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This paper investigates an optimal investment problem in an illiquid market, modeling explicitly the effects

of three key features of market microstructure — market tightness, market depth, and finite market resilience

— on the investor’s decision. By employing a Bachelier process to model the dynamic of the fundamental

value of the asset and assuming CARA-type utility for the investor, we manage to obtain the investor’s

optimal dynamic trading strategy in closed form by solving the resulting high-dimensional singular control

problem. Furthermore, we extend the model to incorporate return-predicting signals and utilize an asymp-

totic expansion approach to derive approximate optimal trading strategies. The theoretical and numerical

results emphasize the vital role of patience. Specifically, rather than dispersing small trades continuously

over time as advocated by the existing literature, our findings suggest that investors should strategically

time their trading activities to align with the aim portfolio in the presence of market resilience. To quantify

this timing decision, we introduce a patience index that enables investors to strike a balance among various

competing goals, including achieving currently optimal risk exposure, incorporating signals about future

predictions, and minimizing trading costs, by leveraging market resilience.

Key words : Optimal investment; Market tightness; Market resilience; Singular control; Asymptotic

expansion

1. Introduction

Optimal investment is of fundamental interest in financial economics. The classical paradigm, pio-

neered by Markowitz (1952), Sharpe (1964), and Merton (1969, 1971), emphasizes that investors

must carefully balance between expected returns and risks when making investment choices. How-

ever, achieving such a balance in an optimal way becomes highly challenging in a dynamic market

environment. On one hand, the literature documents well that expected returns of assets are pre-

dictable from various time-varying economic factors; see, e.g., Fama and French (1988), Ferson

and Harvey (1993), Barberis (2000), and Koijen et al. (2009). To respond to changes in the return

timely, active investors and fund managers need to build up accurate signals to predict security
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returns and trade from their predictions for profits. Such practices necessitate frequent rebalancing

of investment portfolios. On the other hand, markets can only provide limited liquidity at any

given moment. Engaging in frequent and impatient trading incurs significant transaction costs,

both directly from the bid-ask spread and indirectly from price impacts. Yet, the phenomenon of

market resilience — the market’s ability to replenish after trades — indicates that investors can

avoid excessive trading costs if they can better utilize this dynamic aspect of market liquidity to

defer trading appropriately into the future.

The benefit of patient trading is exemplified by the 2008 arbitrage crash in the US convertible

bond market. The empirical study of Lewis et al. (2023) reveals that those convertible bond arbi-

trage hedge funds that were compelled to sell amid the looming market meltdown suffered from

severe price discounts. In contrast, the traders who exercised patience or had alternative resources

to postpone immediate selling mitigated effectively the risk of transacting at distressed fire-sale

prices, as they could avoid the most unfavorable period of market liquidity. While this scenario rep-

resents an extreme case during a crisis, it underscores the importance of investors’ choices between

the current risk, expected return, immediate liquidity costs, and future transaction opportunities,

in light of the evolution of market liquidity.

Motivated by the considerations outlined above, we investigate in this paper how the optimal

trading strategies depend on the dynamics of market liquidity by proposing an optimal investment

framework featuring both endogenously varying liquidity dynamics and return predictability. To

the best of our knowledge, this is the first study to examine the interaction between these two

crucial driving forces that underlie investors’ decision-making. More precisely, (i) we take a stylized

model to capture the three salient features of liquidity dynamics, as proposed by Kyle (1985):

market tightness, finite market depth, and finite market resilience. In this model, trading activities

widen the spread, leading to an inverse relationship between liquidity cost and market depth.

Additionally, resilience gradually reduces costs over time as the market replenishes orders. As a

result, the market liquidity is endogenous to the investor’s trading activities. (ii) We assume that

the investor constructs a signal process to predict asset returns and the predicting factor exhibits a

mean-reverting pattern. Under this setup, the signal decays over time, reflecting the market reality

that high expected returns are unlikely to persist for long once they emerge. Using mean-reverting

processes to model the return predicting factor has been widely used in the optimal investment

literature; see Kim and Omberg (1996), Campbell and Viceira (1999), Wachter (2002), Brokmann

et al. (2023), Muhle-Karbe et al. (2023a), among others.

Our paper makes contributions from both the methodological and financial perspectives. Incor-

porating the above complex features of market liquidity and return predictability poses a method-

ological challenge because it leads to a singular control problem of high dimensionality. Nonetheless,
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we successfully achieved a high level of tractability in this paper. Our approach tackles the problem

in two steps. We first consider an optimal investment problem with constant returns as the base

case. It corresponds to a 5-dimensional model. The presence of bid-ask spreads introduces to the

optimal strategy a no-trade region, where the investor should refrain from trading unless their

risky asset position deviates significantly from the optimal return-risk trade-off to avoid exces-

sive transaction costs. Although these results share a similar structure as those in the traditional

literature of proportional transaction costs (e.g., Shreve and Soner (1994), Liu (2004), Dai et al.

(2009), and Chen et al. (2022)), the new feature of dynamic market resilience distinguishes our

model significantly from these works. In particular, the bid-ask spread in our model changes over

time due to the resilience, resulting in time-dependent trading boundaries for the no-trade region.

We derive closed-form solutions to the optimal strategy in this case by reducing the determination

of trading boundaries into solving a system of ordinary differential equations (ODEs). In contrast,

the previous works can be regarded as investment problems under a constant bid-ask spread.

Building upon the insights gained from the base case solutions, we then propose as the second

step an asymptotic expansion method to derive the approximate optimal strategy in closed form

for the general case with a time-varying return-predicting signal. This problem presents an even

greater challenge as it involves 6 dimensions. The approximate strategy obtained through this

approach offers a high degree of interpretability, as shown below in the discussion on the financial

contribution of our paper.

In terms of financial insights, our paper extends the general principle of “aim in front of target”

proposed by Gârleanu and Pedersen (2013, 2016) to markets in which both tightness and resilience

are present. In light of time-varying return-predicting signals and costly portfolio adjustments

in illiquid markets, it is apparently suboptimal to invest myopically by trading all the way to

the portfolio — referred to as the current Markowitz portfolio in their papers — that captures

the best risk-return trade-off according to the current prediction. Their principle emphasizes that

the optimal strategy, taking into account transaction costs, involves gradually incorporating the

expected optimal Markowitz portfolio in the future toward which the current portfolio is moving,

by smoothing out trading activities at a certain rate.

Note that market tightness, a crucial characteristic of market liquidity, is not explicitly modeled

by Gârleanu and Pedersen (2013, 2016). However, incorporating this aspect yields fundamentally

different implications compared to their works. Round-trip trades through buying and immediately

selling are prohibitively costly if there exists a positive bid-ask spread1. Consequently, our model

suggests that the investor should opt to halt trading, instead of dispersing small trades over time,

when faced with adverse liquidity conditions in the market or weak predicting signals; leveraging

3

Electronic copy available at: https://ssrn.com/abstract=4671774



market resilience to replenish liquidity, the investor may exercise patience to await future trading

opportunities.

Given the importance of trade timing as a crucial element of the optimal investment strategy

when considering all three Kyle’s illiquidity proxies, we develop a patience index from our explicit

solutions to quantitatively determine the time to initiate trading activities. The index synergizes

analytically the impacts of various factors that drive the investor’s decision, including the market

liquidity, investment time horizon, the investor’s risk attitude, and the asset’s riskiness. Consistent

with our intuition, we find that, ceteris paribus, investors should exhibit greater patience in trading

when they are in a less liquid market (particularly for our model, the market is shallower or less

resilient), when dealing with a less risky asset, or when they are less risk averse.

As noted before, one advantage of working with the asymptotic expansion-based approach is

that it offers financially interpretable strategies. Through it, we demonstrate how the investor uses

the patience index to time trading to stay close to an aim portfolio, which is a weighted average

of the current myopic portfolio and the optimal portfolio based on the long-run expected return,

to achieve optimal investment performance. This is in line with the principle of “aim in front of

target”. However, the works of Gârleanu and Pedersen (2013, 2016) take a reduced form to model

transaction costs. In comparison with their results, the weights in the construction of aim portfolios

in our paper shed more insights on how the granular structure of the market liquidity, particularly

the aforementioned three aspects of illiquidity, affect the investor’s decision.

1.1. Literature Review

Besides the literature discussed above, our work is also related to the existing literature on optimal

investment, return-predicting signals, and optimal execution.

1.1.1. Optimal investment in the presence of price impact. There has been a large

body of literature incorporating price impacts into the optimal investment model. The large body

of the papers (e.g. Bank et al. (2017), Dai et al. (2023), Guasoni and Weber (2020, 2018), Muhle-

Karbe et al. (2023a,b)) use the temporary (or instantaneous) price impact model, which assumes

that while trading a large amount leads to extra cost due to the impact on the execution price,

such impact will vanish instantly after the trading. However, existing empirical studies (e.g. Biais

et al. (1995), Degryse et al. (2005), Kempf et al. (2009)) document the effect of market resilience

and suggest that resilience is a market aspect independent of the spread. To study the effect of

resilience, several papers use a reduced-form transient price impact model without the spread (e.g.

Bank et al. (2015), Ekren and Muhle-Karbe (2019)).

Our base case model is closest to the transient price impact model that takes both the market

resilience and the bid-ask spread into consideration (see Bank and Voß (2019), Roch and Soner
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(2013), Soner and Vukelja (2016)). While Bank and Voß (2019) also study an optimal investment

problem, their limit order book model differs from ours fundamentally, in that the best bid and ask

prices revert to each other rather than to the fundamental price. Therefore, the resilience in their

model is only embodied in the reduction of bid-ask spread but not in the reversion of midprice

to fundamental price. In contrast, the resilience in our model is embodied in both. Furthermore,

we allow for asymmetric market depth and resilience on bid and ask sides, while they assume

symmetry. Our model for the limit order book is closer to the one considered in Soner and Vukelja

(2016) (see also Roch and Soner (2013)), which focuses on the theoretical viscosity characterization.

In contrast, we focus more on the analysis of the economic implication. Horst and Naujokat (2014)

studied a stochastic target following problem under a similar limit order book setup. In addition to

the base case model, we further study the general model to explore the interaction between market

resilience and the return-predicting signal.

1.1.2. Return-predicting factors. Equity return predictability is widely acknowledged in

literature; see Fama and French (1988), Ferson and Harvey (1993), Johannes et al. (2014), Koijen

et al. (2009), and the references therein. In practice, there are many predictive signals on return

used for trading. For example, at the higher frequency trading level, one can utilize indicators such

as high-frequency trader demand (e.g. Brogaard et al. (2014)) or trader sentiment (e.g. Sun et al.

(2016)) to predict the return over the next short period. At a lower frequency level, one can also

utilize fundamental or macro economics factors to predict the return such as the dividend yield

(e.g. Barberis (2000)).

The role of return-predicting factor in the optimal investment setting has been studied in liter-

ature; see Kim and Omberg (1996), Campbell and Viceira (1999), Wachter (2002), Gârleanu and

Pedersen (2016), Brokmann et al. (2023), Muhle-Karbe et al. (2023a), among others. Different

from these papers, our objective is to study the interaction between the return-predicting factor

and the dynamic market liquidity and its impact on investors’ patience.

1.1.3. Optimal execution. Our market liquidity model described in Section 3.1 is motivated

by the models widely used in the optimal execution literature. In contrast to the optimal investment

problem we consider, the optimal execution problem focuses on minimizing the trading cost in

the process of achieving a target position (e.g. liquidating the starting stock position) within a

given amount of time. Bertsimas and Lo (1998) and Almgren and Chriss (2001) study the optimal

execution problem under both permanent and temporary price impact with the help of static

exogenous price impact functions. Based on block-shaped limit order books, Obizhaeva and Wang

(2013) studied an optimal execution problem with endogenous and dynamic liquidity featuring

transient price impact. Later papers generalized this work to include general limit order book
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shapes (Alfonsi et al. (2008)), multiple risky assets (Tsoukalas et al. (2019)), and asset return

predictability (Haugh and Wang (2014)).

The rest of this paper is organized as follows. In Section 2, we present a dynamic model of market

liquidity based on the celebrated setup used in Obizhaeva and Wang (2013) and a corresponding

utility maximization problem. In Section 3, we develop optimal investment strategies in the base

case with constant returns and the general case with return predictability. Section 4 contains

numerical illustrations of our main theoretical results. Section 5 concludes the paper. All technical

proofs are deferred to E-Companion.

2. Model Setup

In this section, we present an optimal investment model that incorporates the three important

aspects of market liquidity as noted in the Introduction. Specifically, we describe a simple model

for the dynamic market liquidity in Section 2.1. Based on this model, we formulate the investor’s

optimal investment problem in Section 2.2.

2.1. A Simple Model of Market Liquidity

Consider an investor equipped with a utility function U(·) :R→R which is strictly concave, increas-

ing, and bounded from above. Assume that the planning horizon is given by [0, T ]. There are two

types of assets available in the market, riskless cash and one risky “stock”. Initially endowed with

X0− shares of stock and Y0− dollars of cash, the investor has the objective of maximizing the

expected utility over the wealth at T by trading these two assets. Assume that the fundamental

price St of the stock follows the stochastic process

dSt = µdt+σdWt, t≥ 0, (1)

where µ and σ are both constants, representing the expected return and volatility, respectively, and

{Wt, t≥ 0} is a standard Brownian motion. In Section 3.2, we turn to investigate how the investor

should respond to a time-varying return-predicting factor, characterized as a stochastic process µt

in place of the constant µ in (1), in an illiquid market.

