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Abstract

In this paper, we introduce a unified framework based on the pathwise expansion
method to derive explicit recursive formulas for cumulative distribution functions,
option prices, and transition densities in multivariate diffusion models. A key innovation
of our approach is the introduction of the quasi-Lamperti transform, which normal-
izes the diffusion matrix at the initial time. This transformation facilitates expansions
using uncorrelated Brownian motions, effectively reducing multivariate problems to
one-dimensional computations. Consequently, both the analysis and the computation
are significantly simplified. We also present two novel applications of the pathwise
expansion method. Specifically, we employ the proposed framework to compute the
value-at-risk for stock portfolios and to evaluate complex derivatives, such as forward-
starting options. Our method has the flexibility to accommodate models with diverse
features, including stochastic risk premiums, stochastic volatility, and nonaffine struc-
tures. Numerical experiments demonstrate the accuracy and computational efficiency
of our approach. In addition, as a theoretical contribution, we establish an equivalence
between the pathwise expansion method and the Hermite polynomial-based expansion
method in the literature.
Keywords: Pathwise expansion; quasi-Lamperti transform; Hermite expansion; portfolio
value-at-risk; forward-starting option
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1. Introduction

Multivariate diffusions, governed by stochastic differential equations (SDEs), are widely
used in financial economics to model the evolution of economic variables such as prices,
stochastic volatilities, interest rates, and other state variables. Transition densities, cumula-
tive distribution functions (CDFs), and option prices play a central role in asset pricing and risk
management. However, explicit formulas for these quantities are typically unavailable for most
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multivariate diffusions, particularly for processes with complex features, such as stochastic risk
premiums, multiple stochastic volatility factors, and nonaffine structures.

These quantities can all be expressed as conditional expectations of certain functionals on
the underlying diffusion processes. In the traditional literature (e.g. [26, 35]), the pathwise
expansion method was proposed for obtaining closed-form approximations of these quantities.
In this kind of approach, the Itô functional is first expanded along with a small parameter, and
then the conditional expectation of the expansion coefficients is computed. Deriving explicit
formulas for these conditional expectations is often computationally challenging, as it requires
dealing with expectations involving correlated Brownian motions.

In this paper, we present a unified framework based on the pathwise expansion method to
derive explicit recursive formulas for CDFs, option prices, and transition densities in multi-
variate diffusion models. To address the aforementioned challenges traditionally faced by the
pathwise expansion method, we introduce the quasi-Lamperti transform, which normalizes the
diffusion matrix of the process at the initial time. This critical step allows subsequent expan-
sions to be reduced to computations involving only uncorrelated multidimensional Brownian
motions. By using explicit expressions in terms of Hermite polynomials for the conditional
expectation of the product of iterated Itô integrals, we derive explicit expressions for the
conditional expectation of the pathwise Taylor expansion coefficients.

This paper contributes to the literature in three aspects. First, we derive explicit expansion
formulas for the conditional expectation of a ‘general function’ on multivariate diffusions. The
flexibility in choosing the function greatly broadens the applicability of the pathwise expansion
approach. For example, by specifying the function as an indicator function, a vanilla option
payoff function, or a Dirac delta function, our method produces explicit Hermite polynomial-
based expansion formulas for the marginal CDF, the European option price, and the transition
density of multivariate diffusion models. These results have important applications in financial
econometrics and risk management; see Section 5. To the best of our knowledge, the expansion
formula for the marginal CDF is new to the literature.

Second, we improve upon the traditional pathwise expansion approach by introducing a
quasi-Lamperti transform to simplify computations. The Lamperti transform is widely used
in the literature to convert univariate SDEs with state-dependent coefficients into SDEs with
constant diffusion coefficients, making the transformed process much more computationally
tractable. For instance, Beskos and Roberts [9] and Chen and Huang [12] developed exact
simulation schemes for general univariate diffusions after applying the transformation, while
Aït-Sahalia [1] constructed closed-form approximations for the transition density of the trans-
formed process. However, it is well known that such a transformation does not generally
exist in multivariate settings, unless the underlying process satisfies a commutative condition;
see [2]. Unfortunately, most processes of interest in financial applications fail to meet this
condition.

Unlike the conventional Lamperti transform, the quasi-Lamperti transform ensures only
that the diffusion matrix of the transformed process degenerates to an identity matrix at the
initial time (see Subsection 3.2 for a detailed discussion). By leveraging this property in con-
junction with a Hermite polynomial-based representation for the conditional expectation of the
product of iterated Itô integrals (see Lemma 2), our expansion involves only uncorrelated mul-
tidimensional normal densities. This simplification makes explicit expansions computationally
feasible. Furthermore, by using Hermite polynomials as the ‘general function’, our approach
(Theorem 2) establishes an equivalence between two existing methodologies in the literature
of diffusion process density approximation: the pathwise expansion method of Li [26] and the
Hermite expansion method introduced by Yang et al. [36] and Wan and Yang [34].
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Explicit pathwise expansion with applications 3

Third, we explore new applications of diffusion process expansions. In particular, we use the
newly developed expansion formula for the marginal CDF to compute the value-at-risk (VaR)
for a portfolio within a multivariate model that incorporates both a stochastic risk premium
and a stochastic volatility factor. In addition, we derive closed-form expansion formulas for
pricing complex exotic derivatives, such as forward-starting options, under general stochastic
volatility models, including various specifications of the volatility process, with an emphasis on
nonaffine models. To the best of our knowledge, this work is the first to apply expansion meth-
ods to these problems. Numerical experiments further validate the accuracy and computational
efficiency of our formulas.

Related literature. Watanabe [35] developed a rigorous framework for the pathwise expan-
sion of conditional expectations of generalized functions on a given diffusion process, with a
particular emphasis on convergence analysis using Malliavin calculus. Building on this foun-
dation, Li [26, 27] applied the pathwise expansion method to derive asymptotic expansions for
the transition density and European option prices by treating the Dirac delta function and the
option payoff function as separate cases. Extending [26, 27], our method offers a more unified
framework for handling different types of conditional expectations, enabling the simultaneous
derivation of explicit expansions for the transition density function, the CDF, and option prices.

Furthermore, we introduce two methodological innovations over the approach in [26, 27].
First, while Li [26, 27] computed the expansion coefficients recursively using the condi-
tional expectation of the product of iterated Stratonovich integrals, we instead use iterated
Itô integrals. This innovation eliminates the need to convert between Stratonovich and Itô
formulations. More importantly, we find that the conditional expectation of the product of
iterated Itô integrals can be expressed in terms of Hermite polynomials, which, in turn, can
be derived through higher-order derivatives of the normal distribution. These key observations
significantly simplify subsequent computations involving derivatives and integrals of the nor-
mal distribution. In addition, this new approach facilitates comparisons with other expansion
methods, as demonstrated in Lemma 2.

Second, Li [26] employed a diagonal matrix transformation that produces a multidi-
mensional correlated Brownian motion as the leading term. In contrast, our quasi-Lamperti
transform generates a multidimensional uncorrelated standard Brownian motion as the leading
term, whose density function is simply the product of univariate normal density functions. This
distinction significantly simplifies the computation of higher-order derivatives and multivari-
ate integrals of the density function, allowing the expansion coefficients to be computed more
easily and expressed explicitly.

Various methods for expanding transition densities (likelihood functions) have been
explored in the literature. The Kolmogorov method [2] expands transition densities in time and
state variables by leveraging Kolmogorov equations to determine the expansion coefficients.
Yang et al. [36] proposed a delta expansion based on the Itô–Taylor expansion of the Dirac
delta function, while Wan and Yang [34] extended the Hermite expansion of [1] to the multi-
variate setting, establishing a connection with the delta expansion. Other related works include
[4, 5, 8, 13, 14, 17, 29, 39]. In addition, in the context of statistical estimation, Yoshida [37,
38] derived expansions for statistical functionals and established properties of the maximum
likelihood estimator.

Similarly, expansion techniques have been widely applied to option pricing. In [11, 24, 25,
27, 32] pathwise expansion methods were employed to approximate option prices. In [6] the
option price was inverted to derive a closed-form formula for the implied volatility, and in [7]

https://doi.org/10.1017/apr.2025.10032 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.10032


4 N. CHEN ET AL.

an implied stochastic volatility model based on observed volatility surfaces was proposed. For
comprehensive overviews of expansion-based approaches in financial modeling, see [10, 33].

Organization of the paper. The remainder of the paper is organized as follows. Section 2
presents the model setup and the problem formulation. Section 3 uses the pathwise expan-
sion method to transform the conditional expectation of a function into an integral involving
its product with the normal distribution. Building on this result, Section 4 derives explicit
expansion formulas for the transition density, the CDF, and European option prices by tak-
ing the function to be the Dirac delta function, an indicator function, and an option payoff
function. Section 5 presents two applications along with numerical experiments that demon-
strate the accuracy and efficiency of our formulas. Technical lemmas and proofs, as well as an
equivalence result between various density expansions, are provided in the Appendix.

Notation. For ease of exposition, we use the following notational conventions throughout the
paper. The positive integer m represents the dimension of the state variable. Let Zm be the set
of m-dimensional integers, and let Zm+ be the subset of Zm consisting of elements with nonneg-
ative components. For h = (h1, h2, . . . , hm) ∈Zm+, define |h| =∑m

i=1 hi and h! = h1! · · · hm!.
Let ei be a special index vector whose ith component is 1 and whose other components are
0. We write xh = xh1

1 · · · xhm
m for any x = (x1, . . . , xm)� ∈Rm, where � denotes transposition.

Let μ ∈Rm and ν ∈Rm×m be a vector and a matrix, respectively. We use either μi or (μ)i to
denote the ith element of the vector μ. Similarly, we denote the (i, j)th element of the matrix ν

by νij or (ν)ij. Let φ(x) denote the density of the standard m-dimensional multivariate normal
distribution with zero mean and identity variance–covariance matrix, and let Hh(x) denote the
corresponding multivariate Hermite polynomial, that is, Hh(x) = (−1)|h|φ−1(x)∂h

x φ(x), where
∂h

x = ∂ |h|/(∂xh1
1 · · · ∂xhm

m ). In particular, Hh(x) =∏m
i=1 Hhi (xi), where Hhi(xi) is the hith-order

standard univariate Hermite polynomial.

2. The model and problem

Consider a multivariate time-homogeneous diffusion process

dX(s) = μX(X(s)) dt + σX(X(s)) dW(s), (1)

where X(s) is an m × 1 vector of state variables in the domain DX ⊂Rm and W(s) is a m-
dimensional standard Brownian motion. The drift vector

μX(X(s)) = (μX
1 (X(s)), . . . , μX

m(X(s))
) ∈Rm

and the volatility (or dispersion) matrix σX(X(s)) = (σX
ij (X(s)))m

i,j=1 ∈Rm×m are explicitly
known. For two time points t and t′ with t′ > t, let pX(t′, x′ | t, x) denote the conditional den-
sity of X(t′) = x′ given X(t) = x. The diffusion matrix associated with the process is thus
defined as

νX(ξ ) = σX(ξ )
(
σX(ξ )

)�. (2)

The primary goal of this paper is to derive a closed-form expansion for the conditional
expectation of a given function g(X(t′)), conditioned on X(t) = x for t′ > t. Depending on the
application, the function g(·) can take various forms, such as a generalized function (e.g. the
Dirac delta function), an indicator function, or a Lipschitz-continuous function. By appro-
priately choosing g(·), we can derive analytical expressions for the transition densities and
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Explicit pathwise expansion with applications 5

CDFs of the process X, for instance, as well as for the prices of European options where the
underlying asset dynamics are governed by X. To address potential degeneracies in computa-
tion when � = t′ − t is small, we rescale X(t′) by (X(t′) − x)/

√
t′ − t. Obviously, computing

E[g(X(t′)) | X(t) = x] is equivalent to computing

E

[
fX

(
X(t′) − x√

t′ − t

) ∣∣∣∣ X(t) = x

]
(3)

if we define fX(a) = g(
√

t′ − t · a + x). In light of this transformation, we hereafter focus on the
expansion of (3) without loss of generality.

