, 5 basis points of price change per 10 billion euro asset sales. Similarly, γ = 1.08× 10−13 and

3.94× 10−13 corresponds price changes of 10 and 30 basis points per 10 billion euro asset sales, respectively.

Figure 8 illustrates the number of defaults in equilibrium when different sizes of external shocks are applied

Figure 8: The number of defaults under different shock sizes with a demand function Q(s) = exp(−γs). The
vertical axis is the default number in the repayment equilibrium. The percentages in the horizontal axis are
the relative size of an external shock Y to the total asset of Bank DE017. In the first, second, and third
rows, we specify the illiquid asset ratios as θ = 10%, 30%, and 60%, respectively, while in the first, second,
and third columns, we use the market depth as γ = 0.52× 10−13, 1.08× 10−13, and 3.94× 10−13.

on the external projects of Bank DE017. Comparing it with the central row of Figure 5, we can see that

results are qualitatively similar.
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