The primary interest of the paper is to characterize the impacts of three important aspects of the

market liquidity — tightness, depth, and resilience — on the investor’s trading decision. For ease

of exposition, we follow Obizhaeva and Wang (2013) to assume that the stock trading is operated

in a market organized through a limit order book (LOB) as shown in Figure 1. The advantage

of working with this LOB based model is that it provides us with a parsimonious way to capture

the aforementioned three aspects of market liquidity; refer to, e.g., Parlour and Seppi (2008) and

Gould et al. (2013) for surveys on the economic and statistical issues of LOBs and the literature

reviewed in Section 1.1 for other applications of similar LOB models.
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(a) The structure of LOB right before a chuck of buy

market orders hits the market at time t.

(b) At time t, a market buy order enters the market. It

is immediately executed and the execution pushes the

best ask price from Da
t− up to Da

t .

(c) At time s > t, an amount ρbD
b
sds of new buy orders

come into the bid side of the book at the best bid price

Bs within this moment. Meanwhile, an amount ρaD
a
sds

of new sell orders are submitted at the best ask price

As on the ask side of the LOB.

Figure 1 The block-shaped limit order book model

The market participants trade with each other based on two basic types of orders: limit orders

and market orders. Limit orders specify the worst-case (or limit) price that traders intend to commit

with to buy or sell a certain amount of the asset. One submitted buy (resp. sell) limit order will

be executed if its limit price is higher (resp. lower) than the lowest (resp. highest) price of the sell

(resp. buy) orders perching on the opposite side of the LOB. All unfulfilled orders will be recorded

in the LOB as the available inventory in the market. In contrast, market buy (resp. sell) orders are

immediately executed against the existing supply or demand in LOB at the current best ask (resp.

bid) prices. Since we are interested in the price impacts generated by the investor, we assume that

she only uses market orders to trade.

Panel (a) in Figure 1 displays three basic components of the LOB. First, the fundamental price

St sits in between the unfulfilled buy and sell orders. Second, the two blocks of limit bid and ask

orders provide liquidity to the market. The densities of limit orders in both blocks are given by two

functions qa(p; t) and qb(p; t), respectively. In other words, qa(p; t)dp (resp. qb(p; t)dp) shares of sell

(resp. buy) limit orders are placed in the price interval [p, p+dp) for any $p higher (resp. lower)

than the best ask (resp. bid) price at time t, waiting for being lifted off by the market orders in the

future. For tractability, we assume qa(p; t) (resp. qb(p; t)) to be time-invariant and characterized by
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two step functions. More accurately, we have

qa(p; t) =

{
0, p <At;
qa, p≥At,

(
resp. qb(p; t) =

{
0, p >Bt;
qb, p≤Bt,

)
(2)

for two constants qa and qb, where At and Bt are the respective best ask and bid prices at time

t. Third, let Da
t and Db

t be the deviations of the current ask price At and bid price Bt from the

fundamental price St, respectively; that is,

Da
t =At −St (resp. Db

t = St −Bt).

We hereafter refer to them as the ask (resp. bid) spread. The sum of Da
t +Db

t constitutes the bid-

ask spread at time t, reflecting the current tightness of the market, i.e., the cost of an immediate

round-trip trade.

The block-shaped LOB densities in (2) imply linear price impacts. To illustrate this, let us

consider the case of buy market orders. If a buy market order of size x (x > 0) is submitted at

time t, the trade will be executed against the pending orders on the ask side of LOB. Denote Da
t−

and At− to be the ask spread and best ask price prior to the trade. Then, all the limit orders

between the prices At− = St +Da
t− and At = St +Da

t will be lifted off by this market order, where

the post-trade ask spread Da
t satisfies ∫ St+Da

t

St+Da
t−

qadp= x; (3)

see Panel (b) of Figure 1 for an illustration. Equation (3) shows that a market buy order of size x

pushes Da
t− up to

Da
t =Da

t− +
x

qa
. (4)

In this process, the total execution cost for this trade amounts to∫ St+Da
t

St+Da
t−

pqadp= (St +Da
t−)x+

x2

2qa
=At−x+

x2

2qa
. (5)

According to (5), the trader has to pay additionally x2/(2qa) on top of the best price At− observed

right prior to the moment of order submission. Similarly, a sell market order of size x (x < 0)

submitted at time t results in the total sale proceeds of

Bt−x−
x2

2qb
, (6)

which is x2/(2qb) less than the proceeds if the entire order could be sold at the best bid price Bt−.

Dividing both (5) and (6) by the transaction size |x|, we can see that the average additional

buying (resp. selling) cost for each transacted share equals |x|/(2qa) (resp. |x|/(2qb)). This impact
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increases linearly with respect to the trade size |x|, but decreases with the limit order density qa

(resp. qb). In this sense, we may regard qa (resp. qb) as the measure of the market depth, the second

aspect of market liquidity, on the ask (resp. bid) side of this LOB. The literature has accumulated

adequate empirical evidence that this kind of impact in the real market should be concave in the

trading sizes; see, e.g., Bouchaud et al. (2009). As a special case of concave impact functions,

the linear form is resulted in by the block-shaped assumption that we use to maintain the model

tractability. In addition, this model allows the slopes of the linear impacts to be different across

the bid and ask blocks. A study in Blais and Protter (2010) shows that such asymmetric linear

functions fit the supply curve of less liquid stocks well.

The third component of this model is its finite resilience. After a trade, the enlarged ask (resp.

bid) spread begets investors to submit new sell (resp. buy) orders at a lower (resp. higher) price.

Thus, the liquidity consumed by the previous trades will be replenished. In practice, such replen-

ishment is accomplished gradually. See, for instance, Biais et al. (1995), Hamao and Hasbrouck

(1995), Degryse et al. (2005), Large (2007), and Lo and Hall (2015) for the empirical studies on

market resilience.

To capture this dynamic aspect of market liquidity, we assume that the limit sell and buy orders

in our model are replenished at the rates of ρa > 0 and ρb > 0, respectively. That means the ask

(resp. bid) spread gets improved during the period of [t, t+dt) by

dDa
t =−ρaD

a
t dt (resp. dDb

t =−ρbD
b
tdt) (7)

in the absence of trading at time t; see Panel (c) of Figure 1. Under (7), the larger the current

ask/bid spread, the more aggressively liquidity providers step in to post new orders to offer liquidity

at better prices. Combining (4) and (7), we can see that the liquidity dynamic in this market is

endogenous to the investor’s trading activities. In our setup, both the best bid price Bt and ask

price At (and hence the mid price) revert to the fundamental price. This is in stark contrast to

that of Bank and Voß (2019) where Bt and At revert to each other and the mid price does not

necessarily revert to the fundamental price.

2.2. Trading Activities and Optimal Investment Problem

Let the nondecreasing processes Lt and Mt track the cumulative amounts of purchase and sale of

the stock by the investor up to time t, respectively. Hence, the instantaneous increments dLt and

dMt indicate the buy and sell amounts at time t, respectively, which are up to the decision of the

investor. Under the trading strategy {(dLt,dMt), t ∈ [0, T ]}, the stock holding of the trader at a

given moment t will change according to the dynamic

dXt =dLt −dMt. (8)
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Remark 2.1 Mathematically, we have more accurate descriptions on dLt and dMt. By the cele-

brated Lebesgue decomposition of increasing functions (see, e.g., Chapter 3 in Stein and Shakarchi

(2009)), the process Lt admits the following representation:

Lt =Lc
t +

∑
0≤s≤t

∆Ls =

∫ t

0

lsds+ ξLt +
∑

0≤s≤t

∆Ls.

Here Lc
t is continuous in t and

∑
0≤s≤t∆Ls is the pure jump part of process Lt with countably

many jumps ∆Ls =Ls−Ls− > 0. Furthermore, Lc
t consists of two components. The first one

∫ t

0
lsds

is absolutely continuous with respect to the Lebesgue measure, where lsds is the number of shares

to be purchased during the time interval [s, s + ds). The second one ξL is singular with respect

to the Lebesgue measure. We can show that the optimal strategy in our base case in Section 3.1

involves only the absolutely continuous parts (and the jump parts ∆Lt and ∆Mt), representing

smooth trading at a finite speed. The singular part emerges in Section 3.2 when we incorporate

trading signals, which involves the local time type trading at the boundaries of the no-trade region.

Correspondingly, there are two parts of costs associated with the above trading strategy. If the

trading occurs continuously according to the schedule dLc
t , then such trading can be fulfilled by

the limit orders sitting on the best ask price, leading to a transaction cost of AtdL
c
t . On the other

hand, if the investor chooses to submit a discrete trade of size ∆Lt at time t, that will incur a cost

amounting to (
St +Da

t− +
∆Lt

2qa

)
∆Lt =At−∆Lt +

1

2qa
(∆Lt)

2

as implied by (5). A similar analysis applies for the selling strategy dMt. Assume the trader is

self-financed and transacts on the basis of her cash account. In addition, for simplicity, assume

that the risk free interest rate is zero. Putting everything together, we know that the value change

in the balance of the trader’s cash account in the infinitesimal interval [t, t+dt) is given by

dYt =−AtdL
c
t −

[
At−∆Lt +

1

2qa
(∆Lt)

2

]
︸ ︷︷ ︸

proceeds associated with stock purchase

+BtdM
c
t +

[
Bt−∆Mt −

1

2qb
(∆Mt)

2

]
︸ ︷︷ ︸

proceeds associated with stock sale

. (9)

As noted in Section 2.1, trading with market orders will impact the evolution of the ask and bid

spreads Da
t and Db

t . In the presence of both the price impact (cf. (4)) and the market resilience

(cf. (7)), we know that Da
t (resp. Db

t ) evolves according to

dDa
t =−ρaD

a
t−dt+

1

qa
dLt

(
resp. dDb

t =−ρbD
b
t−dt+

1

qb
dMt

)
. (10)
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At time T , the terminal wealth owned by the trader is STXT + YT , where we assume that the

trader’s stock holding is evaluated at the fundamental price ST in the end. The trader needs to

solve the following optimization problem:

max
dLt,dMt:t∈[0,T ]

E
[
U(STXT +YT )|S0−,X0−, Y0−,D

a
0−,D

b
0−
]

(11)

subject to the state dynamics (1), (8), (9), and (10), where the expectation is calculated at time 0

conditional on S0− = s, X0− = x, Y0− = y, Da
0− = da, and Db

0− = db.

3. Main Results

As noted in the Introduction, incorporating liquidity impacts into the investor’s trading decision

leads to challenging high dimensional control problems. We manage to obtain explicit solutions.

This section presents the main results of the paper. Specifically, Section 3.1 analyzes a tractable

base case in which the stock return remains constant over time. Using this result as a benchmark

and the starting point, we proceed in Section 3.2 to investigate how to trade on the return signal

in the presence of limited liquidity through an asymptotic expansion method. A patience index,

which encodes the impacts of various market illiquidity factors on the investor’s trading timing, is

highlighted in Section 3.1.1.

3.1. Base Case with Exponential Utility

Having detailed the LOB model and the related optimal investment problem in Section 2, we now

turn to derive its solution along with the optimal policies. To this end, define

V (t, s, x, y, da, db) = max
dLu,dMu:u∈[t,T ]

E
[
U(STXT +YT )|St− = s,Xt− = x,Yt− = y,Da

t− = da,D
b
t− = db

]
.

In other words, V presents the value function to the problem of (11) but with a sub-time horizon

[t, T ]. Using the Dynamic Programming Principle, we can show that V satisfies the following

variational inequality: for any t < T ,

max
{
LV︸︷︷︸

No-trade

,
1

qa

∂V

∂da
+

∂V

∂x
− (s+ da)

∂V

∂y︸ ︷︷ ︸
Buy

,
1

qb

∂V

∂db
− ∂V

∂x
+(s− db)

∂V

∂y︸ ︷︷ ︸
Sell

}
= 0, (12)

subject to the terminal condition V (T, s,x, y, da, db) =U(xs+ y), where the differential operator L

is defined as

LV =
∂V

∂t
+µ

∂V

∂s
+

1

2
σ2∂

2V

∂s2
− ρada

∂V

∂da
− ρbdb

∂V

∂db
. (13)

We defer the proof of (12) to E-Companion EC.1. However, the intuition of this variational

inequality is clear. Consider any given time t < T . Assume that the fundamental price is St = s,
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and the best ask and bid prices are St +Da
t− = s+ da and St −Db

t− = s− db, respectively. The

investor has three options at this moment. As the first option, she can choose to buy the stock. If

she decides to buy δx (an infinitesimal amount) shares, she needs to pay at the best ask price for

this purchase out from her cash holdings. That will result in a value change for V amounting to

δx · ∂V
∂x︸ ︷︷ ︸

value change caused
by stock position

− (s+ da)δx ·
∂V

∂y︸ ︷︷ ︸
value change caused
by cash position

.

In addition, as noted in (4), the trade impacts Da
t as well, changing it to da + δx/qa. Hence, the

value change in V caused by this price impact will be

δx

qa
· ∂V
∂da

In total, the decision of purchasing δx shares of the stock will lead to an aggregate effect on V by

δx ·
(

1

qa

∂V

∂da
+

∂V

∂x
− (s+ da)

∂V

∂y

)
.