Following the technical assumptions in the standard pathwise expansion literature, such as
[26, 35], we make the following assumptions.

Assumption 1. The diffusion matrix νX(x) is positive definite, i.e. ζ�νX(x)ζ > 0 for any
nonzero vector ζ ∈Rm and x ∈ DX.

Assumption 2. All the components of μX(x) and σX(x) are infinitely differentiable with
bounded derivatives of all orders.

Assumptions 1 and 2 are conventionally imposed in the study of SDEs, as discussed in [19].
These assumptions are sufficient, though not necessary, to ensure the existence, uniqueness,
and smoothness of the expansion target, such as the transition density function of the process.
However, the numerical examples presented in this paper indicate that the proposed method
applies to a broad range of commonly used models, extending beyond those that strictly meet
these sufficient conditions, for example the SV-1/2 model. This suggests that local relaxations
may be feasible for specific models, a direction for future research.

3. Explicit formulas for the conditional expectation via the pathwise expansion method

The expansion process involves the following two main steps.

(i) Pathwise Taylor expansion: Using the chain rule for composite functions and the meth-
ods developed in [26, 35], we derive a pathwise Taylor expansion of fX

(X(t′)−x√
t′−t

)
with

respect to ε = √
� = √

t′ − t.

(ii) Computation of the conditional expectations of expansion coefficients: We then compute
explicit formulas for the conditional expectations of the coefficients in the pathwise
Taylor expansion.

The details of each step are elaborated in this section.

3.1. Heuristic idea behind the expansion

Before presenting the technical details of our pathwise expansion method, we discuss the
heuristic ideas behind it in this subsection to provide readers with a better understanding of the
new contributions of this work relative to the existing literature.

The first step is inspired by Theorem 3.3 of [35]. By introducing a small parame-
ter ε = √

� = √
t′ − t, we fix X(t) = x and rescale the process X(·) on the time horizon

[t, +∞) through the transformation Xε(s) = X(ε2s + t) for s ≥ 0. By (1), the rescaled process
satisfies

dXε(s) = ε2μX(Xε(s)) ds + εσX(Xε(s)) dWε(s), Xε(0) = x, (4)
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where

Wε(s) = 1

ε
W
(
ε2s + t

)
.

Obviously, {Wε(s), s ≥ 0} is identical to an m-dimensional standard Brownian motion in the
probability law. Hereafter we use W(s) to denote Wε(s) for simplicity. Since we are interested
in computing expectations of Xε , the equivalence between the distributional laws of W(s) and
Wε(s) ensures that this abuse of notation will not cause any problems.

Let Xε
i represent the ith component of Xε , for 1 ≤ i ≤ m. Note that the expansion target

X(t′) = Xε(1). Then, by (4), we have

Xε
i (1) − xi = ε2

∫ 1

0
μX

i (Xε(t1)) dt1 + ε

m∑
k=1

∫ t

0
σX

i,k(Xε(t1)) dWk(t1). (5)

Applying Itô’s formula to σX
i,k(Xε(t1)) in the term of order ε (i.e. the second integral on the

right-hand side of (5)) leads to

Xε
i (1) − xi

= ε2
∫ 1

0
μX

i (Xε(t1)) dt1

+ ε

m∑
k=1

∫ 1

0

[
σX

i,k(x) + ε

m∑
l=1

∫ t1

0
LX,l

x σX
i,k(Xε(t2)) dWl(t2)

+ ε2
∫ t1

0
LX,0

x σX
i,k(Xε(t2)) dt2

]
dWk(t1)

= ε

m∑
k=1

σX
i,k(x)Wk(1) + ε2

∫ 1

0
μX

i (Xε(t1)) dt1

+ ε2
m∑

k=1

m∑
l=1

∫ 1

0

(∫ t1

0
LX,l

x σX
i,k(Xε(t2)) dWl(t2)

)
dWk(t1) +O(ε3), (6)

where O(ε3) represents the terms of order ε3 and higher, and {LX,l
x , l = 0, 1, . . . , m} is a

set of differential operators associated with the process X such that for a sufficiently smooth
function G,

LX,l
x G(x) =

m∑
k=1

μX
k (x)∂ek

x G(x) + 1

2

m∑
k,h=1

νX
kj(x)∂ek+eh

x G(x) for l = 0

and

LX,l
x G(x) =

m∑
k=1

σX
kl (x)∂ek

x G(x) for l = 1, . . . , m.

Our approach builds on the theoretical framework established in [35], which uses
Stratonovich integrals in the expression of Itô’s formula. However, by working directly with Itô
integrals in (6), we circumvent the need for converting Stratonovich integrals into Itô integrals,
as outlined in Appendix A.1 of [26]. This refinement significantly simplifies the subsequent
computational process, enabling more efficient derivation of explicit formulas.
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We continue applying Itô’s formula to the integrands of order ε2 (i.e. the second and third
terms on the right-hand side of (6)). After some algebraic operations, we obtain

Xε
i (1) − xi = εFX

1,i + ε2FX
2,i +O(ε3), (7)

with

FX
1,i =

m∑
k=1

σX
i,k(x)Wi(1) = (σX(x)W(1)

)
i (8)

and

FX
2,i =μX

i (x) +
m∑

k=1

m∑
l=1

LX,l
x σX

i,k(x)
∫ 1

0

∫ t1

0
dWl(t2) dWk(t1). (9)

Note that the expansion in (7) works for any component i of the vector Xε . In this way,
repeatedly applying Itô’s formula to the integrands yields

Xε(1) − x = εFX
1 + ε2FX

2 + · · · + εKFX
K +O(εK+1) (10)

for any order K. We establish the explicit forms for all the coefficients in Lemma 1.
Next, substitute (10) into fX(·). To help readers more easily grasp the intuition behind our

approach, let us temporarily assume that fX is infinitely differentiable. Then, by applying the
chain rule of differentiation for composite functions, we can expand fX(·) with respect to ε:

fX

(
Xε(1) − x

ε

)
= fX
(
FX

1 + εFX
2 + · · · + εK−1FK

X +O(εK)
)

= fX(FX
1 ) +

K−1∑
k=1

εk
X
k

(
x; fX(·))+O(εK), (11)

where the coefficients 
X
k

(
x; fX(·)) (k = 1, . . . , K − 1) are given by the order-k derivatives of

fX((Xε(1) − x)/ε) with respect to ε. Taking the expectation on both sides of (11), we know that

E

[
fX

(
Xε(1) − x

ε

) ∣∣∣∣ Xε(0) = x

]
=E
[
fX
(
FX

1

)]+ K−1∑
k=1

εkE
[

X

k

(
x; fX(·))]+O(εK). (12)

In light of (12), developing a valid expansion for (3) requires explicitly calculating the con-
ditional expectation of the expansion coefficients E[
X

k (x; fX(·))]. This constitutes the second
step of our approach, which represents the primary contribution of the paper, as noted in the
Introduction. We take the order-0 and order-1 terms in (12), E[fX(FX

1 )] and E[
X
1 (x; fX(·))], as

examples to illustrate how we invoke the quasi-Lamperti transform introduced in Subsection
3.2 to address the difficulties we encounter.

By (8), FX
1 = σX(x)W(1). It follows a multivariate normal distribution with mean 0 and

covariance matrix νX(x). Denote its density at z by φ(z; νX(x)). Thus,

E
[
fX
(
FX

1

)]= ∫
Rm

fX(z)φ
(
z; νX(x)

)
dz. (13)
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Meanwhile, noting that


X
1

(
x; fX(·))= d

dε

[
fX
(Xε(1) − x

ε

)] ∣∣∣∣
ε=0

=
m∑

i=1

∂fX
∂zi

(
FX

1

)
FX

2,i,

we have

E
[

X

1

(
x; fX(·))]= m∑

i=1

E

[
∂fX
∂zi

(
FX

1

)
FX

2,i

]

=
m∑

i=1

∫
Rm

∂fX
∂zi

(z) E
[
FX

2,i

∣∣ FX
1 = z

]
φ(z; νX(x)) dz,

where the second equality is due to the iterated law of conditional expectations and FX
1 ∼

φ(z; νX(x)). Substituting the expression for FX
2,i (cf. (9)) into E[FX

2,i | FX
1 = z] leads to∫

Rm

∂fX
∂zi

(z) E
[
FX

2,i

∣∣ FX
1 = z

]
φ(z; νX(x)) dz

= μX
i (x)
∫
Rm

∂fX
∂zi

(z)φ(z; νX(x)) dz +
m∑

k=1

m∑
l=1

LX,l
x σX

i,k(x)
∫
Rm

∂fX
∂zi

(z)�k,l(z)φ(z; νX(x)) dz,

with

�k,l(z) =E

[∫ 1

0

∫ t1

0
dWl(t2) dWk(t1)

∣∣∣∣ σX(x)W(1) = z

]
.

Whenever fX is dominated by a normal density at infinity, we can further use integration by
parts to show that∫

Rm

∂fX
∂zi

(z)φ
(
z; νX(x)

)
dz = −

∫
Rm

fX(z)
∂

∂zi

(
φ
(
z; νX(x)

))
dz,∫

Rm

∂fX
∂zi

(z)�k,l(ẑ)φ
(
z; νX(x)

)
dz = −

∫
Rm

fX(z)
∂

∂zi

(
�k,l(z)φ

(
z; νX(x)

))
dz. (14)

Thus, to compute the expansion coefficients, we need to evaluate the multidimensional inte-
grals on the right-hand side of (14). For higher-order terms, this task becomes increasingly
challenging as the first-order terms in (14) are replaced by higher-order partial derivatives with
respect to z. However, one special case is tractable: when σX(x) is an identity matrix. In this
case, the correlated normal density function φ(z; νX(x)) in (14) simplifies to an uncorrelated
standard normal density function φ(z), which can be expressed as a product of multiple uni-
variate normal density functions. In addition, when σX(x) is an identity matrix, �k,l(z) also
becomes computable as follows:

�k,l(z) =E

[∫ 1

0

∫ t1

0
dWl(t2) dWk(t1)

∣∣∣∣W(1) = z

]
=
⎧⎨⎩

1
2

(
z2

k − 1
)

if l = k,

1
2 zlzk if l �= k.

From �k,l, we can see the aforementioned advantage of working directly with Itô integrals
instead of Stratonovich integrals, because the former admit closed-form representations, as
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shown above. In Lemma 2, we generalize this result about �k,l(z) by representing the con-
ditional expectation of a product of iterated Itô integrals as a linear combination of products
of one-dimensional Hermite polynomials. Leveraging these observations, we can derive an
explicit form for the expansion of (3) when σX(x) is an identity matrix.

The introduction of the quasi-Lamperti transform in the next subsection allows us to extend
this tractability to address computational challenges in the general case. This transform maps
the original process X to a new process Y with an identity diffusion matrix at the initial time.
Working with the transformed process Y in Subsection 3.3, we derive an explicit expansion
formula for the expectation (3); see Theorem 1.

The close relationship between the conditional expectations of iterated Itô integrals
and Hermite polynomials once again plays a crucial role in simplifying the calculations.
Specifically, we reduce the computation of the expansion coefficients to evaluating the
following integral: ∫

Rm
f (z)

∂k

∂zk
i

⎛⎝ m∏
j=1

Hhj

(
zj
)
φ(zj)

⎞⎠ dz, (15)

where f (·) is the corresponding function of fX under the transformed process Y , Hhj(zj) is the
hjth-order univariate Hermite polynomial, and φ(zj) is the univariate standard normal density
function. Thanks to the special structure of Hermite polynomials, we can relate its high-order
derivatives to a combination of itself and standard normal distribution densities. This key
observation helps us avoid the step of evaluating ∂k/∂zk

i

(∏m
j=1 Hhj (zj)φ(zj)

)
, which requires

significant computational effort.

Remark 1. It is unnecessary for fX to be infinitely differentiable in our expansion approach.
Specifically, (14) holds when fX is differentiable in a weak sense. More precisely, if we aim to
expand up to K th order, we only require fX to belong to the Sobolev space WK,1(Rm, μ), where
μ is the measure induced by the standard uncorrelated normal distribution on Rm. This means
that fX ∈ L1(Rm, μ) and all weak derivatives of fX up to order K also belong to L1(Rm, μ).

3.2. Quasi-Lamperti transform X → Y

Now we formally introduce the quasi-Lamperti transform and start the rigorous derivation.
For a fixed initial time t and state X(t) = x, define a process Y by the linear transformation

Y(s) = (σX(x))−1X(s) = LX(s) for s ≥ t, (16)

where L = (σX(x))−1 is the inverse matrix of the volatility matrix σX at the initial point x. Then
the dynamics of Y satisfy, according to Itô’s formula,

dY(s) = μY (Y(s)) ds + σ Y (Y(s)) dW(s), Y(t) = y. (17)

Here the initial point for the new process changes to y = Lx. Also, the drift vector and volatility
matrix of Y are given by μY (z) = LμX(L−1z) and σ Y (z) = LσX(L−1z), respectively, for any z.
Hence, the diffusion matrix of process Y is

νY (z) = σ Y (z)σ Y (z)� = LσX(L−1z
)(

σX(L−1z
))�

L�.

In light of the above equality, we can easily see that the initial diffusion matrix of Y must be
an identity matrix; that is, upon taking z to be y = Lx in νY (z),

νY (y) = σ Y (y)σ Y (y)� = LσX(x)
(
σX(x)

)�
L� = LL−1(L�)−1L� = Idm.
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The transformation defined through (16) is called a quasi-Lamperti transform. It is a simple
linear transformation. Mimicking LX,l, we can define the corresponding differential operators
for Y:

LY,0
ζ =

m∑
k=1

μY
k (ζ )∂ek

ζ + 1

2

m∑
k,l=1

νY
kj(ζ )∂ek+el

ζ , (18)

LY,l
ζ =

m∑
k=1

σ Y
kl (ζ )∂ek

ζ for l = 1, . . . , m. (19)

Denote by pX(t′, x′ | t, x) and pY (t′, y′ | t, y) the transition densities for the original process
X and the transformed diffusion Y , respectively. By the Jacobian formula for the change of
density, we have

pX(t′, x′ | t, x) = det (L) pY (t′, Lx′ | t, Lx). (20)

Thus, once we have derived a Kth-order density expansion for Y , we can recover a (approxi-
mate) density for the original X by using (20).

Remark 2. For univariate diffusions, the volatility σX in (1) is a scalar function. The existing
literature defines the Lamperti transform in such a way that

L(·) =
∫ ·

x

1

σX(u)
du

(see e.g. equation (2.1) of [1]). Under it, the transformed process Y = L(X) has a unit volatility
independent of its state. This transform is widely used in the literature to make the transformed
process more computationally tractable. For instance, in [9, 12] exact simulation schemes
were developed for general univariate diffusions after applying the transformation, while in
[1] closed-form approximations were constructed for the transition density of the transformed
process.

However, a global Lamperti transform does not exist for multivariate diffusion processes,
the primary focus of this paper, unless the volatility matrix of the process satisfies a commu-
nicative condition as stipulated in Proposition 1 of [2]. The transform introduced in (16) is
much weaker in the sense that the diffusion matrix degenerates to an identity matrix only at
the initial point X = x. It suffices since our goal is to derive a small-time expansion around the
initial time. This is because the diffusion matrix of the transformed process will not deviate too
much from the identity matrix within a small time horizon.

3.3. The general Kth-order expansion

In this subsection, we apply the procedure outlined in Subsection 3.1 to the transformed
process Y to derive the explicit expansion formula up to the Kth order. Similar to (4), we
rescale the process by Yε(s) = Y(ε2s + t) for s ≥ 0. By (17), we know that this leads to the
SDE

dYε(s) = ε2μY (Yε(s) ds + εσ Y (Yε(s)) dW(s), Yε(0) = y.

Note that Yε(1) = Y(t′) and that the normalization �ε satisfies

�ε = Yε(1) − y

ε
→ W(1) as ε → 0. (21)
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This convergence holds because σ Y (y) is an identity matrix. This asymptotic behavior contrasts
with that of the original process, where (Xε − 1)/ε converges to FX

1 = σX(x)W(1) as ε → 0 (see
(7) and (8)), which is a correlated multivariate Brownian motion.

Now we proceed to express the target conditional expectation (3) in terms of �ε . First, let
f (z) = fX(L−1z); then we have

E

[
fX

(
X(t′) − x√

t′ − t

) ∣∣∣∣ X(t) = x

]
=E

[
f

(
Y(t′) − y√

t′ − t

) ∣∣∣∣ Y(t) = y

]
.

Using Yε(1) = Y(t′),

E

[
f

(
Y(t′) − y√

t′ − t

) ∣∣∣∣ Y(t) = y

]
=E
[
f (�ε)

∣∣ Yε(0) = y
]
. (22)

The task is now reduced to expanding the conditional expectation in (22).

Remark 3. It is worth noting that the normalization �ε here corresponds to the standardiza-
tion described in equation (3.16) of [26], but there are significant differences between the
two approaches. In [26], a diagonal matrix transformation is applied to standardize the orig-
inal diffusion X, resulting in a multidimensional correlated Brownian motion (see equation
(3.17) of [26]). Hence, Li’s approach still involves the computation of multidimensional inte-
grals, similar to those in (14). In contrast, our approach employs the quasi-Lamperti transform,
where the normalization �ε converges to an uncorrelated multidimensional standard Brownian
motion W(1). This leads to significantly simpler integrals, as shown in (32). This simplifica-
tion represents one of the key innovations that distinguish this paper from the method proposed
in [26].

3.3.1. Step 1: Pathwise Taylor expansion of f (�ε(1)) with respect to ε. Following the approach
that led to (10), we establish a pathwise expansion of Yε(1) in Lemma 1. The convergence
of the expansion is guaranteed by Watanabe theory from Malliavin calculus (see e.g. [26, 27,
35]). It is worth noting that, unlike the original method proposed in [35], our expansion uses
iterated Itô integrals. This choice offers significant computational advantages, particularly in
the subsequent steps of the procedure.

For ease of exposition, we first define some notation. For any n, consider an index i =
(i1, i2, . . . , in) ∈ {0, 1, . . . , m}n. Define its ‘norm’ by

‖i‖ =
n∑

l=1

(
2 · 1{il=0} + 1{il �=0}

)
. (23)

For instance, the norms of i1 = (1, 1, . . . , 1) and i2 = (0, 1, . . . , 1) equal n and n + 1, respec-
tively. In addition, let Mn

k be the collection of all the n-dimensional indices with norm k,
that is,

Mn
k = {i = (i1, i2, . . . , in) : ‖i‖ = k}.

Obviously, Mn
0 = ∅ for all positive integers n, M1

1 = {(1), . . . , (m)} and Mn
1 = ∅ for n ≥ 2,

and M1
2 = {(0)}. Further, Mn

k can be constructed in the following recursive way: for n ≥ 2,

Mn
k+1 = {i : i1 = 0, (i2, . . . , in) ∈Mn−1

k−1

}∪
{

m⋃
α=1

{
i : i1 = α, (i2, . . . , in) ∈Mn−1

k

}}
. (24)
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For an index i = (i1, . . . , in) ∈Mn
k , define

CY
i (ζ ) = (LY,in

ζ ◦ · · · ◦LY,i2
ζ

)
σ Y·i1 (ζ ), (25)

where σ Y·0 = μY , σ Y·i1 = (σ Y
1i1

, . . . , σ Y
mi1

)� and the operator LY,i
ζ follows the definition in (18)

and (19). Note that in computing CY
i , we just repeatedly apply differential operations on the

elements of the volatility matrix of Y . This step can be easily accomplished by symbolic
computation tools such as Mathematica.

Let Mk =⋃n Mn
k . Note that for any given k, there are only finitely many nonempty Mn

k
in the union. We have the following result.

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then the random variable Yε(1) admits
the expansion

Yε(1) =
K∑

k=0

εkFY
k +O(εK+1).

Furthermore, the expansion coefficients satisfy FY
0 = y and

FY
k =

∑
i∈Mk

CY
i (y) · Ii(1),

where Ii(t) is an iterated Itô integral defined through

Ii(t) =
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
dWin (tn) · · · dWi2 (t2) dWi1 (t1).

Here we take W0(t) = t by convention.

By replacing X with Y and x with y in (8) and (9), we can see the explicit expressions for
the first two terms, FY

1 and FY
2 , respectively.

3.3.2. Step 2: Computation of the conditional expectations of the pathwise Taylor expan-
sion coefficients. By substituting the pathwise expansion result from Lemma 1 into (21) and
combining it with (22), we have

E

[
fX

(
X(t′) − x√

t′ − t

) ∣∣∣∣ X(t) = x

]
=E
[
f (�ε)

∣∣ Y(t) = y
]

=E

⎡⎣f

(
K∑

j=0

FY
j+1ε

i +O(εK+1)

)∣∣∣∣∣ Y(t) = y

⎤⎦ .

The main theorem of this section expands the right-hand side of the above equality with respect
to ε, yielding

E

[
fX

(
X(t′) − x√

t′ − t

) ∣∣∣∣ X(t) = x

]
= �0

(
y; f (·))+ K∑

k=1

�k(y; f (·))εk +O(εK+1). (26)

The most significant contribution of this theorem is that it provides explicit expressions for the
expansion coefficients �k

(
y; f (·)).

https://doi.org/10.1017/apr.2025.10032 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2025.10032


Explicit pathwise expansion with applications 13

We need to introduce some additional notation to make the presentation of the theorem
more succinct. First, given any index vector h = (h1, . . . , hm) ∈ {0, 1, . . . , m}m, let

I(f (·), h) =
∫
Rm

f (z)Hh(z)φ(z) dz. (27)

Note that it is independent of the diffusion model. Here, Hh(·) is a multivariate Hermite
polynomial indexed by h, as defined at the end of the Introduction. One important observa-
tion is that Hh can be decomposed into a product of univariate polynomials; in particular,
Hh(x) =∏m

i=1 Hhi (xi), where Hhi(xi) is the hith-order standard univariate Hermite polynomial.
Second, for any given positive integers l and k, we define

S l
k ={j = (j1, j2, . . . , jl) : jω ≥ 1, ω = 1, . . . , l; j1 + j2 + · · · + jl = k

}
(28)

and Sk =⋃k
l=1 S l

k. Obviously,

Sk+1 = {j : j1 = 1, (j2, . . . , jl) ∈ Sk} ∪ {j : (j1 − 1, j2, . . . , jl) ∈ Sk}.
Third, for any two indices i and j, where i and j are vectors and may have different dimen-

sionalities, define a concatenation operation between these two vectors such that i ∧ j is a new
index vector obtained by putting j at the end of i. Repeating this operation, it is easy to get
the concatenated index vector i1 ∧ · · · ∧ il for any sequence of indices {i1, . . . , il}. Then, for
any integer l, a sequence of indices {i1, . . . , il}, and an index r = (r1, . . . , rl) ∈ {1, . . . , m}l,
we can define a function and a number. The function is

A(y; i1 ∧ · · · ∧ il, r) =
l∏

ω=1

CY
iω,rω (y), (29)

where CY
iω,rω

(y) given in (25) depends only on the model coefficients and their derivatives.
The key to deriving the expansion coefficients lies in calculating the conditional expectation

of the product of iterated Itô integrals, specifically,

E

[
l∏

ω=1

Iiω (t)

∣∣∣∣W(t) = x

]
. (30)

Lemma 2 in the Appendix gives explicit recursive formulas for evaluating (30), which are
crucial for obtaining the expansion coefficients.