The second option is that the investor can choose to sell δx shares of the stock. Following a similar

derivation as above, we know that this sale will generate a value change of V given by

δx ·
(

1

qb

∂V

∂db
− ∂V

∂x
+(s− db)

∂V

∂y

)
.

The third option available for the trader is to remain inactive in the trading during [t, t+dt).

Recall that three market variables, St, D
a
t , and Db

t evolve according to (1) and (7). The term of

LV captures the expected changes in V due to the evolution of these variables. In particular, the

first three terms in (13) represent the marginal effect of the change in the fundamental price of S

on V , while the last two terms summarize the expected changes in V due to the changes of Da
t and

Db
t , respectively. The trader maximizes her utility over the aforementioned three options. That is

why we have the variational inequality characterized in (12).

The problem contains one temporal and five state variables. We find that it is tractable under

some specific setups, particularly if the investor is equipped with a CARA utility. Suppose that

the investor’s preference is prescribed by U(x) = 1 − exp(−γx) with the constant absolute risk

aversion parameter γ > 0. In a frictionless market (i.e., when the market depth qa, qb →+∞, the

resilience ρa, ρb →+∞, and the bid and ask spreads da = db = 0 in our model), it is well-known in

the literature (see, e.g. Bank and Voß (2019)) that the following buy-and-hold strategy is optimal:

dLNF
t =

(
µ

σ2γ
−Xt

)+

and dMNF
t =

(
Xt −

µ

σ2γ

)+

.
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In words, absent any market frictions, the trader should immediately buy (or sell) the discrepancy,

if any, between µ/(σ2γ) and the asset holding that she has at time t. Note that µ/(σ2γ) is the

solution to the celebrated Merton’s investment problem for a trader with the exponential utility; see

Merton (1969, 1971). It captures the impact of the asset fundamentals on the trader’s investment

by striking optimally the balance between the asset excess return µ and its riskiness σ. We will

refer to µ/(σ2γ) as the Merton portfolio hereafter.

However, such a myopic strategy is too aggressive in the presence of limited liquidity because it

may cause excessive impact costs. As we are about to show, there exists a subregion in the state

space under the optimal strategy of the problem (11) such that the trader should remain inactive

whenever the conditions of the subregion are met. Let S denote the state space of the problem:

S = {(x,da, db) : x∈R, da ≥ 0, db ≥ 0} ⊂R3.

Under the assumption of CARA utility, we can show that the investor’s optimal strategy does not

depend on the stock fundamental value s and the cash position y. That is why a 3-dim state space

is adequate. Let ha(t) and hb(t) be two increasing and strictly positive functions defined in (EC.8),

which do not depend on state variables. We have

Theorem 3.1 For any given time t∈ [0, T ), the state space S can be divided into three subregions

as follows:

Buy region: BRt =

{
(x,da, db)∈ S : x− µ

σ2γ
≤−ha(t)da

}
, (14)

Sell region: SRt =

{
(x,da, db)∈ S : x− µ

σ2γ
≥ hb(t)db

}
, (15)

No-trade region: NRt = S\(BRt ∪SRt). (16)

We can define an optimal strategy {(dL∗
t ,dM

∗
t ) : t∈ [0, T ]} to solve the original problem (11).

Note that BRt ∩SRt = ∅. Correspondingly, the boundaries of both trading regions are given by

∂BRt =

{
(x,da, db)∈ S : x− µ

σ2γ
=−ha(t)da

}
and

∂SRt =

{
(x,da, db)∈ S : x− µ

σ2γ
= hb(t)db

}
,

respectively. Figure 2 displays the above three subregions in the (da|db, x− µ/(σ2γ))-plane for a

given t. Here, we use da|db to denote a system of double horizontal axes. In other words, starting

from the origin, the horizontal db-axis points to the right and the da-axis to the left. The vertical

13
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Figure 2 The trading and no-trade regions. We use a plane in the figure to represent the state space S. The

vertical axis shows X −µ/(σ2γ), the difference between the current position and the Merton portfolio. The right

and left parts of the horizon axis represent db and da, respectively. The blue and red shaded regions correspond to

the sell region (SR) and buy region (BR), respectively. The sell/buy boundaries will rotate in the direction of

arrows over time.

axis shows the excess amount of the stock holding over the Merton portfolio at t. Any (x,da, db)∈ S

can then be represented by a pair of points in such a plane. For instance, the pair of two points,

denoted by A in both the first and second quadrant of the plane in Figure 2, represents an investor

whose stock position at time t is slightly larger than the Merton portfolio (i.e., positive x−µ/(σ2γ))

in a market with the corresponding dA and dB as the bid and ask spreads.

By the expression of boundary ∂SRt, we can use a straight line in the first quadrant of the above

(da|db, x−µ/(σ2γ))-plane to depict it. The slope of this straight line is given by hb(t). The sell

region SRt at time t corresponds to the part above the sell boundary ∂SRt; refer to the blue region

and the corresponding dashed line in Figure 2 for illustration. The gray region underneath the sell

boundary in the first quadrant corresponds to one part of the no-trade region NRt. Symmetrically,

we have the red shaded region and the bordering dashed line in the third quadrant of Figure

2 to represent the buy region BRt and its boundary ∂BRt, respectively. The slope of ∂BRt is

determined by ha(t). The gray region above the red buy region in the third quadrant constitutes

the other part of NRt.
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With the help of the three subregions, we can explicitly specify the optimal trading strategy for

the investor. Define, at each time t ∈ [0, T ], the following feedback policy (dL∗
t ,dM

∗
t ) prescribing

to each state (x,da, db) ∈ S the action the investor needs to take. We establish the optimality of

the above strategy rigorously in EC.2.

- Inactive: if (x,da, db) ∈NRt, dL
∗
t = dM∗

t = 0. Point A in Figure 2 exemplifies this case. The

investor currently owns more stocks than the Merton portfolio. However, she also faces a relative

high bid spread db, i.e.,

x−µ/(σ2γ)

hb(t)
<db.

As a result, she should wait for trading opportunities in the future. Point A horizontally moves

towards the vertical axis (e.g. in the direction of A′) as both db and da revert to 0 over time.

- Gradual buying: if (x,da, db) ∈ ∂BRt, dL
∗
t = l∗tdt and dM∗

t = 0 with the rate of purchase

given by

l∗t =
ρaha(t)−h′

a(t)

ha(t)(1+ha(t)/qa)

(
µ

σ2γ
−x

)
. (17)

Point B in Figure 2 stands for this case. According to (10), this gradual buying activity will

generate impacts on the ask spread, leading its change rate in [t, t+dt] to be(
−ρaD

a
t +

l∗t
qa

)
dt.

- Lump-sum buying: if (x,da, db) ∈ BRt\∂BRt, i.e., the state is in the interior of the buy

region (see Point C in Figure 2 for example). In this case, the number of shares x of the trader is far

less than the benchmark Merton portfolio. Thus the trader should immediately place a lump-sum

purchase order dL∗
t =∆L∗

t with

∆L∗
t =

1

1+ha(t)/qa

(
µ

σ2γ
−x

)
− ha(t)da

1+ha(t)/qa
. (18)

This trading activity generates instantaneously two folds of impacts. First, it reduces the distance

of the trader’s stock holding to the Merton portfolio. Second, it enlarges the ask spread from da

to da +∆L∗/qa. We can show that the new location of the trader’s portfolio immediately after

this purchase in the (da|db, x−µ/(σ2γ))-plane must be on the boundary ∂BRt. In Figure 2, we use

Point C ′ to illustrate the two impacts. Note that the horizontal coordinate of C ′ is larger than that

of C, indicating the price impact caused by this trade in terms of the ask spread da. Meanwhile,

the absolute value of x− µ/(σ2γ) of Point C ′ is lower than that of C because the trade partially

corrects the excess part of the current stock holding compared with the Merton portfolio.
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- Gradual selling: if (x,da, db) ∈ ∂SRt, dL
∗
t = 0 and dM∗

t =m∗
tdt with the rate of sale given

by

m∗
t =

ρbhb(t)−h′
b(t)

hb(t)(1+hb(t)/qb)

(
x− µ

σ2γ

)
.

- Lump-sum selling: if (x,da, db) ∈ SRt\∂SRt, dL
∗
t = 0 and dM∗

t =∆M∗
t with the lump-sum

sale amount equal to

∆M∗
t =

1

1+hb(t)/qb

(
x− µ

σ2γ

)
− hb(t)db

1+hb(t)/qb
. (19)

3.1.1. Patience Index As illustrated in (14)-(16), the investor under the optimal policy

should tolerate deviations in her stock holdings from the Merton portfolio to some extents because

of the liquidity concern. Namely, given the state (Xt,D
a
t ,D

b
t ), she will not start trading unless

−ha(t)D
a
t <Xt −

µ

σ2γ
< hb(t)D

b
t (20)

is breached. In this sense, we refer to hb(t)D
b
t and −ha(t)D

a
t as indices of the patience to buy and to

sell for the investor, respectively. As the first implication, these indices suggest that investors should

be more patient when the current bid or ask spread is large: higher Da
t or Db

t , more difficult the

inequality (20) will be violated when the investor starts from the no-trade region. This prediction

is consistent with the empirical findings in the futures market (see Wang and Yau (2000)) and

options market (see George and Longstaff (1993)) that the trading volume is negatively correlated

to the bid-ask spread.

Further investigating these two indices, we can see that there are two opposing considerations

at play in determining the investor’s timing choice. Figure 2 can help us better understand the

underlying intuition. On one hand, the market resilience leads to a decrease in both da and db. The

expectation of declining transaction costs over time will incentivize the investor to defer trades

into the future. For instance, consider Point A in Figure 2. It is initially in the no-trade region

at time t. As time goes by, da decreases, causing A to move horizontally in the direction of A′

towards the trading boundary ∂SR. On the other hand, since this is a finite-horizon problem, the

benefits of deferring trading relative to the associated impact costs diminish as time approaches T .

This effect, referred to as the time effect later, is captured by the monotonically increasing nature

of both hb(t) and ha(t) with respect to t. When t increases, both boundaries ∂SR and ∂BR will

rotate counterclockwise, resulting in dwindled trading regions (as depicted by the movement from

dashed lines to dotted lines in Figure 2).

Calculating the time derivatives of both patience indices casts more insights on how they char-

acterize the interplay of the aforementioned two opposing effects. Taking the patience to sell as an

example, if there is no trade at t,

d

dt
(hb(t)D

b
t ) =

(
h′
b(t)

hb(t)
− ρb

)
hb(t)D

b
t . (21)
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Note that ρb is the rate of reversion in the bid spread, reflecting how fast the transaction cost

will be reduced because of the market resilience. In contrast, the term h′
b(t)/hb(t) characterizes

the rotation rate of boundary ∂SR. According to (21), the relative strength of the two quantities

determines the change of the patience to buy over time.

In general, we have, for i= a, b,

sgn

(
d

dt
(hi(t)D

i
t)

)
=


−1 if t∈

[
0, T − 1

ρi

)
;

+1 if t∈
[
T − 1

ρi
, T

]
,

(22)

where sgn(·) is the signum function that returns the sign of a real number. Eq. (22) yields two

implications. First, when the remaining trading horizon is long, namely, when T − t > 1/ρi, the

patience hi(t)D
i
t decreases over time according to the negative sign of its derivative. In this case,

the market resilience is a dominant factor relative to the time effect captured by h′
i(t)/hi(t). If the

trader posits in the no-trade region now because of a high bid or ask spread, then she will choose

to wait until the moment that the resilience brings hi(t)D
i
t down to a level equal to x−µ/(γσ2) to

start trading. Second, when T − t≤ 1/ρi, the positive derivative of hi(t)D
i
t implies that the patience

increases over time in this case. This is because the impacts caused by trading outweigh the benefit

of portfolio rebalancing for a short investment horizon. As a result, when the trader starts with a

portfolio in the no-trade region at t ∈ [T − 1
ρi
, T ], she will not trade at all in the remaining time

horizon.

Figure 3 shows the comparative statics of the derivative of log-patience d
dt
log(hi(t)D

i
t) with

respect to the other liquidity related parameters, the investor’s risk aversion coefficient, and the

stock’s riskiness in a long remaining time horizon. Figure 3 (a) and (b) exhibit the comparative

statics with respect to the market depth q and resilience rates ρa or ρb, respectively. For larger q or

ρ, i.e., more liquid markets, the derivative d
dt
log(hi(t)D

i
t), i= a, b, will have larger absolute values.

Since log(·) is a monotone function, this implies that the patience indices decay faster over time

in a more liquid market. By (20), the investor will be less patient in the sense that she will start

to trade earlier when she start from the no-trade region. Figure 3(c) and (d) show the effects of

the volatility σ of the stock’s fundamental price and the investor’s risk-aversion coefficient γ on

d
dt
log(hi(t)D

i
t), i= a, b. The more risk averse for the investor or the riskier the stock, the faster the

values of h(t)Dt reduces over time. This indicates that the investor will trade more impatiently

when dealing with either a more risky stock or she is more risk averse.
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Figure 3 Function h′(t)
h(t)

− ρ for t∈ [0, T − 1/ρ). From (21), this function determines the decaying rate of the

patient indices. The default parameters used in the figure are ρ= 10, q= 10, σ= 0.2, γ = 1, and T = 2. In (a), we

draw the function graph under q= 2,10,50, keeping everything else identical as the default values; in (b),

ρ= 5,10,20; in (c), σ= 0.15,0.2,0.25; in (d), γ = 0.5,1,2. We omit the subscript i= a, b for h,ρ, q. In plot (b), note

that different ρ leads to different time horizon [0, T − 1/ρ). We plot the function graph using a scaled time

horizon t/(T − 1/ρ) to make sure that we can compare function values within the same range.