Now we are ready to present the main theorem. The expansion coefficients are reduced
to linear combinations of the integrals I(f (·), ·) defined in (27), where the combination of
coefficients can be precomputed in advance. Thus, we only need to compute the integrals
I(f (·), ·).
Theorem 1. In the expansion (26), the leading term is given by

�0
(
y; f (·))= ∫

Rm
f (z)φ(z) dz. (31)

The other expansion coefficients �k
(
y; f (·)) for k ≥ 1 admit the representation

�k
(
y; f (·))= k∑

l=1

1

l!
∑

j=(j1,j2,...,jl)
∈S l

k

∑
iω∈Mjω+1
ω=1,...,l

∑
r∈{1,2,...,m}l

A(y; i1 ∧ · · · ∧ il, r)B(f (·); i1 ∧ · · · ∧ il, r),

(32)
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where S l
k and Mj are defined by (28) and (24), respectively. The function A is defined by (29),

and the number B is given by

B(f (·); ï, r) =
∑

0≤a≤�cï/2�

w̃a,ï

(�(ï) − |a|)! · I
(
f (·), cï − 2a + br

)
. (33)

Here I(f (·), ·) is the integral defined by (27) involving the function f (·). For ease of exposi-
tion, we let ï = i1 ∧ · · · ∧ il denote the concatenated index vector, and �(ï) is defined by (A2),
representing the total dimensionality of the concatenated vector ï; cï ∈Zm+ is defined by (A1),
br =∑l

ω=1 erω , and w̃a,ï are constant coefficients recursively defined by (A4).

Remark 4. It is worth mentioning that by replacing the iterated Itô integrals in (30) with iter-
ated Stratonovich integrals, the conditional expectations of products of iterated Stratonovich
integrals become the building blocks of the pathwise expansion proposed in [26]. Appendix A
of [26] provides an effective algorithm for computing these conditional expectations with three
major steps, which are further elaborated in Section 4 of [27] and Section 4 of [28]. In contrast
to the algorithms described over several pages in [26, 27, 28], our approach avoids the use of
Stratonovich integrals, eliminating the need for algorithms that convert the multiplication of
iterated Stratonovich integrals to iterated Itô integrals. In addition, the formula in our Lemma 2
is explicit and more straightforward to implement.

Note that both (31) and (32) (related to (27)) involve multivariate integrals. However, com-
pared with (13) and (14), a key result of the quasi-Lamperti transform is that the multivariate
normal density here is uncorrelated, allowing it to be factored into a product of its univariate
counterparts. The same property holds for the associated multivariate Hermite polynomials.
Consequently, when the function f (z) depends on only one component or can be decomposed
into a sum of products of its components, these multivariate integrals effectively reduce to
one-dimensional integrals, significantly simplifying the computation. Specifically, for certain
functions—such as the Dirac delta function, Hermite polynomials, indicator functions, and
vanilla option payoff functions—the multivariate integrals in (31) and (32) (related to (27))
can be simplified to explicit analytical formulas, eliminating the need for direct integration.

In the next section, we provide explicit formulas for computing the multivariate inte-
grals in (31) and (32) (related to (27)) for these special functions. These results are
useful for deriving closed-form expansions for CDFs, European option prices, and transition
densities.

4. Explicit expansion formulas for marginal CDFs, European option prices, and
transition densities

To demonstrate how to apply Theorem 1, we discuss three important special cases in this
section. By specifying the function f in the theorem to be an indicator function, a vanilla option
payoff function, or a Dirac delta function, our method produces explicit expansion formulas
for marginal CDFs, European option prices, and the transition density of multivariate diffusion
models.

4.1. The marginal CDF

In this subsection, we obtain an expansion for the marginal CDF of the first state variable.
To the best of our knowledge, this expansion formula for the marginal CDF is new to the
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literature. Specifically, the marginal CDF is given by

P
[
X1(t′) < x′

1

∣∣ X(t) = x
]= P

[
L11

X1(t′) − x1√
t′ − t

< L11
x′

1 − x1√
t′ − t

∣∣∣∣ X(t) = x

]
=E

[
f

(
Y(t′) − y√

t′ − t

) ∣∣∣∣ Y(t) = y

]
, (34)

where L11 > 0 is the element in the first row and first column of the matrix L in (16).
Throughout this subsection and the next, we assume without loss of generality that σX(x) is
lower triangular, which implies that L = (σX(x))−1 is also lower triangular with L11 = 1/σX

11(x).
Given the transformations y = Lx and y′ = Lx′, we define γ = (y′ − y)/

√
t′ − t, with its

first component specifically given by γ1 = L11
x′

1−x1√
t′−t

= x′
1−x1

σX
11(x)

√
t′−t

. The function f is defined

as f (z) = 1z1<γ1 . Here, the subscript 1 for a vector denotes its first element.
Comparing with (22), we can derive an expansion for the marginal CDF (34) by plugging

this indicator function into Theorem 1. Specifically, for f (z) = 1z1<γ1 , the multivariate integral
in (31) is given by

�0
(
y; f (·))= ∫

Rm
f (z)φ(z) dz =

∫
R

1z1<γ1φ(z1) dz1 = 
(γ1), (35)

where 
(·) is the one-dimensional standard normal CDF. The multivariate integral in (32)
(related to (27)) is given by∫

Rm
1z1<γ1 Hh(z)φ(z) dz =Jh1 (γ1) · 1{hi=0,i=2,...,m}, (36)

where the function Jh1 (γ1) is defined as

Jh1 (γ1) =
∫
R

1z1<γ1 Hh1 (z1) φ(z1) dz1 = 1h1=0 · 
(γ1) − 1h1>0 · Hh1−1(γ1)φ(γ1). (37)

4.2. European call option price

In this subsection, we derive a price expansion for a European call option written on the
first state variable. Throughout this subsection, we assume that X in (1) is defined under a risk-
neutral measure. At the current time t, given X(t) = x, the price of the European contingent
claim, whose payoff function is (eX1(t′) − ea)+ maturing at t′, is given by

C(t, x) = e−r� E
[
(eX1(t′) − ea)+

∣∣ X(t) = x
]

= e−r� E

[(
e

L−1
11

√
�
(

L11
X1(t′)−x1√

t′−t

)
+x1 − ea

)+ ∣∣∣∣ X(t) = x

]

= e−r� E

[
f

(
Y(t′) − y√

t′ − t

) ∣∣∣∣ Y(t) = y

]
, (38)

where r is the risk-free interest rate, � = t′ − t, L11 = 1/σX
11(x) > 0 is the element in the first

row and first column of the matrix L in (16), y = Lx, and y′ = Lx′. The function f in this
subsection is given by

f (z) =
(

eσX
11(x)

√
�z1+x1 − ea

)+
, (39)

where the subscript 1 for a vector denotes the first element of that vector.
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Comparing with (22), we can derive an expansion for the call option price (38) by plugging
the function in (39) into Theorem 1. Specifically, the multivariate integral in (31) is given by

�0
(
y; f (·))= ∫

Rm
f (z)φ(z) dz =

∫
R

(
eσX

11(x)
√

�z1+x1 − ea
)+

φ(z1) dz1

= ex1+ 1
2 (σX

11(x))2� 
 (d2) − ea
 (d1) , (40)

where d1 = x1−a
σX

11(x)
√

�
, d2 = d1 + σX

11(x)
√

�, and 
(·) is the one-dimensional standard normal

CDF. The multivariate integral in (32) (related to (27)) is given by∫
Rm

f (z)Hh(z)φ(z) dz =
∫
R

(
eσX

11(x)
√

�z1+x1 − ea
)+

Hh1 (z1)φ(z1) dz1

=
(
σX

11(x)
√

�
)h1

ex1+ 1
2 (σX

11(x))2� · 
(d2)

+ ea
∑

1≤i≤h1−1

(
σX

11(x)�
)h1−i

(−1)i−1Hi−1(d1)φ(d1) = Ih1 . (41)

We can simply obtain the approximation of the put price using the put-call parity and the
call price approximation.

4.3. The transition density function

In this subsection, we provide an expansion for the transition density function of the diffu-
sion. Given t′ > t, the transition density function of the diffusion X from X(t) = x to X(t′) = x′
admits the following expression (see e.g. [26, 35, 36]):

pX(t′, x′ | t, x) =E[δ(X(t′) − x′) | X(t) = x], (42)

where δ(·) is the Dirac delta function. We can rewrite it using the Jacobian formula for the
change of density as

pX(t′, x′ | t, x) = �− m
2 E

[
δ

(
X(t′) − x√

�
− x′ − x√

�

) ∣∣∣∣ X(t) = x

]
(43)

= �− m
2 det(L) E

[
δ

(
Y(t′) − y√

�
− γ

) ∣∣∣∣ Y(t) = y

]
, (44)

where y = Lx, y′ = Lx′, γ = (y′ − y)/
√

�, and � = t′ − t.
Comparing the conditional expectation in (43) and (44) with (22), we can specify the

following function f to derive an expansion for the transition density function:

f (·) = δ( · −γ ). (45)

Specifically, the multivariate integrals in (31) and (32) (related to (27)) are now given by

�0
(
y; f (·))= ∫

Rm
δ(z − γ )φ(z) dz = φ(γ ) (46)
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and ∫
Rm

δ(z − γ )Hh(z)φ(z) dz = Hh(γ )φ(γ ). (47)

Plugging these into Theorem 1, together with (44) and (26), we can obtain an explicit recursive
formula for the expansion of the transition density function. To save space here, we present the
result in Appendix C; see (C1) for the complete expression.

Appendix C.1 says that this provides an alternative explicit expression for the expansion
formula in [26] and [28]. However, unlike the formula presented in those works, the newly
derived formula is explicitly expressed as a linear combination of Hermite polynomials. This
form allows us to connect the expression to the Hermite expansion of [34] and [36]. By care-
fully rearranging the terms in the expansions, it is proved in Appendix C.2 that the density
expansions from [26] and [34, 36] are equivalent. The following theorem summarizes these
results.

Theorem 2. (Equivalence theorem.) For a multivariate diffusion X as defined in (1), the path-
wise expansion (3.21) in [26] and the Hermite expansion (32) in [34] (or equivalently (22) in
[36] with the choice of μ0 = 0) have the same formula.

5. Applications in risk management and derivatives pricing with numerical experiments

This section presents two applications of the explicit expansion formulas derived above,
which yield results that are new to the literature. The first application focuses on computing the
VaR for a portfolio that incorporates both a stochastic risk premium and stochastic volatility
factors. By using the approximation of the marginal CDF, we compute the VaR for a three-
dimensional model (which may be nonaffine) that includes both factors. The second application
involves pricing forward-starting call options under general stochastic volatility models, which
may be nonaffine. The closed-form approximate formula is derived by integrating the transition
density with the European call option price. To the best of our knowledge, the VaR computation
using the approximate marginal CDF in three-dimensional (possibly nonaffine) models and the
closed-form approximate formula for forward-starting option prices under general stochastic
volatility (possibly nonaffine) models are entirely new to the literature. Numerical results show
that the approximate formulas for density, CDF, and option price are both highly accurate and
computationally efficient.

5.1. VaR for multi-asset portfolio losses

In this subsection, we use our approximation formulas to calculate the VaR for portfolio
losses in a continuous-time financial market. VaR plays a crucial role in risk manage-
ment, providing a clear, quantitative benchmark for assessing risk exposure. Moreover, it
enables investors to make more informed decisions, helping them optimize portfolios to better
withstand market fluctuations.