3.2. The Role of Predictive Return Signals

In the above analysis we have assumed a constant expected return µ for the fundamental price. In

the following, we study the impact of stochastic return-predicting signals on the optimal strategy.

Specifically, we extend the fundamental price model from (1) to

dSt = µtdt+σdWt, t≥ 0,

with µt given by the Vasicek model

dµt = κ(µ̄−µt)dt+βdW ′
t . (23)

Here, µ̄ is the long-run mean return, κ is the speed at which µt reverts to µ̄, β is the volatility of

the signal, and {W ′, t≥ 0} is another standard Brownian motion independent of W following the
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setup of Gârleanu and Pedersen (2016). Note that incorporating predictive signals will add one

more dimension compared to the model in Section 3.1. We do not expect exact solutions in explicit

form in this case. To maintain numerical tractability, we apply an asymptotic expansion approach

to solve the resulting singular control problem.

To this end, introduce a scaling parameter ε≥ 0 to (23) by letting

dµε
t = ε [κ(µ̄−µε

t)dt+βdW ′
t ] .

We may interpret ε as the “strength” of the signal. In particular, when ε= 1, we restore the original

process (23) and taking ε= 0 leads to the constant expected return case as discussed in Section

3.1. Define the corresponding value function that the investor can obtain starting from time t by

V ε(t, s,µ,x, y, da, db)

= max
dLu,dMu:u∈[t,T ]

E
[
U(STXT +YT )|St− = s,Xt− = x,Yt− = y,Da

t− = da,D
b
t− = db, µ

ε
t− = µ

]
. (24)

Following the derivation leading to (12), we know that V ε satisfies the following variational inequal-

ity

max
{
LεV ε,

1

qa

∂V ε

∂da
+

∂V ε

∂x
− (s+ da)

∂V ε

∂y
,

1

qb

∂V ε

∂db
− ∂V ε

∂x
+(s− db)

∂V ε

∂y

}
= 0. (25)

The equation (25) shares a similar structure as (12) with the three terms on the left hand side

corresponding to no-trading, buying, and selling, respectively. The only difference between (25)

and (12) lies in the differential operator Lε representing no-trading. It is now given by

LεV =
∂V

∂t
+µ

∂V

∂s
+

1

2
σ2∂

2V

∂s2
+ εκ(µ̄−µ)

∂V

∂µ
+

1

2
ε2β2∂

2V

∂µ2
− ρada

∂V

∂da
− ρbdb

∂V

∂db
.

LεV contains two additional terms involving the first and second derivatives of V with respective

to the new state variable µ, reflecting the impact of signal changes on the optimal value.

When ε is sufficiently small, we can asymptotically expand the value function to derive explicit

expressions for the optimal regions. This approach yields high interpretability as the resulting

explicit solutions provide valuable economic insights on how signals and market liquidity consid-

eration jointly affect the investor’s strategies. Cai et al. (2018) applies a similar methodology to a

different context of capital gains taxes. See also Chen et al. (2022) for another application of the

asymptotic expansion approach in correlated assets with proportional transaction costs.

The approach consists of two steps. First, we posit the following Ansatz for V ε:

V ε(t, s,µ,x, y, da, db) = 1− exp{−γ[y+ sx+F ε(t,µ,x, da, db)]}.
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Substituting it back to (25), we can see that F ε satisfies

max

{
Lε

FF
ε,

1

qa

∂F ε

∂da
+

∂F ε

∂x
− da,

1

qb

∂F ε

∂db
− ∂F ε

∂x
− db

}
= 0, (26)

with

Lε
FF =

∂F

∂t
+µx− 1

2
σ2γx2 + εκ(µ̄−µ)

∂F

∂µ
+

1

2
ε2β2

[
∂2F

∂µ2
− γ

(
∂F

∂µ

)2
]
− ρada

∂F

∂da
− ρbdb

∂F

∂db

and F ε(T,µ,x, da, db) = 0. Through this Anzatz and (26), we reduce the dimensionality of problem

(25) down to 5. As the second step, we further expand F ε in terms of ε to

F ε(t,µ,x, da, db) = F0(t,µ,x, da, db)+ εF1(t,µ,x, da, db)+O(ε2). (27)

Using (27), together with the corresponding expansions on the boundaries of sell and buy regions

(refer to (EC.17)), we can decompose the variational inequality (26) into two iterative PDEs of F0

and F1 (refer to (EC.18)–(EC.19)). Based on the above approach, we prove in E-Companion EC.4:

Theorem 3.2 (Asymptotic Trading Regions with Return Signal) For a given ε, denote

µ̂i
t = (1− εri(t))µt + εri(t)µ̄, i= a, b. (28)

We have the following approximations to the optimal regions:

Buy region: B̂Rε
t =

{
(x,da, db)∈ S : x− µ̂a

t

σ2γ
≤−ha(t)da

}
,

Sell region: ŜRε
t =

{
(x,da, db)∈ S : x− µ̂b

t

σ2γ
≥ hb(t)db

}
,

No-trade region: N̂Rε
t = S\(B̂Rε

t ∪ ŜRε
t).

Here, ha(t) and hb(t) are defined as in Theorem 3.1, and ra(t) and rb(t) are defined in (EC.20).

These functions only depend on time and model parameters, but not state variables.

The regions in Theorem 3.2 resemble those in the base case (cf. (14), (15), and (16)), up to the

first order terms of ε. The investor will not start buying (resp. selling) unless

Xt >
µ̂a
t

σ2γ
−ha(t)D

a
t

(
resp. Xt <

µ̂b
t

σ2γ
+hb(t)D

b
t

)
(29)

is breached at some time t. In other words, the investor aims at two benchmark portfolios µ̂a
t /(γσ

2)

(resp. µ̂b
t/(γσ

2)) and she will start to transact if her stock holdings are excessively low (resp. high)

compared with them.

According to (28),

µ̂i
t

γσ2
= (1− εri(t))

µt

γσ2
+ εri(t)

µ̄

γσ2
, i= a, b. (30)
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A salient feature of the construction of the above aim portfolios is that they are in fact a weighted

average between the Merton portfolio based on the current return-predicting signal µt, and the

expected Merton portfolio in the long run. Since µt changes over time, the Merton portfolio µt/(γσ
2)

is now a moving target. Thus, trading all the way to tracing such a target is not optimal in the

presence of market illiquidity. Theorem 3.2 implies that the investor should maintain her portfolio

close to such aim portfolios to both partly capture the best current risk-return trade off and

incorporate the dynamic effect of µt.

The weight εri(t) balancing the current and expected future portfolios in the construction (30)

is computable via (EC.20). Figure 4 displays its comparative statics with respect to a variety of

parameters including investment time horizon t, market depth q, market resilience ρ, and the mean-

reverting speed κ of the predicting signal. When t approaches T , ri(t) decreases to 0, indicating
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Figure 4 Weight function r(t) with respect to time t. The default parameters used in the figure are σ= 0.25,

γ = 1, ρ= 50, q= 10, T = 1, µ̄= 0.1, κ= 1, and β = 0.1. For (a), we take q= 5,10,20 and keep the other parameters

identical to the default values; for (b), ρ= 25,50,100; for (c), κ= 0.5,1.0,1.5. We omit the subscript i= a, b for

h,ρ, q. In plot (b), note that different ρ leads to different time horizon [0, T − 1/ρ). We plot the function graph

using a scaled time horizon t/(T − 1/ρ) to make sure that we can compare function values within the same range.

that the investor will gradually shift her aim to the current Merton portfolio as time goes by. This

is consistent with our intuition, since as the remaining horizon decreases, it is increasingly unlikely

that µt will revert to the long-term average µ̄ by the terminal time T . As a result, the expected

optimal portfolio in the long run becomes less relevant in the aim.

As the market becomes more illiquid, i.e., ρ or q decrease, Figure 4(a) and (b) show that ri(t)

becomes larger. In other words, when the illiquidity is high, the investor should put more weight

on tracking the long-term Merton portfolio, because closely following the current Merton portfolio

requires frequent and costly portfolio rebalancing. Furthermore, the value of ri(t) is affected by

the signal’s persistence as well. This can be observed by altering the parameter κ in Figure 4(c),

while keeping the other parameters constant. It is evident from this plot that a smaller κ leads a

greater weight to the current Merton portfolio in the construction of the aim portfolio. Note that
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µt exhibits slower changes when κ is smaller. This conveys an intuitive economic message that the

investor should trade more aggressively on persistent signals than on fast mean-reverting signals:

the current value µt lasts longer periods under a persistent signal and thus the investor can benefit

more from aligning trades more with µt. Finally, the weight is also scaled by ε, the strength of the

signal. The previous base case is just a special example of (30) when we take ε= 0.

The above findings are closely related to the general principles of “aim in front of target” and

“trade gradually towards the aim” proposed in Gârleanu and Pedersen (2013, 2016) for the investors

facing transaction costs. However, richer structures of market illiquidity in our model, particularly

the market tightness captured by the bid-ask spreads, bring in new insights. Absent the bid-ask

spreads, Gârleanu and Pedersen (2013, 2016) argue that the investor in their model should trade

continuously according to a finite speed. In a stark contrast, our results underscore the importance

of the timing of trading. Whenever the market variables are in N̂Rε
t , it is optimal to defer trading

and wait. The value of waiting in the general case lies in not only taking advantage of the market

resilience for a smaller spread as suggested in the base case in Section 3.1, but also waiting for a

suitable predictive return signal. The conditions in (29) explicitly capture this observation. Note

that transactions can be triggered by both the changes in patience indices hb(t)D
b
t and ha(t)D

a
t ,

which encode the influence of improved market liquidity on the investor’s trading decision as

explained in Section 3.1, and the changes in µ̂i
t, which embodies the effect of signals.

Moreover, as an extension of Gârleanu and Pedersen (2013, 2016), our model accommodates

imbalance markets in the sense that the market depths and resilience are different on the bid and

ask sides; in other words, both sides are allowed to have different level of liquidity. Theorem 3.2

shows that the weights rb and ra should be different under asymmetric depth and resilience on the

bid and ask sides, leading to two different aim portfolios to track when the investor considers sell

and buy decisions.

We can derive approximate optimal trading strategies from the above state space decomposition

in Theorem 3.2. Similar to Section 3.1, they consist of three types of trading activities: inactive,

lump-sum buying or selling, and gradual buying or selling. Specifically, we encapsulate (dL∗
t ,dM

∗
t ),

the resulting approximate optimal buying and selling amounts at time t, as follows:

- Inactive: if (x,da, db)∈ N̂Rε
t , dL

∗
t =dM∗

t = 0.

- Lump-sum buying and selling: if (x,da, db) is in the interior of the buy region B̂Rε
t , dM

∗
t = 0

and the investor should immediately place a lump-sum purchase order

dL∗
t =∆L∗

t =
1

1+ha(t)/qa

(
µ̂a
t

σ2γ
−x

)
− ha(t)da

1+ha(t)/qa
. (31)

On the other hand, if (x,da, db) is in the interior of the sell region ŜRε
t , dL

∗
t = 0 and

dM∗
t =∆M∗

t =
1

1+hb(t)/qb

(
x− µ̂b

t

σ2γ

)
− hb(t)db

1+hb(t)/qb
. (32)
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The strategy (dL∗
t ,dM

∗
t ) takes a feedback form by associating each state (x,da, db) with a par-

ticular action. Like (18) and (19), the investor uses the lump-sum selling and buying strategies in

(31) and (32) to correct her current stock holding when she finds that it is excessively larger or

smaller than the aim portfolios.

However, incorporating predictive signals into the model causes an additional technicality com-

plication on the part of gradual buying and selling strategy. Just imagine the investor is in the

no-trade region N̂Rε
t now; refer to Point A in Figure 2. In addition to decreasing da or db coor-

dinates, the movement of the point corresponding to the investor’s state contains an additional

vertical Brownian component because its x− µt/(σ
2γ) coordinate changes over time due to µt.

When this point happens to be on the boundary ∂SRt at time t, it will move “frequently” in and off

the sell region driven by the Brownian part of µt. Thus a precise description of the investor’s strat-

egy at t should be based on the local time of a diffusion process as discussed in EC.5. We include

the following simple definition to complete the presentation of (dL∗
t ,dM

∗
t ) and refer interested

readers to EC.5 for more technical discussions.

- Gradual buying and selling. Let {ki
t : t≥ 0}, i= a, b, be the local time processes associated

with the diffusion process defined in EC.5. If (x,da, db) is on the boundary ∂B̂Rε
t , dL

∗
t = dka

t and

dM∗
t = 0. Similarly, if (x,da, db)∈ ∂ŜRε

t , dL
∗
t = 0 and dM∗

t =−dkb
t .

To further discern the connection and differences between the above policy and the principle of

aiming in front of target advocated by Gârleanu and Pedersen (2013, 2016), we use Figure 5 to

visually present a typical sample trajectory of the investor’s stock holding positions over time in

response to the evolution of signals when she follows our dynamic policy. To this end, we simulate

one sample path of µt based on (23). Then we plot the corresponding target position µt/(σ
2γ) as

the red solid line, which represents the optimal holding in a frictionless market. Meanwhile, we

also plot the position changes under our optimal trading strategy (blue solid line) and the aim

portfolios constructed from the weighted average µ̂t in (28) (black dashed line).