Specifically, we assume the presence of one riskless bond and N risky stocks. The risk-
free interest rate at time t is rt, and the dynamics of the stock prices Si (i = 1, . . . ,N ) follow
diffusion processes given by

dSit/Sit = ai(xt) dt +
N∑
j=1

bij(xt) dBjt,
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where Bt = (Bjt)N×1 is a standard N -dimensional Brownian motion, and the drift at =
(ai(xt))N×1 and volatility bt = (bij(xt))N×N are assumed to be deterministic functions of a
K-dimensional stochastic state variable xt. Consider a portfolio that invests a proportion πi

of wealth in the risky asset i for 1 ≤ i ≤N . Let Mt be the portfolio value at time t. Then,
a value of πiMt will be invested in stock i for all i = 1, . . . ,N , and the remaining value,
1 −∑N

i=1 πi, will be invested in the riskless bond. Consequently, the portfolio value Mt evolves
according to

dMt = Mtr(xt)

⎛⎝1 −
N∑
i=1

πi

⎞⎠ dt +
N∑
i=1

Mtπi

Sit
dSit

= r(xt)Mt dt + π�(a(xt) − r(xt)
)
Mt dt + Mtπ

�b(xt) dBt.

Suppose that the vector π = (π1, . . . , πN )� remains constant over a time horizon T .
Investors are interested in evaluating the VaR of such a portfolio at level q ∈ (0, 1), denoted
by VaRq

T . This quantity is defined as

VaRq
T = max{y : P(M0 − MT ≥ y)} ≥ q.

In words, VaRq
T is the maximum value such that the probability of the portfolio’s loss

(M0 − MT ) exceeding this value is at least q. We use ‘maximum’ instead of ‘supremum’
because MT is a continuous random variable. Furthermore, we have

P
(
M0 − MT ≥ VaRq

T

)= q.

Let X1t = log (Mt). Then it is easy to see that MT = exp (X1T ). Denote by

FX1T (x) = P
(
X1T ≤ x

∣∣ X10
)

the marginal CDF of X1T with the initial X10 = log (M0). Using this notation, the VaR at level
q can be represented as

VaRq
T = exp (X10) − exp

(
F−1

X1T
(q)
)
.

Our expansion approach produces approximations to the CDF FX1T (x). Combining these with
some numerical root-finding algorithms (e.g. Newton’s method), we can approximately solve
for F−1

X1T
(q) and thereby obtain VaRq

T .
Let us investigate one example to numerically test the accuracy and effectiveness of our

approximation approach. In addition to the log-portfolio value process X1t, this example
involves a two-dimensional state variable xt = (X2t, X3t), in which X2t and X3t represent two
factors for determining the risk premiums and stochastic volatility of the stocks at time t,
respectively. Assume r(xt) = r in the example. In other words, the bond investment offers
a constant interest return r over time. In addition, the risk premium a(xt) − r(xt) is linearly
dependent on the risk factor X2t:

a(xt) − r(xt) = X2t · η
for a constant η ∈RN . The volatility matrix is given by b(xt) = √

X3t · σ , where σ is a constant
coefficient matrix.
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Under this setup, the portfolio value process follows

dMt = rMt dt + (π� · η)X2tMt dt + Mt

√
X3t (π� · σ ) dBt. (48)

For notational simplicity, we write θ1 = π� · η. Meanwhile, we know that there must exist a

constant σ1 and a one-dimensional Brownian motion W1t such that σ1 dW1t
d= π�σ dBt. Since

we are interested in the VaR of Mt, a quantity related to the distributional law of π�σ dBt, we
can replace it with σ1 dW1t in the dynamics (48). Using Itô’s formula, we have

dX1t = (r + θ1X2t − 1
2σ 2

1 X3t
)

dt + σ1
√

X3t dW1t. (49)

To complete the model, assume that the state variables xt = (X2t, X3t) follow

dX2t = κ2 · (θ2 − X2t) · X2t dt + σ2 · (ρ12 dW1t + ρ̄22 dW2t) (50)

and

dX3t = κ3 · (θ3 − X3t) dt + σ3Xβ

3t · (ρ13 dW1t + ρ23 dW2t + ρ̄33 dW3t) . (51)

Here (W1t, W2t, W3t) is a standard three-dimensional Brownian motion. The quantities ρ12,
ρ̄22, ρ13, ρ23, and ρ̄33 define the correlations among these three processes. Specifically, ρ̄22 =√

1 − ρ2
12 and

ρ̄33 =
√

1 − ρ2
13 − ρ2

23.

In our model, the risk premium process X2 follows an Ornstein–Uhlenbeck process charac-
terized by mean-reversion speed κ2, long-term mean θ2, and volatility σ2. The mean-reverting
behavior of X2 reflects the tendency of risk premiums to revert to a long-term average, captur-
ing shifting market expectations and changes in risk appetite. The volatility process X3 is also
mean-reverting, with nonlinearity controlled by the parameter β. When β = 1

2 , the volatility
follows a square-root process, commonly referred to as the SR-SV- 1

2 model. Here, SR denotes
stochastic return (or stochastic risk premium) while SV- 1

2 indicates the square-root specifica-
tion for stochastic volatility. For β = 1, the SR-SV-1 model represents a linear relationship
between volatility and X3. When β ∈ ( 1

2 , 1
)
, the SR-SV-β model provides a more flexible,

nonlinear volatility specification, capable of capturing complex dynamics such as asymmetric
responses to shocks and volatility clustering.

Table 1 presents the VaR estimates for the portfolio losses, considering stochastic risk
premium and stochastic volatility. These values are calculated using three different models,
SR-SV- 1

2 , SR-SV-β, and SR-SV-1, across two confidence levels, q = 0.01 and q = 0.05. The
results are provided for various time horizons, including daily, weekly, biweekly, monthly,
quarterly, and semi-annually, i.e. T = 1/252, 1/52, 1/26, 1/12, 1/4, 1/2. These time horizons
capture various trading or observation intervals. For the parameter values, the reader is referred
to the empirical literature, such as [4, 31].

For each model, the ‘MC’ values are obtained from Monte Carlo simulations, which serve
as the benchmark. The number of simulation trials is 10 million, and the number of time steps
is 25 200 per year. The ‘Appr.’ values are obtained through analytical approximations using the
model’s specified parameters. The relative error, RE, between the two methods is shown in the
last row for each time horizon, calculated as the percentage difference between the approximate
and MC values, i.e. RE = |Appr. − MC|/MC.
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TABLE 1. VaR for portfolio losses with stochastic risk premium and stochastic volatility.

q = 0.01

Model T 1/252 1/52 1/26 1/12 1/4 1/2

SR-SV- 1
2 MC 4.5753 9.9146 13.8358 19.8804 32.2889 42.2426

Appr. 4.5773 9.9162 13.8382 19.8904 32.5775 42.0200
RE 0.04% 0.02% 0.02% 0.04% 0.10% 0.53%

SR-SV-β MC 3.8948 8.3916 11.6773 16.6799 26.8425 35.0285
Appr. 3.8938 8.3953 11.6744 16.7048 26.8671 34.9948
RE 0.03% 0.04% 0.00% 0.04% 0.13% 0.10%

SR-SV-1 MC 4.0985 8.7778 12.1377 17.2274 24.4159 35.6338
Appr. 4.0995 8.7717 12.1361 17.2323 24.4016 35.2737
RE 0.03% 0.07% 0.01% 0.03% 0.05% 1.01%

q = 0.05

Model T 1/252 1/52 1/26 1/12 1/4 1/2
SR-SV- 1

2 MC 3.2204 6.9443 9.6559 13.8292 22.4011 29.4897
Appr. 3.2211 6.9443 9.6591 13.8317 22.3646 29.0799
RE 0.02% 0.01% 0.03% 0.02% 0.16% 1.39%

SR-SV-β MC 2.7409 5.8733 8.1424 11.5577 18.4573 23.9925
Appr. 2.7403 5.8757 8.1455 11.5788 18.4233 23.4358
RE 0.03% 0.04% 0.02% 0.03% 0.18% 2.32%

SR-SV-1 MC 2.8972 6.1836 8.5632 12.1384 19.2776 25.0711
Appr. 2.8958 6.1892 8.5561 12.1358 19.2712 24.8071
RE 0.05% 0.06% 0.08% 0.10% 0.03% 1.05%

Note: The upper and lower panels correspond to quantile levels at q = 0.01 and q = 0.05, respectively.
RE denotes the relative error computed via RE = |Appr. − MC|/MC, where ‘MC’ is generated by
Monte Carlo simulations and ‘Appr.’ is obtained through the approximate formulas derived in this
paper. For all the models, in the log-wealth process we set r = 0.04, X10 = log (100), η = 1, and σ1 = 1.
In the stochastic risk premium process, the parameters are κ2 = 2, X20 = θ2 = 0.1, σ2 = 0.2, ρ12 = −0.2,
and ρ23 = 0. For the stochastic volatility process, three sets of parameter values are considered based
on different specifications of β. Under the SV-1/2 specification, we set κ3 = 5.07, X30 = θ3 = 0.0457,
σ3 = 0.48, ρ13 = −0.767, ρ23 = 0, and β = 1/2. Under the SV-1 specification, we set κ3 = 1.62,
X30 = θ3 = 0.074, σ3 = 2.204, ρ13 = −0.754, ρ23 = 0, and β = 1. Under the SV-β specification, we
set κ3 = 4.103, X30 = θ3 = 0.0451, σ3 = 0.858, ρ13 = −0.76, ρ23 = 0, and β = 0.655.

The results in Table 1 reveal how the VaR estimates change with different models, quantile
levels, and time horizons, illustrating the sensitivity of the portfolio’s risk profile to these fac-
tors. One key observation is the effect of the time horizon on the VaR estimates. As the time
horizon increases from 1/252 to 1/2, the VaR values rise for all models and quantile levels
(q = 0.01 and q = 0.05). This is to be expected, as longer time horizons account for greater
uncertainty and higher potential losses. Comparison of the two quantile levels reveals that the
VaR values for q = 0.01 (1%) are consistently higher than those for q = 0.05 (5%), reflecting
the more extreme loss scenario associated with the 1% quantile.

The approximate values are very close to the Monte Carlo results (benchmark values), with
relative errors typically remaining below 0.2% for most time horizons and confidence levels. In
particular, for the SR-SV- 1

2 model, the approximate values are in near-perfect alignment with
the Monte Carlo results, and the relative errors remain small across both confidence levels
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(q = 0.01 and q = 0.05), except for T = 1/2 and q = 0.05, for which the relative error reaches
1.39%. A similar pattern is observed for the SR-SV-β model, where the approximate values
again closely match the Monte Carlo results, with relative errors mostly below 0.2%, except
for T = 1/2 and q = 0.05, for which the relative error reaches a slightly higher level, 2.32%.
For the SR-SV-1 model, the approximation remains accurate, and the relative errors are less
than 0.1% for most time horizons. When T = 1/2, the relative errors are around 1% for both
confidence levels.

Overall, Table 1 demonstrates that the approximate formulas provide highly accurate VaR
estimates compared to the Monte Carlo simulations, with very small relative errors across all
models and time horizons. This indicates that the approximation methods provide an accurate
and efficient alternative way of calculating VaR in portfolios with stochastic risk premiums and
stochastic volatility.

5.2. Pricing forward-starting options

This section explores another application of our expansion method in the context of com-
plex derivative pricing, using forward-starting options as an example. In a forward-starting
option contract, the strike price is determined by the future price of the underlying asset. Such
derivatives are widely employed in risk management and portfolio optimization owing to their
flexibility, making them a popular choice for both hedging and speculating on future price
movements.

Consider the following model for the underlying asset price with one stochastic volatility
factor. The state variable X(t) = (X1(t), X2(t)) is a two-dimensional diffusion process, where
the first component X1(t) represents the log-return of the underlying asset and the second com-
ponent X2(t) is the instantaneous variance of the log-return process. Under the risk-neutral
measure Q, the dynamics of (X1(t), X2(t)) are governed by

dX1(t) =
(

r − 1

2
X2(t)

)
dt +√X2(t) dW1(t), (52)

dX2(t) = κ(α − X2(t)) dt + σXβ

2

(
ρ dW1(t) +

√
1 − ρ2 dW2(t)

)
. (53)

Here, r is the risk-free rate and ρ is the constant correlation parameter between the return and
variance processes. The variance process X2 exhibits mean reversion to its long-term mean α,
with κ being the speed of mean reversion; σ represents the volatility of volatility, and β is the
elasticity of the local volatility function, satisfying 1/2 ≤ β ≤ 1; κ , α, σ , and β are all assumed
to be nonnegative constants.

The process in (52) and (53) defines a broad class of models. When β = 1/2, the variance
process X2 is the affine square-root model of [15]. To ensure that the volatility cannot reach
zero with positive probability, we require 2κα ≥ σ 2. This process along with the log-return pro-
cess X1, called the SV-1/2 model, corresponds to the affine stochastic volatility model of [18].
When β = 1 or β ∈ (1/2, 1), the variance processes correspond to the nonaffine continuous-
time GARCH model [16, 30] and the CEV model, respectively. The SV-β and SV-1 models
refer to those with CEV [20] and GARCH specifications of the variance. Nonaffine models
lack closed-form option price formulas and require numerical methods, such as finite differ-
ence or Monte Carlo simulations. However, they often outperform affine models empirically
[4, 20, 31].
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Given 0 ≤ t < t∗ < T , the payoff function of a forward-starting option is(
eX1(T) − eX1(t∗))+. (54)

Assuming that we know the model’s transition density p(t′, x′ | t, x), the price of the forward-
starting option, CFWS(t, x), is given by the conditional expectation

CFWS(t, x) = e−r(T−t) E

[(
eX1(T) − eX1(t∗))+ ∣∣∣ X(t) = x

]
= e−r(T−t)

∫
E

[(
eX1(T) − ex∗

1
)+ ∣∣∣ X(t∗) = x∗] · p(t∗, x∗ | t, x) dx∗. (55)

Thus, the forward-starting option price in (55) is the integral of the product of the European
option price (the conditional expectation) and the transition density. Therefore, using the
approximations for both, we obtain a closed-form approximation formula for (55). It is
worth noting that [23] provides a closed-form pricing formula (essentially involving a
two-dimensional integral) for the affine SV-1/2 model.

We perform numerical experiments using the approximation formulas given by the
European option price and the transition density. Table 2 presents the numerical performance
results of the forward-starting option price approximations for different models (SV-1/2, SV-
β, and SV-1) under various forward-starting dates t∗ (weekly, biweekly, and monthly) and
maturity periods T − t∗ (monthly, quarterly, and semi-annually). Each row corresponds to a
specific combination of model, t∗, and T − t∗, and provides the following details. The first col-
umn, ‘Model’, indicates the three stochastic volatility models considered, which are SV-1/2,
SV-β, and SV-1. The second and third columns, t∗ and T − t∗, represent the time t∗ at which
the strike price of the forward-starting option is set and the time remaining to maturity after t∗,
respectively.

The ‘MC’ column shows the forward-starting option price obtained from Monte Carlo sim-
ulations, which serves as the benchmark for comparison. The columns labeled ‘99% CI L’
and ‘99% CI U’ represent the lower and upper bounds, respectively, of the 99% confidence
interval (CI) for the Monte Carlo price, providing a measure of the statistical uncertainty in the
Monte Carlo estimate. The number of simulated sample paths is 10 million, and the number
of time steps is 25 200 per year. The ‘Appr.’ column presents the price of the forward-starting
option calculated using the closed-form approximation method proposed in this paper. The
last column, ‘RE’, shows the relative error between the approximation price and the Monte
Carlo price, i.e. RE = |Appr. − MC|/MC, expressed as a percentage. This value indicates the
accuracy of the approximation method compared to the Monte Carlo results.

The results in Table 2 demonstrate that the proposed approximation yields highly accurate
prices, with relative errors generally close to 0% for all three models. Overall, the approxima-
tion performs well across all test cases, showing minimal deviation from the Monte Carlo
benchmark and suggesting that the closed-form method provides an accurate and efficient
alternative to Monte Carlo simulations.

6. Concluding remarks

This paper presents a unified framework for deriving explicit expansion formulas for transi-
tion densities, CDFs, and European option prices in multivariate diffusion models. To develop
such a framework, we introduce the quasi-Lamperti transform, which uses the diffusion matrix
at the initial time, simplifying subsequent calculations. A key contribution of this work is
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TABLE 2. Numerical performance results for approximations of the forward-starting option prices.

Model t∗ T − t∗ MC 99% CI L 99% CI U Appr. RE

SV-1/2 1/52 1/12 3.7853 3.7808 3.7899 3.7861 0.02%
1/52 1/4 6.7346 6.7267 6.7424 6.7375 0.04%
1/52 1/2 9.7623 9.7509 9.7737 9.7645 0.02%
1/26 1/12 3.7786 3.7740 3.7831 3.7769 0.05%
1/26 1/4 6.7244 6.7166 6.7323 6.7262 0.03%
1/26 1/2 9.7533 9.7418 9.7648 9.7588 0.06%
1/12 1/12 3.7589 3.7547 3.7631 3.7580 0.02%
1/12 1/4 6.7015 6.6937 6.7093 6.7033 0.03%
1/12 1/2 9.7259 9.7146 9.7373 9.7485 0.23%

SV-β 1/52 1/12 3.2640 3.2602 3.2677 3.2655 0.05%
1/52 1/4 5.8480 5.8414 5.8547 5.8487 0.01%
1/52 1/2 8.5343 8.5245 8.5441 8.5207 0.16%
1/26 1/12 3.2594 3.2556 3.2632 3.2611 0.05%
1/26 1/4 5.8435 5.8369 5.8502 5.8442 0.01%
1/26 1/2 8.5320 8.5222 8.5419 8.5244 0.09%
1/12 1/12 3.2502 3.2463 3.2540 3.2524 0.07%
1/12 1/4 5.8338 5.8273 5.8403 5.8353 0.03%
1/12 1/2 8.5225 8.5126 8.5324 8.5320 0.11%

SV-1 1/52 1/12 3.4566 3.4524 3.4608 3.4569 0.01%
1/52 1/4 6.1849 6.1771 6.1927 6.1820 0.05%
1/52 1/2 9.0054 8.9947 9.0160 8.9997 0.06%
1/26 1/12 3.4542 3.4501 3.4583 3.4548 0.02%
1/26 1/4 6.1841 6.1766 6.1915 6.1794 0.08%
1/26 1/2 9.0028 8.9923 9.0133 8.9985 0.05%
1/12 1/12 3.4513 3.4470 3.4556 3.4505 0.02%
1/12 1/4 6.1781 6.1708 6.1854 6.1741 0.06%
1/12 1/2 8.9970 8.9862 9.0077 8.9958 0.01%

Note: The t∗ and T − t∗ columns represent the forward-starting date and the remaining maturity period,
respectively. The last column, RE, displays the relative error computed via RE = |Appr. − MC|/MC,
where ‘MC’ is generated by Monte Carlo simulations and ‘Appr.’ is obtained through the approxi-
mate formulas derived in this paper. The columns ‘99% CI L’ and ‘99% CI U’ represent the lower
and upper bounds, respectively, of the 99% confidence interval (CI) for the Monte Carlo price.
For all three models, the initial values of the log stock price and the volatility are X10 = log (100)
and X20 = θ . The parameter vector is denoted by (r, β, κ, θ, σ, ρ). For the SV-1/2 model, it is
(0.04, 0.5, 3.0, 0.1, 0.25, −0.8). For the SV-β model, it is (0.04, 0.879, 4.202, 0.073, 0.471, −0.704).
For the SV-1 model, it is (0.04, 1, 3.464, 0.082, 0.292, −0.811).

the derivation of explicit formulas for the conditional expectation of the pathwise Taylor
expansion, leveraging explicit expressions for the conditional expectation of the product of
iterated Itô integrals. This provides a new and generalizable approach to obtaining closed-form
expressions for conditional expectations, addressing a fundamental challenge in the literature.
Using our main result, we establish the equivalence between the pathwise expansion of [26]
and the Hermite expansion of [34, 36], unifying them under the Hermite expansion method.
This insight clarifies the connections between existing techniques and simplifies practical
implementation.
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We apply our results to two financial problems: (i) the derivation of closed-form expansion
formulas for forward-starting options under general stochastic volatility models (which may
be nonaffine) and (ii) computation of the VaR for a portfolio in three-dimensional (possibly
nonaffine) models incorporating both stochastic risk premium and volatility factors, using the
expansion formulas for the marginal CDF. To the best of our knowledge, these two applications
are new to the literature. Numerical experiments confirm the accuracy and efficiency of our
approach.

Beyond these applications, our method provides a powerful tool for small-time approxima-
tions of functionals of multivariate diffusion processes, offering promising directions for future
research in asset pricing and statistical estimation.

Appendix A. Explicit formula for the conditional expectation of the product of iterated
Itô integrals

In this appendix, we present the lemma that calculates the conditional expectation of the
product of the iterated Itô integrals in (30). Before stating the results, we introduce some
notation.

For an index i = (i1, . . . , in) ∈ {0, 1, . . . , m}n, define ci(α) to be the counter of a particular
value α ∈ {0, 1, . . . , m} in i, that is,

ci(α) =
n∑

k=1

1{ik=α}.

For instance, if i = (1, 1), then ci(1) = 2. Furthermore, define a new vector

ci = (ci(1), . . . , ci(m)). (A1)

In the previous example, we know that c(1,1) = (2, 0, . . . , 0).
This notation can be extended to the concatenation of several index vectors. Consider two

indices i and j, where i and j may have different dimensionalities. Define a concatenation
operation between these two vectors such that i ∧ j is a new index vector obtained by putting
j at the end of i. It is easy to see that for any sequence of indices {i1, . . . , il}, the norm of the
concatenated index vector is given by ‖i1 ∧ · · · ∧ il‖ =∑l

j=1 ‖ij‖. Meanwhile, ci1∧···∧il(α) =∑l
j=1 cij (α) for any given α and thus ci1∧···∧il =∑l

j=1 cij . In addition, we let �(i1 ∧ · · · ∧ il)
represent the total dimensionality of the concatenated vector i1 ∧ · · · ∧ il. Clearly, �(i1 ∧ · · · ∧
il) is equal to the sum of the dimensionalities of all the ij, and we have

�(i1 ∧ · · · ∧ il) = ci1∧···∧il (0) +
m∑

α=1

ci1∧···∧il (α) =
l∑

ω=1

(
ciω (0) +

m∑
α=1

ciω (α)

)
. (A2)

With this notation, we can present the explicit formula for the conditional expectation of the
product of iterated Itô integrals as follows.