We see that the aim portfolios, which the investor attempts to track down, are forward-looking.

When the current signal µt is higher than its long-term average µ̄ (see, for instance, the period

around t= 0.2 in Figure 5), it is expected to fall in the future. Incorporating this future movement,

the aim portfolio around t= 0.2 is smaller than the Merton portfolio µt/(σ
2γ) based on the current

signal µt. On the other hand, the aim portfolio around t= 0.4 is larger than the current Merton

portfolio at that time because the signal is anticipated to rise back to its long run average. Our

dynamic trading strategy tends to keep close to the aim portfolios. As shown by Figure 5, it tends

to buy as the aim portfolio increases and to sell otherwise. In this sense, our dynamic trading

strategy aligns with the principle of aiming in front of target.
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Figure 5 The evolution of stock holding position Xt under the optimal trading strategy (dL∗
t ,dM

∗
t ) along a

sample path of signal µt. The red solid line presents the current Merton portfolio µt/(σ
2γ). The blue dotted line

shows the long-term Merton portfolio µ̄/(σ2γ), which does not change over time. Use the black dashed line and

blue solid line to display the aim portfolio µ̂t/(σ
2γ) and investor’s stock holding, respectively. The current Merton

portfolio is generated from one simulated trajectory of µt. The gray areas correspond to the time periods in which

the investor remains inactive, i.e. Xt remains constant over such periods. The default parameter values used in the

figure are γ = 1, ρ= 10, q= 10 ,T = 1, µ̄= 0.1, σ= 0.2, κ= 1, β = 0.1 ε= 1, µ0 = 0.08, Da
0 =Db

0 = 0.05, and X0 = 2.

In consideration of the impacts of market liquidity, the portfolio adjustment under our dynamic

trading strategy is much smoother compared to the updating in the signal. Represented by the gray

zones in the figure, a salient feature of the simulated path of stock positions is that the investor will

pause trading for a significant amount of time. Take the initial period in Figure 5 for example. The

investor does not start to buy the stock until a late stage, although the signal increases quickly over

time. This patience is mainly driven by the large spread we set for the experiment: the investor

intends to wait for a stronger signal and a reduced spread to enter the market. In a sharp contrast,

the trading strategy in the works of Gârleanu and Pedersen (2013, 2016) continuously adjusts

investment portfolios.

4. Numerical Experiments

In this section, we present numerical experiments based on our model and discuss their economic

implications. The default values for the model parameters are described as follows. The investment

horizon T and the initial stock price S0− are normalized to be 1 year and $1, respectively. We use

252 days as the day-count convention for 1 year. The annualized volatility and long-run expected

growth rate of the stock price are respectively given by σ= 25% and µ̄= 0.1, which correspond to

a Sharpe ratio of 0.4. The risk aversion coefficient is γ = 0.5. Under these parameter values, the
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long-term Merton portfolio for the investor is µ̄/(σ2γ) = 3.2. We set the market depth qa = qb = 32,

meaning that the investor will generate a 10% price impact if she purchases the long-run Merton

portfolio immediately at time 0 starting from zero position. In addition, we take ε= 1 to examine

the performance of our approximation approach on the original model.

As for the market resilience, we take ρa = ρb = 126 as the default values for both ask and bid

sides. Under such choices, by (7), we have

Di
t+ 1.39

252
=Di

t exp

(
−ρi ×

1.39

252

)
= 0.5Di

t, i= a, b.

In words, the market takes 1.39 days to replenish orders to shrink the ask (resp. bid) spreads to

half after being impacted by a buy (resp. sell) order. Following Obizhaeva and Wang (2013), we

refer to 1.39 days as the corresponding half-life of such ρ. In the subsequent experiments, we also

test a range of resilience values: ρ∈ {4.1589, 8.3178, 16.6355, 33.2711}, which are corresponding

to a half-life of 2 months, 1 month, 0.5 months, and 5.25 days.

Finally, for the signal process, we take its volatility β = 20% and the mean-reversion speed

κ= 1.3863. From the marginal probability density of the Vasicek model (see, e.g., Shreve (2004),

Section 4.4), we know that

E[µt+s − µ̄] = exp(−κs)(µt − µ̄).

Since exp(−1.3863×0.5) = 0.5, we can see that the signal will decay to half of its original strength

in 0.5 year. κ∈ {8.3178, 4.1589, 0.6931, 0.2773} are also used in the numerical experiments. These

values correspond to the half-life of the signal ranging from 1 month, 2 months, 1 year, to 2.5 years.

For the other initial state variables, we set (X0−, Y0−,D
a
0−,D

b
0−, µ0) = (0,1,0.1,0.1,0.1).

The theoretical analysis in Section 3 highlights the importance of striking a delicate balance

between market liquidity considerations and predicting signals to achieve optimal investment per-

formance. We compare our approximate optimal strategy, denoted by opt hereafter, with the opti-

mal strategy in the absence of price impacts in Section 4.1 and with two trading strategies that

solely focus on market liquidity impacts while disregarding the dynamics of the predicting signal in

Section 4.2, respectively. By conducting these comparisons, we aim to demonstrate the advantages

of our approximate optimal strategy in the context of market liquidity and predicting signals.

4.1. Patient Trading vs. Impatient Trading

To show the benefit of patient trading, consider an “impatient” alternative strategy mer that

trades constantly to maintain the current Merton portfolio µt/(σ
2γ) according to µt. This strategy

is actually optimal in a market with infinite liquidity. We define the certainty equivalent of two

strategies by

E
[
U(STX

j
T +Y j

T )
]
=U(CEj), j ∈ {opt, mer},
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where (Xj
T , Y

j
T ) represent respectively the stock and cash positions at T when the investor follows

the strategy j. In other words, CEj is the certain amount of wealth equivalent to the random

wealth by following strategy j from an initial wealth of 1. We run a Monte Carlo simulation with

2 million sample trajectories of {µt : t ∈ [0, T ]} and {St : t ∈ [0, T ]} and follow the state dynamics

in Section 2 to evaluate the expectations in the above definition of CE.

Table 1 Certainty Equivalent Difference between Optimal Strategy and Merton Strategy

CEopt ∆CEmer CEopt ∆CEmer CEopt ∆CEmer

µ0 = 0.1 µ0 = 0.08 µ0 = 0.12

I Default 1.234 17.087 1.208 16.948 1.262 17.238
(0.000) (0.000) (0.000)

II γ = 0.25 1.432 67.378 1.386 66.945 1.491 67.869
(0.002) (0.001) (0.002)

γ = 1.00 1.123 4.409 1.110 4.359 1.138 4.462
(0.000) (0.000) (0.000)

III κ = 8.3178 1.149 17.053 1.144 16.904 1.156 17.213
(0.000) (0.000) (0.000)

κ = 4.1589 1.175 17.073 1.163 16.926 1.185 17.232
(0.000) (0.000) (0.000)

κ = 0.6931 1.274 17.095 1.242 16.962 1.313 17.242
(0.000) (0.000) (0.001)

κ = 0.2773 1.314 17.106 1.276 16.977 1.360 17.246
(0.001) (0.001) (0.000)

IV ρ = 4.1589 1.076 282.402 1.067 282.124 1.086 283.640
(0.111) (0.189) (0.231)

ρ = 8.3178 1.124 197.190 1.109 196.749 1.140 197.658
(0.032) (0.018) (0.024)

ρ = 16.6355 1.163 112.512 1.144 112.229 1.183 112.795
(0.004) (0.004) (0.004)

ρ = 33.2711 1.190 59.929 1.170 59.734 1.216 60.138
(0.001) (0.001) (0.001)

V β = 0.1000 1.169 4.685 1.141 4.556 1.198 4.824
(0.000) (0.000) (0.000)

β = 0.3000 1.334 37.759 1.311 37.607 1.358 37.924
(0.001) (0.001) (0.001)

VI σ = 0.2000 1.335 41.368 1.296 41.079 1.377 41.685
(0.001) (0.001) (0.001)

σ = 0.3000 1.171 8.349 1.153 8.270 1.192 8.435
(0.000) (0.000) (0.000)

Note: The certainty equivalents and the differences are calculated via a Monte Carlo estimator with two million

sample trajectories for both S and µ, where there are 5000 time steps on each trajectory. The standard errors of the

differences of certainty equivalents are reported in the parenthesis.

Table 1 reports the performance of two trading strategies as measured by their certainty equiva-

lent under different parameter values. In it, the columns of ∆CEmer display the difference CEopt−
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CEmer, with the quantities in the parenthesis showing the standard errors of the difference esti-

mates for reference. The table contains 6 parts. Subpart I reports the outcomes under the default

values of the parameters described at the beginning of this section, and Subparts II–VI focus on

the comparative statics when we vary the investor’s risk aversion coefficient, the mean-reversion

speed of signal, the market resilience, the signal’s volatility, and the stock fundamental volatility.

All the results of ∆CEmer are positive with statistical significance, indicating that our dynamic

strategy outperforms strategy mer by a considerable margin for a large range of parameter values.

In particular, one can see that the dominance of opt in terms of ∆CEmer is most significant when

the resilience ρ is small or the signal volatility β is large. As noted in Section 1, strategy mer

necessitates frequent rebalancing of the investor’s portfolio, especially if the signal is very volatile.

Thus it will incur enormous trading costs when the market is illiquid (e.g., small ρ). Our dynamic

strategy overcomes this shortcoming by trading patiently to strike better balance between market

liquidity and return signal.

Table 2 Trading Volume and Market Liquidity

Volume

µ0 = 0.1 µ0 = 0.08 µ0 = 0.12

Default 15.791 15.391 16.199

ρ = 4.1589 5.218 4.984 5.459
ρ = 8.3178 7.241 7.006 7.480
ρ = 16.6355 9.169 8.918 9.427
ρ = 33.2711 11.278 10.986 11.577

q = 4 8.311 8.042 8.582
q = 8 10.245 9.929 10.562
q = 16 12.722 12.366 13.089

Note: The trading volumes are calculated via a Monte Carlo estimator with two million sample trajectories for both

S and µ, where there are 5000 time steps on each trajectory.

Table 2 examines the impacts of market liquidity, particularly resilience ρ and market depth q,

on the trading volume under our dynamic trading strategy. Similar as Table 1, we divide T = 1

year into 5,000 time steps and simulate 2 million sample trajectories of S and µ using Monte Carlo.

Calculate (L∗
t ,M

∗
t ) along each pair of sample trajectory of (St, µt). The trading volume for each

sample is then defined by
5000∑
n=1

{|L∗
tn
−L∗

tn−1
|+ |M∗

tn
−M∗

tn−1
|},

where {tn : n = 1, · · · ,5000} are the discretized time steps. Table 2 displays the average volumes

under different ρ and q. Obviously, the trading volumes increase as either ρ or q increases. This
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indicates that the investor should be more active in trading for a more liquid market. These

observations generate the following testable implications:

Testable Hypothesis I: Trading volumes are positively correlated with the market resilience

Testable Hypothesis II: Trading volumes are positively correlated with the market depth.

We leave empirical studies on the relationship between market resilience/depth and trading active-

ness for future work.

4.2. The Economic Significance of Signal

In Section 4.1, we have illustrated the impacts of incorporating liquidity consideration on the

optimal strategy. Now, we demonstrate the effects of signal in guiding efficient investments, by

comparing our strategy opt against two alternative strategies — referred to as myo and long below

— that do not fully utilize the dynamics of the predictive return signal. To this end, we use the

same idea presented in Theorem 3.2 to construct the no-trade, buy, and sell regions for defining

myo (myopic) and long (long-sighted). The only difference lies in that we replace the aim portfolio

(28) in our dynamic trading strategy with µt/(γσ
2) to define myo or µ̄/(γσ2) to define long,

respectively. Apparently, while these alternative strategies takes into account the liquidity impacts,

they do not consider the evolution of signals.

As in Table 1, we estimate via Monte Carlo simulation the differences between the certainty

equivalent of CEopt and these two alternative strategies CEmyo and CElong. Denote ∆CEmyo =

CEopt − CEmyo and ∆CElong = CEopt − CElong. Table 3 reports such comparison under vari-

ous parameters. It shows that our optimal strategy consistently outperforms the two alternative

strategies in all cases, as evidenced by its higher certainty equivalent.

The table reveals three additional patterns worth mentioning. Firstly, the advantage of our

strategy over the long, as measured by ∆CElong, becomes more pronounced as κ decreases. This is

because the signal process exhibits greater persistence for smaller κ values, making it more crucial

to track the Merton portfolio based on the current signal in order to achieve optimal investment

performance. The aim portfolio constructed as from (28) contains a component of µt/(γσ
2) while

the long strategy completely disregards such information.