Lemma 2. The conditional expectation (30) is a linear combination of Hermite polynomials.
Specifically, for indices {i1, . . . , il}, letting ï be the concatenation of these indices (i.e. ï =
i1 ∧ · · · ∧ il), the conditional expectation in (30) can be decomposed into

E

[
l∏

ω=1

Iiω (t)

∣∣∣∣∣W(t) = x

]
=

∑
0≤a≤�cï/2�

w̃a,ï ·
( √

t
‖ï‖

(�(ï) − |a|)! Hcï−2a

(
x√
t

))
. (A3)
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Note that cï in the subscript of the sum is an m-dimensional vector (cf. (A1)), and �cï/2� is a
vector that is obtained by applying the operation of �·/2� elementwise on cï. In this sense, the
sum in (A3) is taken over an m-dimensional index a = (a1, . . . , am) with |a| = a1 + · · · + am.
Here ‖ï‖ =∑l

j=1 ‖ij‖ with the norm ‖ij‖ defined in (23), and �(ï) is defined in (A2).
The coefficient w̃a,ï is recursively determined as follows: w̃a,ï = 1{a=0} if ï = ∅ or {i1};

w̃a,ï = 0 if min (a) < 0 or max (2a − cï) > 0; and

w̃a,ï =
l∑

ω1=1

w̃a,ï−ω1
+

∑
1≤ω1<ω2≤l

1{(iω1 )1=(iω2 )1 �=0}w̃a−e(iω1 )1 ,ï−ω1−ω2
, (A4)

where ï−ω1 means replacing the ω1th component of ï, i.e. iω1 = ((iω1 )1, (iω1 )2, . . . , (iω1 )nω1

)
,

with −iω1 = ((iω1 )2, . . . , (iω1 )nω1

)
in the set ï; eα (for α = 1, . . . , m) is the m-dimensional

vector in which the αth component is 1 and the other components are all 0.
In particular, the conditional expectation of the iterated Itô integral is a standard Hermite

polynomial given by

E[Ii(t) | W(t) = x] =
√

t
‖i‖

n! Hci

(
x√
t

)
. (A5)

The explicit formulas (A3) and (A5) were first obtained in Lemmas B.2 and B.3 in [36].
Using these two formulas, in [36] it was demonstrated, through the symbolic computation
function in Mathematica, that the Hermite expansion and the pathwise expansion of [26] have
the same formula up to any given order for one- and two-dimensional diffusions. In this paper
we further substantiate the equivalence of the expansion formulas between the Hermite and
pathwise expansion methods through theoretical proofs, with the help of the quasi-Lamperti
transform.

It is worth mentioning that an alternative polynomial expression for (A5) is also provided
in Proposition 3 of [27] and Subsection 4.1 of [28]. However, explicit formulas for the con-
ditional expectation of the product of the iterated Itô integral (A3) are new to the literature.
Furthermore, our formulas are expressed in terms of Hermite polynomials, which allows
us to derive an expression for the coefficients of the pathwise expansion based on Hermite
polynomials.

Appendix B. Proofs of Lemma 1 and Theorem 1

Proof of Lemma 1. For notational simplification, we prove the lemma for the one-
dimensional case. The proof for the multidimensional case is as straightforward as in the
one-dimensional case.

Recalling the diffusion Yε(s), we have

Yε(1) − y = ε

∫ 1

0
σ Y (Yε(t1)) dW(t1) + ε2

∫ 1

0
μY (Yε(t1)) dt1

= ε

∫ 1

0
σ Y (y) dW(t1) + ε

∫ 1

0

(
σ Y (Yε(t1)) − σ Y (y)

)
dW(t1)

+ ε2
∫ 1

0
μY (y) dt1 + ε2

∫ 1

0

(
μY (Yε(t1)) − μY (y)

)
dt1.
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Let

FY
1 = σ Y (y)

∫ 1

0
dW(t1) = σ Y (y)I(1)(1),

FY
2 = μY (y)

∫ 1

0
dt1 +L1σ

Y (y)
∫ 1

0

∫ t1

0
dW(t2) dW(t1) = μY (y)I(0)(1) +L1σ

Y (y)I(1,1)(1).

Applying Itô’s formula to the integrands σ Y (Yε(t1)) and μY (Yε(t1)), we have

Yε(1) − y = εFY
1 + ε2FY

2

+ ε2
∫ 1

0

∫ t1

0

(L1σ
Y (Yε(t2)) −L1σ

Y (y)
)

dW(t2) dW(t1)

+ ε3
∫ 1

0

∫ t1

0
L0σ

Y (Yε(t2)) dt2 dW(t1) + ε3
∫ 1

0

∫ t1

0
L1μ

Y (Yε(t2)) dW(t2) dt1

+ ε4
∫ 1

0

∫ t1

0
L0μ

Y (Yε(t2)) dt2 dt1.

The lemma is proved by repeatedly applying Itô’s formula to the stochastic integrands
and collecting terms according to the order of ε. Specifically, the third and fourth expansion
coefficients are given here for reference:

FY
3 =L0σ

Y (y)
∫ 1

0

∫ t1

0
dt2 dW(t1) +L1μ

Y (y)
∫ 1

0

∫ t1

0
dW(t2) dt1

+L1 ◦L1σ
Y (y)
∫ 1

0

∫ t1

0

∫ t2

0
dW(t3) dW(t2) dW(t1)

=L0σ
Y (y)I(1,0)(1) +L1μ

Y (y)I(0,1)(1) +L1 ◦L1σ
Y (y)I(1,1,1)(1),

FY
4 =L0μ

Y (y)I(0,0)(1) +L0 ◦L1σ
Y (y)I(1,1,0)(1) +L1 ◦L1μ

Y (y)I(0,1,1)(1)

+L1 ◦L0σ
Y (y)I(1,0,1)(1) +L1 ◦L1 ◦L1σ

Y (y)I(1,1,1,1)(1).

This completes the proof of Lemma 1. �
Proof of Theorem 1. Recalling the coefficient �k

(
y; f (·)) in (26), note that we have

�k
(
y; f (·))=E

[

k
(
y; f (·))],

where 
k
(
y; f (·)) is the kth-order pathwise expansion coefficient of f

(∑K
j=0 FY

j+1ε
i +

O(εK+1)
)

with respect to ε, that is,


k
(
y; f (·))= 1

k!
dk

dεk

[
f

( K∑
j=0

FY
j+1ε

i +O
(
εK+1

))]∣∣∣∣
ε=0

.

Using the chain rule for kth-order derivatives of the composite function, 
k
(
y; f (·)) can be

explicitly expressed in terms of the partial derivatives of f (·) and the product of FY
j+1,i for

1 ≤ j ≤ k and 1 ≤ i ≤ m:


k
(
y; f (·))= k∑

l=1

1

l!
∑

j=(j1,j2,...,jl)∈S l
k

∑
r∈{1,2,...,m}l

∂br
z f (z)

∣∣
z=W(1)

l∏
ω=1

FY
jω+1,rω , (B1)

where r = (r1, . . . , rl) ∈ {1, 2, . . . , m}l and br =∑l
ω=1 erω .
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To compute the expectation �k(y; f (·)) =E[
k(y; f (·))], using the integration by parts
formula, we obtain

E

[
∂br

z f (z)
∣∣
z=W(1)

l∏
ω=1

FY
jω+1,rω

]
=
∫
Rm

∂br
z f (z)

(
E

[
l∏

ω=1

FY
jω+1,rω

∣∣∣∣W(1) = z

]
φ(z)

)
dz

= (−1)l
∫
Rm

f (z)∂br
z

(
E

[
l∏

ω=1

FY
jω+1,rω

∣∣∣∣W(1) = z

]
φ(z)

)
dz,

(B2)

where we have used the fact that |br| = l. The conditional expectation is given by

E

[
l∏

ω=1

FY
jω+1,rω

∣∣∣∣∣W(1) = z

]
=

∑
iω∈Mjω+1
ω=1,...,l

(
A(y; ï, r) ·E

[
l∏

ω=1

Iiω (1)

∣∣∣∣W(1) = z

])
, (B3)

where ï = i1 ∧ · · · ∧ il, A(y; ï, r) is given by (29), and Mj is recursively defined by (24). By
Lemma 2,

E

[
l∏

ω=1

Iiω (1)

∣∣∣∣W(1) = z

]
=

∑
0≤a≤�cï/2�

w̃a,ï

(�(ï) − |a|)! Hcï−2a(z). (B4)

Furthermore, using the definition of Hermite polynomials and noting that |br| = l, we have

(−1)l∂br
z

(
Hcï−2a(z)φ(z)

)= (−1)l+|cï−2a|∂br+cï−2a
z φ(z) = Hcï−2a+br(z)φ(z). (B5)

Plugging (B3), (B4), and (B5) into (B2), we have

E

[
∂br

z Hh(z)
∣∣
z=W(1)

l∏
ω=1

FY
jω+1,rω

]

=
∑

iω∈Mjω+1
ω=1,...,l

A(y; ï, r)
∑

0≤a≤�cï/2�

w̃a,ï

(�(ï) − |a|)! · I(f (·), ci − 2a + br),

where I(f (·), h) is defined in (27).
Then, the theorem is proved by substituting the above equation into the expectation of (B1);

we have B(f (·); ï, r) in (33), i.e.

B(f (·); ï, r) =
∑

0≤a≤�cï/2�

w̃a,ï

(�(ï) − |a|)! · I
(
f (·), cï − 2a + br

)
,

where ï = i1 ∧ · · · ∧ il, r = (r1, . . . , rl), and br =∑l
ω=1 erω , with the remaining details thor-

oughly explained in Lemma 2. �
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Appendix C. The equivalence of density expansions

C.1. Connection to [26]

For ease of comparison, we explicitly present the density expansion derived in this paper in
the following proposition.

Proposition 1. Given t′ > t, the transition density function from X(t) = x to X(t′) = x′ for the
diffusion X in (1) has the following expansion:

pX(t′, x′ | t, x) = �− m
2 det (L)

(
φ(γ ) +

K∑
k=1

�k
(
y; δ( · −γ )

)
�

k
2

)
+O(� K+1−m

2
)
, (C1)

where � = t′ − t, y = Lx, y′ = Lx′, γ = (y′ − y)/
√

�, φ(γ ) is the m-dimensional standard
normal density function, and the expansion coefficient �k

(
y; δ( · −γ )

)
is explicitly given by

�k(y; δ( · −γ )) = φ(γ )
k∑

l=1

1

l!
∑

j=(j1,j2,...,jl)∈S l
k

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1
ω=1,...,l

(
l∏

ω=1

CY
iω,rω (y)

)

·
∑

0≤a≤�cï/2�

w̃a,ï

(�(ï) − |a|)! Hcï−2a+br(γ ). (C2)

Here, ï = i1 ∧ · · · ∧ il, r = (r1, . . . , rl), br =∑l
ω=1 erω , Hh(γ ) denotes its corresponding mul-

tivariate Hermite polynomial, and S l
k, Mj, CY

iω,rω
(y), and w̃a,ï are recursively defined by (28),

(24), (25), and (A4), respectively.

In the following lemma, we show that the density expansion (C1) provides an alternative
explicit expression for the expansion formula in [26] and [28]. However, unlike the formula
presented in those works, the newly derived formula is explicitly expressed as a linear combi-
nation of Hermite polynomials. This form allows us to connect it to the Hermite expansion of
[34] and [36].

Lemma 3. Denote the first term on the right-hand side of (C1) by p(K,LI)
X (t′, x′ | t, x) and the

Kth-order expansion provided by (3.21) and (3.25) of [26] by p̃(K,LI)
X (t’, x’ | t, x). Then these

two expansions are the same, that is,

p(K,LI)
X (t′, x′ | t, x) = p̃(K,LI)

X (t′, x′ | t, x). (C3)

Proof of Lemma 3. Using (21) and (44), the quasi-Lamperti transform (16), and the
Jacobian formula for the change of variable, we obtain the transition density of X as

pX(t′, x′ | t, x) = �− m
2 det (ν0)−1/2E

[
δ(�ε − γ )

∣∣ Y(t) = y
]
, (C4)

where �ε = (Yε(1) − y)/ε = (Y(t′) − y)/ε, γ = (y′ − y)/ε, ε = √
�, and � = t′ − t.

The expansion p(K,LI)
X (t′, x′ | t, x) of the first term on the right-hand side of (C1) is the Lth-

order Taylor expansion of the right-hand side of (C4) with respect to ε.
On the other hand, in [26] the transition density of X is characterized as

pX(t′, y′ | t, y) = �− m
2 det (D(x)) E[δ(̃Yε − ỹ) | X(t) = x], (C5)
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where D(x) is a diagonal matrix given by (3.12) in [26],

D(x) = diag

⎧⎨⎩ 1√∑m
j=1 σ 2

1j(x)
, . . . ,

1√∑m
j=1 σ 2

mj(x)

⎫⎬⎭ ,

Ỹε = D(x)(Xε(1) − x)/ε, and ỹ = D(x)(x′ − x)/ε. The expansion p̃(L,LI)
X provided by (3.21) and

(3.25) of [26] is the Lth-order Taylor expansion of the right-hand side of (C5) with respect
to ε.