In contrast, ∆CEmyo exhibits an inverted U shape in relation to κ. In other words, the out-

performance of strategy opt over the myo strategy is maximized for intermediate levels of κ. This

pattern can be explained as follows. The aim portfolio under opt is constructed based on µ̂. For

very small κ, it assigns more weights on the current Merton portfolio; see Figure 4(c). As a result,

the difference between opt and myo diminishes. Conversely, when κ is very large, the signal process

quickly reverts back to its long-term mean, and therefore µt will remain close to µ̄ over time. In

this scenario, the aim portfolio tracked by our trading strategy closely aligns with µt/(γσ
2), which

is followed by myo.
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Table 3 Certainty Equivalent Difference between Optimal Strategy and Alternative Strategies

CEopt ∆CElong ∆CEmyo CEopt ∆CElong ∆CEmyo CEopt ∆CElong ∆CEmyo

µ0 = 0.1 µ0 = 0.08 µ0 = 0.12

I Default 1.234 0.101 0.006 1.208 0.108 0.005 1.262 0.098 0.008
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

II γ = 0.25 1.432 0.177 0.023 1.386 0.192 0.017 1.491 0.169 0.029
(0.001) (0.000) (0.001) (0.000) (0.001) (0.000)

γ = 1.00 1.123 0.056 0.002 1.110 0.059 0.001 1.138 0.055 0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

III κ = 8.3178 1.149 0.005 0.011 1.144 0.005 0.007 1.156 0.005 0.014
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

κ = 4.1589 1.175 0.033 0.013 1.163 0.034 0.011 1.185 0.031 0.017
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

κ = 0.6931 1.274 0.150 0.003 1.242 0.161 0.002 1.313 0.145 0.005
(0.001) (0.000) (0.001) (0.000) (0.001) (0.000)

κ = 0.2773 1.314 0.195 0.001 1.276 0.211 0.001 1.360 0.189 0.002
(0.001) (0.000) (0.001) (0.000) (0.001) (0.000)

IV ρ = 4.1589 1.076 0.038 0.042 1.067 0.042 0.036 1.086 0.035 0.049
(0.000) (0.000) (0.001) (0.000) (0.001) (0.000)

ρ = 8.3178 1.124 0.054 0.038 1.109 0.061 0.032 1.140 0.050 0.044
(0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

ρ = 16.6355 1.163 0.068 0.029 1.144 0.075 0.024 1.183 0.062 0.035
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

ρ = 33.2711 1.190 0.078 0.019 1.170 0.087 0.015 1.216 0.074 0.023
(0.000) (0.000) (0.001) (0.000) (0.000) (0.000)

V β = 0.10 1.169 0.026 0.002 1.141 0.031 0.001 1.198 0.024 0.003
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

β = 0.30 1.334 0.219 0.014 1.311 0.228 0.012 1.358 0.212 0.017
(0.001) (0.000) (0.001) (0.000) (0.001) (0.000)

VI σ = 0.20 1.335 0.144 0.014 1.296 0.156 0.010 1.377 0.135 0.018
(0.000) (0.000) (0.001) (0.000) (0.001) (0.000)

σ = 0.30 1.171 0.075 0.003 1.153 0.080 0.002 1.192 0.074 0.004
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000)

Note: This table shares a similar structure as Table 1. The certainty equivalents and the differences are calculated

via a Monte Carlo estimator with two million sample trajectories for both S and µ, where there are 5000 time steps

on each trajectory. The standard errors of the differences of certainty equivalents are reported in the parenthesis.

Secondly, as we increase the resilience ρ, the difference in the certainty equivalent ∆CEmyo

decreases and ∆CElong increases, respectively. This is because the price impact of frequent trad-

ing becomes less serious under a high market resilience. Hence, the investor should trade more

aggressively towards the current Merton portfolio when ρ becomes larger. This can be seen from

Figure 4(b): the aim portfolio of opt places more weights on the current Merton portfolio than the

expected Merton portfolio for large ρ, leading our trading strategy to act more like myo than long.

Thirdly, the outperformance of the optimal strategy is larger when the signal volatility β is larger,
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since the signal fluctuates more significantly and it is more advantageous to aim in front of target

rather than stick to either the current signal or only the long-run signal.

5. Conclusions

This paper studies optimal investment problems in the presence of both market illiquidity and

return predictability. By capturing the three salient features of market liquidity – tightness, depth,

and resilience – using a simple limit order book model, and the stochastic return-predicting signals

using a mean-reversion process, we are able to achieve adequate tractability despite the high model

dimensionality. In particular, we derive explicit optimal strategy in the base case with a constant

return, and explicit asymptotic expansion under small signals in the general case with a stochastic

return-predicting signal.

The tractable solutions developed in this paper casts managerial insights on the differentiated

roles of market illiquidity and return predictability in investment decision making. We can encode

the return predictability into the aim of the trading, which is based on a weighted average of the

current return and the long-run return. On the other hand, the market illiquidity implies that one

should pause trading and patiently wait for the future trading opportunities. Patience indices are

established to quantify this timing decision. Our analysis demonstrates close relationship between

the patience and the level of illiquidity. While these findings echoes the principle of “aiming in

front of target” proposed in Gârleanu and Pedersen (2013, 2016), they illustrate how the principle

works in a market with tightness and resilience: the virtue of patience lies in the timing of trading,

rather than the smoothness of the trading.

Simulation based experiments further show that the advantages of our optimal strategy, measured

by the certainty equivalences, are economically significant over strategies that disregard patience or

ignore the dynamics of the return-predicting signal, in a wide range of market environments. Our

model also leads to some testable implications that the trading volumes are positively correlated

with the market resilience and depth.

Endnotes

1. Gârleanu and Pedersen (2013, 2016) take a reduced form approach to model market illiquidity

by assuming quadratic transaction costs. Therefore, immediate round-trip trading is affordable in

the presence of both transitory and persistent impact costs in their paper. See p. 499 of Gârleanu

and Pedersen (2016) for more discussion.
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Electronic Companion

EC.1. The Viscosity Characterization of the Value Function

In this section, we prove that the value function V ε given in (24) satisfies the HJB equation

(25) in the viscosity sense. The baseline case in Section 3.1 corresponds to ε = 0. Furthermore,

for the baseline case, we will derive the analytic form in Section EC.2, and therefore the value

function satisfies the HJB equation in the classical sense. For the ease of notation, we suppress the

superscript and use V in place of V ε.

Lemma EC.1.1 For any t < T , the value function V ε satisfies the variational inequality (25).

In the following, we denote

BV =
1

qa

∂V

∂da
+

∂V

∂x
− (s+ da)

∂V

∂y
,

SV =
1

qb

∂V

∂db
− ∂V

∂x
+(s− db)

∂V

∂y
.

Therefore, (25) is equivalent to

min{−LεV, −BV, −SV }= 0. (EC.1)

The remaining of this section provides the proof of Lemma EC.1.1.

Let K0 = (t0, s0, µ0, x0, y0, dA,0, dB,0)∈ [0, T ]×D.

EC.1.1. Viscosity Subsolution

First we prove that V is a viscosity subsolution of (EC.1). In order to prove this, we need to

show that for all smooth function φ(K), such that V (K)−φ(K) has a local maximum at K0, the

following inequality holds

min
{
−Lεφ(K0), −Bφ(K0), −Sφ(K0)

}
≤ 0. (EC.2)

Without loss of generality, we assume that V (K0) = φ(K0) and V ≤ φ on [0, T ]×D. We argue

by contradiction and suppose that the arguments inside the minimum operator of the inequality

(EC.2) satisfy

Bφ(K0)< 0, Sφ(K0)< 0,

and there exists θ > 0 such that

Lφ(K0)<−θ.
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Since φ is smooth, the above inequalities become

Bφ(K)< 0, Sφ(K)< 0, Lφ(K)≤−θ, (EC.3)

where K = (t, s,µ,x, y, da, db) ∈N (K0), a neighbourhood of K0. Let {hm} be a positive sequence

such that hm → 0 as m goes to infinity. Define

τ(ω) := inf{t∈ [t0, T ] :K0,∧
t /∈N (K0)},

and it is positive P-a.s.. Let τm := τ ∧hm, then there exists a pair of {L∧
t ,M

∧
t } such that

φ(K0)− θhm

2
≤E[φ(K0,∧

τm
)].

where K0,∧
t is the state trajectory under the strategy {L∧

t ,M
∧
t }. Applying Ito’s formula to φ(K),

we can obtain

−θhm

2
−E

[∫ τm

t0

Bφ(K0,∧
t )dL∧

t

]
−E

[∫ τm

t0

Sφ(K0,∧
t )dM∧

t

]
−E

[∫ τm

t0

Lεφ(K0,∧
t )dt

]
≤ 0.(EC.4)

Using the inequalities (EC.3), we have

− θhm

2
−E

[∫ τm

t0

Bφ(K0,∧
t )dL∧

t

]
−E

[∫ τm

t0

Sφ(K0,∧
t )dM∧

t

]
−E

[∫ τm

t0

Lεφ(K0,∧
t )dt

]
>−θhm

2
+ θE[τm]. (EC.5)

Since τ is positive P-a.s., and hm → 0 as m → ∞, we have E[τm] → hm as m → ∞. Therefore,

the right-hand side of (EC.5) is strictly positive. Then there is a contradiction between (EC.4)

and (EC.5). Therefore at least one argument inside the minimum operator is nonpositive, and the

inequality (EC.2) holds. Then the value function V is a viscosity subsolution of the variational

inequality (EC.1).

EC.1.2. Viscosity Supersolution

Then we prove that V is a viscosity supersolution of (EC.1). In order to prove this, we need to

show that for all smooth function φ(K), such that V (K)−φ(K) has a local minimum at K0, the

following inequality holds

min
{
−Lεφ(K0), −Bφ(K0), −Sφ(K0)

}
≥ 0. (EC.6)

Without loss of generality, we assume that V (K0) = φ(K0) and V ≥ φ on [0, T ]×D. We need to

prove each argument inside the minimum operator of (EC.6) is nonnegative.

Consider the trading strategy ∆Lt0 = ξ > 0, ∆Mt0 = 0 and dLt = dMt = 0 for t0 < t≤ T . From

the dynamic programming principle, we have

V (t0, s0, µ0, x0, y0, dA,0, dB,0)≥ V (t0, s0, µ0, x0 + ξ, y0 − (s0 + dA,0)ξ− 1

2qa
ξ2, dA,0 +

1

qa
ξ, dB,0).

ec2

Electronic copy available at: https://ssrn.com/abstract=4671774



Since V (K0) = φ(K0), and V (K) ≥ φ(K) for any K, we see that this inequality also holds for

φ(t, s,µ,x, y, da, db), i.e.,

φ(t0, s0, µ0, x0, y0, dA,0, dB,0)≥φ(t0, s0, µ0, x0 + ξ, y0 − (s0 + dA,0)ξ− 1

2qa
ξ2, dA,0 +

1

qa
ξ, dB,0).

Then subtracting the left-hand side from the right-hand side of this inequality, dividing by ξ and

letting ξ→ 0, we have

Bφ(K0) =
1

qa

∂φ(K0)

∂da
+

∂φ(K0)

∂x
− (s0 + dA,0)

∂φ(K0)

∂y
≤ 0.

Similarly, consider the trading strategy ∆Lt0 = 0, ∆Mt0 = ξ > 0 and dLt =dMt = 0 for t0 < t≤ T ,

we have

Sφ(K0) =
1

qb

∂φ(K0)

∂db
− ∂φ(K0)

∂x
+(s0 − dB,0)

∂φ(K0)

∂y
≤ 0.

Then consider the case with no trade, i.e., dLt = dMt = 0 for t0 ≤ t ≤ T . From the dynamic

programming principle, we have

V (t0, s0, µ0, x0, y0, dA,0, dB,0)≥E[V (K0,d
t )],

where K0,d
t is the state trajectory when Lt =Mt = 0 for t0 ≤ t≤ T , i.e.,

K0,d
t =

(
t, s0 +

∫ t

t0
µudu+σ(Wt −Wt0), µ

0e−εb(t−t0) +
a

b
(1− e−εb(t−t0))+ εβ

∫ t

t0
e−εb(t−u)dW ′

u,

x0, y0, dA,0e−ρa(t−t0), dB,0e−ρb(t−t0)
)
,

and K0,d
t ∈N (K0). This inequality also holds for φ(t,S,µ,X,Y,Da,Db). Applying Ito’s formula to

φ(K), we can obtain

E
[∫ t

t0

(∂φ(K0,d
u )

∂t
+µ0,d

u

∂φ(K0,d
u )

∂s
+

1

2
σ2∂

2φ(K0,d
u )

∂s2
+ ε(a− bµ0,d

u )
∂φ(K0,d

u )

∂µ
+

1

2
ε2β2∂

2φ(K0,d
u )

∂µ2

− ρaD
A,0,d
u

∂φ(K0,d
u )

∂da
− ρbD

B,0,d
u

∂φ(K0,d
u )

∂db

)
du

]
≤ 0.

Let t→ t0, we have

Lεφ(K0) =
∂φ(K0)

∂t
+µ0∂φ(K

0)

∂s
+

1

2
σ2∂

2φ(K0)

∂s2
+ ε(a− bµ0)

∂φ(K0)

∂µ
+

1

2
ε2β2∂

2φ(K0)

∂µ2

− ρad
A,0∂φ(K

0)

∂da
− ρbd

B,0∂φ(K
0)

∂db
≤ 0.

Therefore all the three arguments inside the minimum operator are nonnegative, and the inequality

(EC.6) holds. Then the value function V is a viscosity supersolution of the variational inequality

(EC.1). Q.E.D.

ec3

Electronic copy available at: https://ssrn.com/abstract=4671774



EC.2. Proof of Theorem 3.1

The proofs related to Theorem 3.1 are laid out in the four parts in this section.