Noting that

Ỹε − ỹ = D(x)
Xε(1) − x′

ε
= D(x)ν1/2

0 (�ε − γ )

by the Jacobian formula for the change of variable, the right-hand sides of (C4) and (C5) are
identical. Thus, the lemma is proved. �

C.2. Connection to [34] and [36]

C.2.1. Recalculating formulas for the Hermite expansion of [34, 36] via the pathwise expan-
sion method. In [34] the transition density of the multivariate diffusion is expanded using
Hermite polynomials, with the expansion coefficients being conditional expectations of
Hermite polynomials. Further, analytical approximations to these coefficients were obtained
through an Itô–Taylor expansion. In this subsection, we use the pathwise expansion method
from Theorem 1 to rederive these expansion coefficients. Specifically, by taking f to be a
Hermite polynomial, we obtain an alternative analytical approximation for the expansion
coefficients. Below we elaborate on this process in detail.

First, we use the Jacobian formula for the change of density:

pX(t′, x′ | t, x) = det (L)pY (t′, y′ | t, y), (C6)

where y = Lx and y′ = Lx′. Then, as in [34], we expand the transition density pY (t′, y′ | t, y)
about φ(γ ) to obtain

p(J)
Y (t′, y′ | t, y) = �− m

2 φ(γ ) + �− m
2 φ(γ )

J∑
j=1

∑
|h|=j

η(h)(� | t, y) · Hh(γ ), (C7)

where � = t′ − t, γ = (y′ − y)/
√

�, and the coefficients {η(h), h = (h1, h2, . . . , hm) ∈Zm+} are
given by the conditional expectations

η(h)(� | t, y) = 1

h!E
[

Hh

(
Y(t + �) − y√

�

)∣∣∣∣ Y(t) = y

]
. (C8)

Next, we recalculate the Hermite expansion coefficient η(h) of (C8) in p(3K)
Y of (C7) using

the pathwise expansion method up to the same order O(�K/2). This allows us to derive an
alternative expression for the reduced Hermite expansion of [34].

Recalling the conditional expectation defined in (22) and the Hermite expansion coefficient
η(h) given by (C8), and taking

f (·) = Hh(·), (C9)
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we can use the formulas obtained in Section 3 to derive alternative approximate formu-
las for the Hermite expansion coefficients. Specifically, by the orthogonality of the Hermite
polynomials, the multivariate integrals in (31) and (32) are now given by

�0
(
y; Hh(·))= ∫

Rm
Hh(z)φ(z) dz = 1{h=0} (C10)

and ∫
Rm

Hh(z)Hcï−2a+br(z)φ(z) dz =h! · 1{cï−2a+br=h}. (C11)

Thus, by (26), for h = (h1, h2, . . . , hm) ∈Zm+, the coefficients η(h) in (C8) can be
expanded as

η(h)(� | t, y) = 1

h!�0
(
y; Hh(·))+ 1

h!
k∑

k=1

�k
(
y; Hh(·))εk +O

(
�

K+1
2

)

= 1

h!
K∑

k=1

�k
(
y; Hh(·))� k

2 +O
(
�

K+1
2

)
, (C12)

where the expansion coefficient �k(y; Hh(·)) is explicitly given in (C14) below.
Truncating the coefficient η(h) in (C12) at order �

K
2 , plugging it into (C7) for J = 3K, and

using the formula (C14) for �k
(
y; Hh(·)), we get an alternative expression for the Kth-order

reduced Hermite expansion of [34]. The result is summarized in the following proposition.

Proposition 2. Given t′ > t, the transition density function from X(t) = x to X(t′) = x′ for the
diffusion X in (1) can also be expanded as

pX(t′, x′ | t, x) = �− m
2 det (L)

(
φ(γ ) + φ(γ )

3K∑
j=1

∑
|h|=j

1

h!
K∑

k=1

�k
(
y; Hh(·))� k

2 · Hh(γ )

)

+O(�K+1−m
2
)
, (C13)

where � = t′ − t, y = Lx, y′ = Lx′, γ = (y′ − y)/
√

�, φ(γ ) is the m-dimensional stan-
dard normal density function, and, for h = (h1, h2, . . . , hm) ∈Zm+, the expansion coefficient
�k
(
y; Hh(·)) is explicitly given by

�k(y; Hh(·)) =
k∑

l=1

1

l!
∑

j=(j1,j2,...,jl)∈S l
k

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1
ω=1,...,l

(
l∏

ω=1

CY
iω,rω (y)

)

· w̃a,ï

(�(ï) − |a|)! · h! · 1{
a = cï+br−h

2 , a∈Zm

}, (C14)

where ï = i1 ∧ · · · ∧ il, r = (r1, . . . , rl), br =∑l
ω=1 erω , and S l

k, Mj, CY
iω,rω

(y), and w̃a,ï are
recursively defined by (28), (24), (25), and (A4), respectively.
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C.2.2. Connection to the Hermite expansion of [34, 36]. Through direct technical verification,
the following lemma shows that the first terms on the right-hand sides of (C1) and (C13) are
equal.

Lemma 4. Denote the first terms on the right-hand sides of (C1) and (C13) by
p(K,LI)

X (t′, x′ | t, x) and p(K,WY)
X (t′, x′ | t, x), respectively. Then these two terms are equal,

that is,

p(K,LI)
X (t′, x′ | t, x) = p(K,WY)

X (t′, x′ | t, x). (C15)

Note that the right-hand side of (C15) is an alternative formula for the Hermite expansion
(32) in [34], and by Proposition 3 the left-hand side of (C15) is identical to the density expan-
sion (3.21) and (3.25) in [26]. Thus, equation (C15) establishes the equivalence between the
pathwise expansion of [26] and the Hermite expansion of [34].

Furthermore, in [34] it is proved that their Hermite expansion is the same as the delta expan-
sion of [36] under the choice of μ0 = 0. In conclusion, Theorem 2 summarizes the equivalence
result.

Proof of Lemma 4. Referring to the first terms on the right-hand sides of (C1) and (C13),
write

p(L,LI)
Y (t′, y′ | t, y) = �− m

2 φ(γ ) + �− m
2

L∑
k=1

�
k
2 �k
(
y; δ( · −γ )

)
, (C16)

where the expansion coefficient �k
(
y; δ( · −γ )

)
is given by (C2), and

p(L,WY)
Y (t′, y′ | t, y) =�− m

2 φ(γ ) + �− m
2 φ(γ )

3L∑
j=1

∑
|h|=j

1

h!
L∑

k=1

�k
(
y; Hh(·))� k

2 · Hh(γ ), (C17)

where the expansion coefficient �k
(
y; Hh(·)) is given by (C14).

To prove (C15), it is sufficient to show that

p(K,LI)
Y (t′, y′ | t, y) = p(K,WY)

Y (t′, y′ | t, y). (C18)

In the following we prove (C18).
As the reduced Hermite expansion p(L,WY)

Y (t′, y′ | t, y) given by (C17) and (C14) is arranged
according to increasing order of the Hermite polynomials, to compare with it, we first show
that the pathwise expansion p(L,LI)

Y (t′, y′ | t, y) given by (C16) and (C2) can also be rearranged
according to increasing order of the Hermite polynomials as follows:

p(L,LI)
Y (t′, y′ | t, y) = �− m

2 φ(γ ) + �− m
2 φ(γ )

3L∑
j=1

∑
|h|=j

η(h,LI)(� | t, y) · Hh(γ ), (C19)

where the coefficient η(h,LI)(� | t, y) is given by

η(h,LI)(� | t, y) =
L∑

k=1

�
k
2

k∑
l=1

1

l!
∑

j=(j1,j2,...,jl)∈S l
k

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1
ω=1,...,l

(
l∏

ω=1

CY
iω,rω (y)

)

· w̃a,ï

(�(ï) − |a|)! · 1{
a= cï+br−h

2 ,a∈Zm

}. (C20)
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Here, ï = i1 ∧ · · · ∧ il, r = (r1, . . . , rl), br =∑l
ω=1 erω , φ(γ ) and Hh(γ ) are the m-dimensional

standard normal density function and the corresponding multivariate Hermite polynomial,
respectively, and S l

k, Mj, CY
iω,rω

(y), and w̃a,ï are recursively defined by (28), (24), (25), and
(A4), respectively.

If (C19) with (C20) holds, comparing the formulas for �k(y; Hh(·)) in (C14) and
η(h,LI)(� | t, y) in (C20), we have

η(h,LI)(� | t, y) = 1

h!
L∑

k=1

�k(y; Hh(·))� k
2 . (C21)

Upon plugging (C21) into (C19) and comparing the result with (C17), the lemma is proved.
Now we proceed to prove (C19) with (C20). According to the definition of the coeffi-

cient w̃a,ï in Lemma 2, w̃a,ï = 0 if min (a) < 0 or max (2a − cï) > 0. Thus, we can take the
summation in a over all m-dimensional integers in (C2). Plugging this into (C16), we have

p(L,LI)
Y (t′, y′ | t, y) = �− m

2 φ(γ ) + �− m
2 φ(γ )

L∑
k=1

�
k
2

k∑
l=1

1

l!
∑

j=(j1,j2,...,jl)∈S l
k

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1
ω=1,...,l

·
(

l∏
ω=1

CY
iω,rω (y)

) ∑
a∈Zm

w̃a,ï · 1

(�(ï) − |a|)!Hcï−2a+br(γ ). (C22)

Consider the change of variable

h = cï − 2a + br. (C23)

Note that in (C23) each component of cï + br − h is even, or a = (cï + br − h)/2 is an integer-
valued vector, i.e. a ∈Zm. Thus, (C22) becomes (for simplification, below we still use both h
and a satisfying the relationship (C23))

p(L,LI)
Y (t′, y′ | t, y) = �− m

2 φ(γ ) + �− m
2 φ(γ )

L∑
k=1

�
k
2

k∑
l=1

1

l!
∑

j=(j1,j2,...,jl)∈S l
k

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1
ω=1,...,l

·
(

l∏
ω=1

CY
iω,rω (y)

) ∑
h∈Zm

w̃a,ï · 1

(�(ï) − |a|)!Hh(γ ) · 1{h=cï−2a+br,a∈Zm}.

(C24)

Interchanging the summations with respect to k and h leads to (see (C20) for the definition of
η(h,LI))

p(L,LI)
Y (t′, y′ | t, y) = �− m

2 φ(γ ) + �− m
2 φ(γ )

∑
h∈Zm

Hh(γ )η(h,LI)(� | t, y). (C25)

Then we get (C19) by recalling the definition of w̃a,ï. Indeed, to get a nonzero w̃a,ï requires
that

0 ≤ 2a ≡ cï + br − h ≤ cï ⇐⇒ br ≤ h ≤ cï + br. (C26)
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For ï = {i1, . . . , il} and iω ∈Mjω+1 (ω = 1, . . . , l), noting that |br| = l and recalling the
definitions of Mjω+1 and Sk, we have

|cï| =
m∑

α=1

cï(α) =
l∑

ω=1

m∑
α=1

ciω (α) =
l∑

ω=1

(‖iω‖ − 2ciω (0)
)

=
l∑

ω=1

(jω + 1) − 2cï(0) = k + l − 2cï(0). (C27)

Furthermore, for 1 ≤ k ≤ L and (j1, j2, . . . , jl) ∈ Sk, we have that 1 ≤ l ≤ k ≤ L. Then, combin-
ing (C26) and (C27), we have

1 ≤ l ≤ |h| ≤ (k + l − 2cï(0)) + l ≤ k + 2l ≤ 3k ≤ 3L.

This proves that (C19) with (C20) holds. The proof is finished. �
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