EC.2.1. Variational Inequality

Let ε= 0. Due to the property of the exponential utility function, we can reduce the dimension of

this problem. Let V (t, s, x, y, da, db) = 1− exp
{
− γ

[
y + sx+ F (t, x, da, db)

]}
. Then, from (25), F

corresponds to the equation

max
{
L̃F, 1

qa

∂F

∂da
+

∂F

∂x
− da,

1

qb

∂F

∂db
− ∂F

∂x
− db

}
= 0, (EC.7)

where

L̃F :=
∂F

∂t
− ρada

∂F

∂da
− ρbdb

∂F

∂db
− 1

2
σ2γ(x− µ

σ2γ
)2 +

µ2

2σ2γ
,

with F (T,x, da, db) = 0.

Lemma EC.2.1 The explicit form of F (t, x, da, db) is given by

• if x≥ µ
σ2γ

+hb(t)db, then

F (t, x, da, db) =
µ2

2σ2γ
(T − t)+ fb(t)(x−

µ

σ2γ
+ qbdb)

2 +
qb
2
(db)

2;

• if x≤ µ
σ2γ

−ha(t)da, then

F (t, x, da, db) =
µ2

2σ2γ
(T − t)+ fa(t)(x−

µ

σ2γ
− qada)

2 +
qa
2
(da)

2;

• if µ
σ2γ

+ ρb
σ2γ

e
−ρb(T− 1

ρb
−t)

db <x< µ
σ2γ

+hb(t)db and t < T − 1
ρb
, then

F (t, x, da, db) =
µ2

2σ2γ
(T − t)+ fb(τb)(x−

µ

σ2γ
+ qbe

−ρb(τb−t)db)
2

− 1

2
σ2γ(τb − t)(x− µ

σ2γ
)2 +

qb
2
e−2ρb(τb−t)(db)

2;

• if µ
σ2γ

−ha(t)da <x< µ
σ2γ

− ρa
σ2γ

e−ρa(T− 1
ρa

−t)da and t < T − 1
ρa
, then

F (t, x, da, db) =
µ2

2σ2γ
(T − t)+ fa(τa)(x−

µ

σ2γ
− qae

−ρa(τa−t)da)
2

− 1

2
σ2γ(τa − t)(x− µ

σ2γ
)2 +

qa
2
e−2ρa(τa−t)(da)

2;

• otherwise,

F (t, x, da, db) =
µ2

2σ2γ
(T − t)− 1

2
σ2γ(T − t)(x− µ

σ2γ
)2.
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In the above, τa is given by x − µ
σ2γ

− hb(τb)e
−ρb(τb−t)db = 0, and τa is given by x − µ

σ2γ
+

ha(τa)e
−ρa(τa−t)da = 0.

Furthermore, the boundaries of the buy and sell regions correspond to

x− µ

σ2γ
+ha(t)da = 0 and x− µ

σ2γ
−hb(t)db = 0,

respectively, where for i= a, b,

hi(t) =


qi(ρifi(t)−f ′

i(t))

f ′
i(t)−

1
2σ

2γ
, if t < T − 1

ρi

1
σ2γ(T−t)

, if t≥ T − 1
ρi

(EC.8)

with

fi(t) =

2ρi
qi

+σ2γ

2ρ2i

[Ri

2
+ ηi

(1+ ξi)e
−ηi(T− 1

ρi
−t) − (1− ξi)e

ηi(T− 1
ρi

−t)

(1+ ξi)e
−ηi(T− 1

ρi
−t) +(1− ξi)e

ηi(T− 1
ρi

−t)

]
, (EC.9)

Ri =
2ρiσ

2γ
2ρi
qi

+σ2γ
, si =−

2ρ3i
1
qi
σ2γ

( 2ρi
qi

+σ2γ)2
, ηi =

√
R2

i

4
− si =

√
ρ2iσ

2γ
2ρi
qi

+σ2γ
, ξi =−

√
σ2γ( 2ρi

qi
+σ2γ)

ρi
qi
+σ2γ

.

Lemma EC.2.1 can be verified via direct calculations.

EC.2.2. Verification Principle

Denote V (t, s, x, y, da, db) as the value function and J(t, s, x, y, da, db) as the cost functional for any

given feasible policy {Lt, Mt : 0≤ t≤ T}. For any τ ∈ [t, T ], denote Jτ (t, s, x, y, da, db) as the cost

functional for an policy which follows {Lt, Mt : 0≤ t≤ T} on [t, τ ] and {L∗
t , M∗

t : 0≤ t≤ T} on

[τ,T ]. Then

Jτ (t, s, x, y, da, db)

=Et[V (τ,Sτ ,Xτ , Yτ ,D
a
τ ,D

b
τ )]

= V (t, s, x, y, da, db)+Et

[∫ τ

t

Vudu+

∫ τ

t

VsdS+

∫ τ

t

VxdX +

∫ τ

t

VydY

+

∫ τ

t

Vdadda +

∫ τ

t

Vdbddb +
1

2

∫ τ

t

Vssd[S,S] +
∑

t≤u≤τ

∆V
]

= V (t, s, x, y, da, db)

+Et

[∫ τ

t

(Vu +µVs +
1

2
σ2Vss − ρadaVda − ρbdbVdb)du

]
+Et

[∫ τ

t

(
Vx − (s+ da)Vy +

1

qa
Vda

)
ldu

]
+Et

[∫ τ

t

(
−Vx +(s− db)Vy +

1

qb
Vdb

)
mdu

]
+Et

[ ∑
t≤u≤τ

∆V
]

≤ V (t, s, x, y, da, db)
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where∑
t≤u≤τ

∆V =
∑

t≤u≤τ

[
V
(
u,Su,Xu− +∆Lu, Yu− − (Su +Da

u−)∆Lu −
1

2qa
(∆Lu)

2,Da
u− +

1

qa
∆Lu,D

b
u

)
+V

(
u,Su,Xu− −∆Mu, Yu− +(Su −Db

u−)∆Mu −
1

2qb
(∆Mu)

2,Da
u,D

b
u− +

1

qb
∆Mu

)
−V (u−, Su−,Xu−, Yu−,D

a
u−,D

b
u−)

]
.

The first three integrals are less than or equal to 0 because of the variational inequality, the

summation is 0 because the value doesn’t change before and after the jump.

The value change of the jump part is 0 can be verified by the explicit expression of the value

function in the trading region. Suppose the initial state is in the sell region, and the magnitude of

jump sale is ξ. Then

V (t,St,Xt, Yt,D
a
t ,D

b
t )

= V (t,St,Xt− − ξ,Yt− +(St −Db
t−)ξ−

1

2q
ξ2,Da

t ,D
b
t− +

1

q
ξ)

= 1− exp{−γ[Yt− +(St −Db
t−)ξ−

1

2q
ξ2 +St(Xt− − ξ)+

q

2
(Db

t− +
1

q
ξ)2

+ f0(t)
(
Xt− − ξ− µ

σ2γ
+ q(Db

t− +
1

q
ξ)
)2

+
µ2

σ2γ
(T − t)]}

= 1− exp{−γ[Yt− +StXt− +
q

2
(Db

t−)
2 + f0(t)(Xt− − µ

σ2γ
+ qDb

t−)
2 +

µ2

2σ2γ
(T − t)]}

= V (t−, St−,Xt−, Yt−,D
a
t−,D

b
t−)

Let τ → t, then J(t, s, x, y, da, db) ≤ V (t, s, x, y, da, db), equality holds if {Lt, Mt : 0 ≤ t ≤ T} =

{L∗
t , M

∗
t : 0≤ t≤ T}.

EC.2.3. Optimal Dynamic Trading Strategy

Finally, we establish (17) – (19). Recall that the sell boundary is given by x= µ
σ2γ

+ h(t)db. Then

given the initial state x and db satisfying x> µ
σ2γ

+h(t)db, there will be an initial jump sale to the

sell boundary, which satisfies Xt =
µ

σ2γ
+ h(t)Db

t with Xt = x−∆Mt and Db
t = db +

1
q
∆Mt. So the

initial jump sale is

∆Mt =
x− µ

σ2γ
−h(t)db

1+ 1
q
h(t)

.

Then the investor will pursue continuous selling at the rate mu (t≤ u≤ T − 1
ρ
) to make sure going

along the sell boundary. The rate mu can be determined by taking derivatives to the boundary

and substituting the dynamics of Xu and Db
u into the expression, and we can express it as

mu =
ρh(u)−h′(u)

1+ 1
q
h(u)

Db
u =

ρh(u)−h′(u)

h(u)(1+ 1
q
h(u))

(Xu −
µ

σ2γ
).
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It is equivalent to

dXu

du
+

ρh(u)−h′(u)

h(u)(1+ 1
q
h(u))

(Xu −
µ

σ2γ
) = 0, (EC.10)

which is a first-order linear ODE with initial condition Xt = x−∆Mt =
1
q h(t)x+

µ

σ2γ
+h(t)db

1+ 1
q h(t)

and thus

we can solve Xu for t ≤ u ≤ T − 1
ρ
. Then let mu = −dXu

du
to obtain the explicit expression of mu

using the initial state.

Furthermore, taking derivatives once more, we can obtain

d2Xu

du2
+ s(u)

dXu

du
+ s′(u)(Xu −

µ

σ2γ
) = 0, (EC.11)

where s(u) = ρh(u)−h′(u)
h(u)(1+ 1

q h(u))
and s′(u) =−

ρ
q h

2(u)h′(u)+h(u)h′′(u)+ 1
q h

2(u)h′′(u)−h′2(u)− 2
q h(u)h

′2(u)

h2(u)(1+ 1
q h(u))

2 . Then sub-

stituting (EC.10) into (EC.11), we can derive

d2Xu

du2
= (s2(u)− s′(u))(Xu −

µ

σ2γ
).

Using the explicit expression of the function h(u), we can calculate that s2(u)−s′(u) = ρ2σ2γ
2ρ
q +σ2γ

= η2

holds true for all t ≤ u ≤ T − 1
ρ
. So the optimal shares holding Xu (t ≤ u ≤ T − 1

ρ
) satisfies the

constant coefficient second-order linear ODE

d2Xu

du2
=

ρ2σ2γ
2ρ
q
+σ2γ

(Xu −
µ

σ2γ
),

with initial conditions
Xt = x−∆Mt =

1
q h(t)x+

µ

σ2γ
+h(t)db

1+ 1
q h(t)

:= z1(t, x, db),

dXu
du

|u=t =
ρh(t)−h′(t)

h(t)(1+ 1
q h(t))

( µ
σ2γ

−
1
q h(t)x+

µ

σ2γ
+h(t)db

1+ 1
q h(t)

) := z2(t, x, db).

The solution to the above ODE has the form Xu = c1e
ηu+c2e

−ηu+ µ
σ2γ

. Using the initial conditions,

we can solve c1 =
1
2
(z1 +

1
η
z2 − µ

σ2γ
)e−ηt and c2 =

1
2
(z1 − 1

η
z2 − µ

σ2γ
)eηt. Q.E.D.

EC.3. Proof of Eq. (22)

We omit the subscript a or b in the following proof. From the expression of h(t) in (EC.8), and let

ϕ=
2ρ
q +σ2γ

σ2γρ
η, we can directly calculate

h′(t)

h(t)
− ρ

=
−4ρ(1− ξ2)

[(1+ ξ)e−η(T− 1
ρ−t) − (1− ξ)eη(T− 1

ρ−t)][(ϕ+1)(1+ ξ)e−η(T− 1
ρ−t) +(ϕ− 1)(1− ξ)eη(T− 1

ρ−t)]
− ρ

=
−4ρ(1− ξ2)

(1+ϕ)(1+ ξ)2e−2η(T− 1
ρ−t) − 2(1− ξ2)+ (1−ϕ)(1− ξ)2e2η(T− 1

ρ−t)
− ρ,
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with −1< ξ < 0 and ϕ> 1.

Let δ(t) = (1+ϕ)(1+ ξ)2e−2η(T− 1
ρ−t) − 2(1− ξ2)+ (1−ϕ)(1− ξ)2e2η(T− 1

ρ−t), then

δ′(t) = 2η(1+ϕ)(1+ ξ)2e−2η(T− 1
ρ−t) − 2η(1−ϕ)(1− ξ)2e2η(T− 1

ρ−t) > 0,

which implies δ(t) increases with t. Then h′(t)
h(t)

− ρ is also an increasing function with respect to

time t. By some direct calculations, we derive that at time t= T − 1
ρ
,

h′(T − 1
ρ
)

h(T − 1
ρ
)
− ρ=

−4ρ(1− ξ2)

4ξ(ξ+ϕ)
− ρ=−ρ(ρ+σ2γq)

2ρ+σ2γq
< 0.

So we have h′(t)
h(t)

− ρ< 0 holds true for any 0≤ t < T − 1
ρ
, which proves the proposition.

Q.E.D.

EC.4. Proof of Theorem 3.2

The proof follows the idea in Soner and Touzi (2013), Muhle-Karbe et al. (2017). Due to the

property of the exponential utility function and the independence of the two Brownian motions W

andW ′, we can still reduce the dimension of this problem. Let V (t, s,µ,x, y, da, db) = 1−exp{−γ[y+

sx+F (t,µ,x, da, db)]}, and the optimal value function F satisfies the following variational inequality

max{Lε
FF, BFF, SFF}= 0, (EC.12)

where

Lε
FF =

∂F

∂t
+µx− 1

2
σ2γx2 + εκ(µ̄−µ)

∂F

∂µ
+

1

2
ε2β2[

∂2F

∂µ2
− γ(

∂F

∂µ
)2]− ρada

∂F

∂da
− ρbdb

∂F

∂db
,

BFF =
1

qa

∂F

∂da
+

∂F

∂x
− da,

SFF =
1

qb

∂F

∂db
− ∂F

∂x
− db,

with F (T,µ,x, da, db) = 0. We can reformulate (EC.12) as the following free-boundary problem for

F with the unknown no-trade region NRε and the unknown optimal trading boundaries ∂NRε

such that
∂F
∂t

+µx− 1
2
σ2γx2 + εκ(µ̄−µ)∂F

∂µ
+ 1

2
ε2β2[∂

2F
∂µ2 − γ(∂F

∂µ
)2]− ρada

∂F
∂da

− ρbdb
∂F
∂db

= 0 in NRε,

1
qa

∂F
∂da

+ ∂F
∂x

− da = 0, 1
qb

∂F
∂db

− ∂F
∂x

− db = 0 on ∂NRε,

F (T,µ,x, da, db) = 0.

(EC.13)

We solve (EC.12) piece by piece. Let

t0,i = T − 1

ρi
+O(ε), i= a, b.
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Focus on the state region in which t≥max{t0,a, t0,b}. For

µ

σ2γ
− da

σ2γ(T − t)
+

κ(T − t)

2σ2γ
(µ̄−µ)ε+O(ε2)<x<

µ

σ2γ
+

db
σ2γ(T − t)

+
κ(T − t)

2σ2γ
(µ̄−µ)ε+O(ε2),

define

F (t,µ,x, da, db) = sx+
(
c1(t;ε)µ+ c2(t;ε)

)
x− 1

2
c3(t;ε)x

2,

with

c1(t;ε) = (T − t)− 1

2
κ(T − t)2ε+

1

6
κ2(T − t)3ε2 +O(ε3),

c2(t;ε) =
1

2
κµ̄(T − t)2ε− 1

6
κ2µ̄(T − t)3ε2 +O(ε3)

and c3(t;ε) = σ2γ(T − t)+ 1
3
β2γ(T − t)3ε2 +O(ε3). For

x>
µ

σ2γ
+

db
σ2γ(T − t)

+
κ(T − t)

2σ2γ
(µ̄−µ)ε+O(ε2), (EC.14)

define

F (t,µ,x, da, db) = sx+
qb
2
d2b −

σ2γ(T − t)

2(1+σ2γqb(T − t))
(x+ qbdb −

µ

σ2γ
)2 +

µ2(T − t)

2σ2γ

+
κ(T − t)2

2(1+σ2γq(T − t))

[
x+ qbdb + qb(T − t)µ

]
(µ̄−µ)ε+O(ε2).

And for

x<
µ

σ2γ
− da

σ2γ(T − t)
+

κ(T − t)

2σ2γ
(µ̄−µ)ε+O(ε2), (EC.15)

define

F (t,µ,x, da, db) = sx+
qa
2
d2a −

σ2γ(T − t)

2(1+σ2γqa(T − t))
(x− qada −

µ

σ2γ
)2 +

µ2(T − t)

2σ2γ

+
κ(T − t)2

2(1+σ2γqa(T − t))

[
x− qada + qa(T − t)µ

]
(µ̄−µ)ε+O(ε2).

It is straightforward to verify the above F , along with the boundaries defined in (EC.14) and

(EC.15), satisfies the equation (EC.12) (up to O(ε2)).

Now turn to the state region in which t < max{t0,a, t0,b}. For notational simplicity, we use

Xbuy,ε(t,µ, da, db) and Xsell,ε(t,µ, da, db) to denote the parametric forms of the buy and sell bound-

aries B̂Rε
t and ŜRε

t , respectively. Expand the functions F , Xbuy,ε and Xsell,ε in terms of ε; that

is,

F (t,µ,x, da, db) = F0(t,µ,x, da, db)+ εF1(t,µ,x, da, db)+O(ε2), (EC.16)

Xbuy/sell,ε(t,µ, da, db) =X
buy/sell
0 (t,µ, da, db)+ εX

buy/sell
1 (t,µ, da, db)+O(ε2), (EC.17)
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where the functions F0, F1, X
buy/sell
0 , X

buy/sell
1 are to be determined. Substituting (EC.16) and

(EC.17) into the system (EC.13) leads to several observations. First, in NR, we have

∂F

∂t
+µx− 1

2
σ2γx2 + εκ(µ̄−µ)

∂F

∂µ
+

1

2
ε2β2[

∂2F

∂µ2
− γ(

∂F

∂µ
)2]− ρada

∂F

∂da
− ρbdb

∂F

∂db

=
∂F0

∂t
+µx− 1

2
σ2γx2 − ρada

∂F0

∂da
− ρbdb

∂F0

∂db
+ ε

{∂F1

∂t
+κ(µ̄−µ)

∂F0

∂µ
− ρada

∂F1

∂da
− ρbdb

∂F1

∂db

}
+O(ε2)

= 0.

Second, the boundaries Xbuy,ε and Xsell,ε satisfy( 1

qa

∂F

∂da
+

∂F

∂x
− da

)
|
x=X

buy
0 +εX

buy
1 +O(ε2)

=
( 1

qa

∂F0

∂da
+

∂F0

∂x
− da

)
|
x=X

buy
0

+ ε
{
Xbuy

1 (
1

qa

∂2F0

∂x∂da
+

∂2F0

∂x2
)+

1

qa

∂F1

∂da
+

∂F1

∂x

}
|
x=X

buy
0

+O(ε2)

= 0,

and( 1

qb

∂F

∂db
− ∂F

∂x
− db

)
|x=Xsell

0 +εXsell
1 +O(ε2)

=
( 1

qb

∂F0

∂db
− ∂F0

∂x
− db

)
|x=Xsell

0
+ ε

{
Xsell

1 (
1

qb

∂2F0

∂x∂db
− ∂2F0

∂x2
)+

1

qb

∂F1

∂db
− ∂F1

∂x

}
|x=Xsell

0
+O(ε2)

= 0.

Comparing the coefficients of ε in different orders in the above PDEs, we can derive the following

systems of differential equations. Specifically, the equations from the 0-order is

∂F0
∂t

+µx− 1
2
σ2γx2 − ρada

∂F0
∂da

− ρbdb
∂F0
∂db

= 0 in NR0,

1
qa

∂F0
∂da

+ ∂F0
∂x

− da = 0 on x=Xbuy
0 ,

1
qb

∂F0
∂db

− ∂F0
∂x

− db = 0 on x=Xsell
0 ,

F0(T,µ,x, da, db) = 0.

(EC.18)

And the equations from the 1st-order comparison are

∂F1
∂t

+κ(µ̄−µ)∂F0
∂µ

− ρada
∂F1
∂da

− ρbdb
∂F1
∂db

= 0 in NR0,

Xbuy
1 ( 1

qa

∂2F0
∂x∂da

+ ∂2F0
∂x2

)+ 1
qa

∂F1
∂da

+ ∂F1
∂x

= 0 on x=Xbuy
0 ,

Xsell
1 ( 1

qb

∂2F0
∂x∂db

− ∂2F0
∂x2

)+ 1
qb

∂F1
∂db

− ∂F1
∂x

= 0 on x=Xsell
0 ,

F1(T,µ,x, da, db) = 0.

(EC.19)

We have already solved F0 in (EC.18) in Lemma EC.2.1. Substitute F0 into (EC.19). Note that

the equation (EC.19) is a first-order linear PDE. We can use the method of characteristics to solve
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it; refer to, e.g., Section 3.2 of Evans (2002). We omit detailed calculation here in the interest of

space. The final solutions are summarized as follows.

Let a01,i and b01,i be the solutions to the following ODE system, i= a, b:
(hi(t)+ qi)a

′
01,i(t)− ρiqia01,i(t)+

2κ
σ2γ

fi(t)(hi(t)+ qi) = 0,

b′01,i(t)+
1

σ2γ
a′
01,i(t)− κ

σ2γ
(T − t) = 0,

where hi and fi are defined in (EC.8) and (EC.9), respectively. There are three cases for F1:

Case (i) If
µ

σ2γ
− ρa

σ2γ
e−ρa(T− 1

ρa
−t)da <x<

µ

σ2γ
+

ρb
σ2γ

e
−ρb(T− 1

ρb
−t)

db,

then,

F1(t,µ,x, da, db) =−1

2
κ(µ̄−µ)(T − t)2x.

Case (ii) If

µ

σ2γ
−ha(t)da + ε

a′
01,a(t)+

2κ
σ2γ

fa(t)

2(f ′
a(t)− 1

2
σ2γ)

κ(µ̄−µ)<x<
µ

σ2γ
− ρa

σ2γ
e−ρa(T− 1

ρa
−t)da,

then

F1(t,µ,x, da, db) = κ(µ̄−µ)

∫ τ−t

0

κ
∂F0

∂µ

(
s+ τ,µ,x, dae

−ρa(τ−t+s), dbe
−ρb(τ−t+s)

)
ds

− [a01,a(τ)(x− qadae
−ρa(τ−t))+ b01,a(τ)µ]κ(µ̄−µ),

with τ being determined by

x− µ

σ2γ
+ha(τ)e

−ρa(τ−t)da = 0,

Case (iii) If

µ

σ2γ
+

ρb
σ2γ

e
−ρb(T− 1

ρb
−t)

db <x<
µ

σ2γ
+hb(t)db + ε

a′
01,b(t)+

2κ
σ2γ

fb(t)

2(f ′
b(t)− 1

2
σ2γ)

κ(µ̄−µ),

then

F1(t,µ,x, da, db) = κ(µ̄−µ)

∫ τ−t

0

κ
∂F0

∂µ

(
s+ τ,µ,x, dae

−ρa(τ−t+s), dbe
−ρb(τ−t+s)

)
ds

− [a01,b(τ)(x+ qbdbe
−ρa(τ−t))+ b01,b(τ)µ]κ(µ̄−µ),

with τ being determined by

x− µ

σ2γ
−hb(τ)e

−ρb(τ−t)db = 0.
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So far we have explicitly determined F0 and F1 in the expansion (EC.16) to solve the variational

inequality (EC.7). From the above (EC.14), (EC.15), cases (ii) and (iii), we also have derived

approximations to the buy and sell boundaries. Specifically, define

ri(t) =


κσ2γ

2

a′01,i(t)+
2κ
σ2γ

fi(t)

f ′
i(t)−

1
2σ

2γ
, if t < T − 1

ρi
,

κ(T−t)

2
, if t≥ T − 1

ρi
,

(EC.20)

for i= a, b. The investor should buy stock whenever the current stock holding position Xt is less

than

µ

σ2γ
−ha(t)da + εra

µ̄−µ

σ2γ
.

In other words, the buy region boundary is given by

∂B̂Rε
t =

{
(x,da, db)∈ S : x− µ̂a

t

σ2γ
=−ha(t)da

}
.

Similarly, we can show the sell region. Q.E.D.

EC.5. The Skorokhod Problem and the Gradual Buying/Selling
Strategy in the Presence of Signals

The gradual buying and selling part of the trading strategy in the general case keeps the state

variables (Xt,D
a
t ,D

b
t ) staying within the no-trade region once either the buy or sell boundaries is

reached. Observe that the movement of both boundaries over time is driven by µt, which contains

the randomness caused by dW ′
t (cf. (23)). Thus, a more accurate description on this part involves

the local time of µt. To this end, we need to establish the following proposition by invoking the

celebrated Skorokhod equation (See Lemma 3.6.14 of Karatzas and Shreve (1991)):

Proposition EC.5.1 For i= a, b, let zt0 =X0 − µ̂i
0/(γσ

2)+hi(0)D
i
0 and denote

zit = zi0 −
µ̂i
t − µ̂i

0

γσ2
+

∫ t

0

(h′
i(s)− ρihi(s))D

i
sds.

Assume that za0 ≥ 0 (resp. zb0 ≤ 0). Then, there exist continuous processes {ki
t : t≥ 0}, i= a, b, such

that

(i) ya
t := zat +(1+1/qa)k

a
t ≥ 0 (resp. yb

t := zbt − (1+1/qb)k
b
t ≤ 0), t > 0,

(ii) ki
0 = 0 and both processes are nondecreasing with respect to t,

(iii) ki
t is flat off {t : yi

t = 0, t≥ 0}; i.e., 1{yat >0}dk
a
t ≡ 0 (resp. 1{ybt<0}dk

b
t ≡ 0) for all t.

Proof. Note that zit is a continuous process for i= a, b. This proposition is a direct corollary of

the Skorokhod equation. Q.E.D.

Use the above local-time processes ki
t, i= a, b, we define
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- Gradual buying and selling. If (x,da, db) is on the boundary ∂B̂Rε
t , dL

∗
t = dka

t and dM∗
t = 0.

Under this strategy, it is easy to see that

d

[
Xt −

µ̂a
t

σ2γ
+ha(t)D

a
t

]
=dL∗

t −
dµ̂a

t

γσ2
+h′

a(t)D
a
t dt+

(
−ρha(t)D

a
t dt+

dL∗
t

qa

)
=−dµ̂a

t

γσ2
+(h′

a(t)− ρaha(t))D
a
t dt+(1+

1

qa
)dka

t

whenever (Xt,D
a
t ,D

b
t )∈ ∂B̂Rε

t . The local time dka
t ensures that this gradual buying strategy keeps

the portfolio within the no-trade region according to Proposition EC.5.1. Similarly, we can define

the gradual selling as follows: if (x,da, db) is on the boundary ∂ŜRε
t , dL

∗
t = 0 and dM∗

t =−dkb
t .
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