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Abstract

In this paper, we provide expressions based on Hermite polynomials for the pathwise expansion

method introduced by Watanabe (1987), Yoshida (1992b) and Li (2013). Our approach has two

key innovations. First, we introduce a quasi-Lamperti transform that unitizes the process’ diffusion

matrix at the initial time, as it corresponds to a multi-dimensional uncorrelated normal distribution,

thus facilitating subsequent analysis. Second, by utilizing explicit expressions for the conditional

expectation of the multiplication of iterated Itô integrals, we derive explicit formulas for the con-

ditional expectation of the pathwise expansion of a general function on the transformed diffusion.

Applying the newly derived method to the conditional expectation of the Dirac delta function and

Hermite polynomial functions, respectively, we obtain alternative expressions for the pathwise based

density expansion proposed by Li (2013) and the Hermite polynomials based density expansion in-

troduced in Yang et al. (2019) and Wan and Yang (2021). We show that the formulas obtained

from these two expansion methods are essentially the same by rearranging the terms according to

the increasing order of Hermite polynomials.
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1 Introduction

Multivariate diffusions governed by stochastic differential equations (SDEs) are widely used

in financial economics to describe the evolution of the vector of economic variables including

prices, stochastic volatilities, interest rates, and other state variables. Transition densities are

pivotal for pricing financial derivatives, implementing maximum likelihood estimation method,

and testing models based on discrete observations, see, e.g., Aït-Sahalia (2009). However, the

transition density is unknown for most multivariate diffusions.

The theory of Watanabe (1987) in Mallavin calculus and its subsequent developments, termed

as the pathwise expansion approach, provides a powerful tool for approximating conditional ex-

pectations of generalized functions on a given diffusion process, namely Wiener functionals. The

pathwise expansion approach has wide-range applications in statistics and option pricing. On

one hand, Yoshida (1992a,b) obtains expansions of statistics and establish statistical proper-

ties for maximum likelihood estimator. Li (2013) proposes a pathwise expansion of the Dirac

delta function on the diffusion to approximate the transition density, where the expansion co-

efficient calculated recursively through conditional expectations of iterated stochastic integrals.

On the other hand, Takahashi (1999), Kunitomo and Takahashi (2001, 2003), and Li (2014)

use the pathwise expansion to approximate option prices. For comprehensive overviews, refer

to Bompis and Gobet (2013) and Takahashi (2015).

Moreover, alternative methods of density expansions have also held a significant role within

the literature. The Kolmogorov method introduced by Aït-Sahalia (2008) postulates a suitable

form for the (log-)transition densities. It expands densities in both time and state variables, and

then utilizes the Kolmogorov equations to compute expansion coefficients. Yang et al. (2019)

proposes a delta expansion method for approximating transition densities, employing the Itô-

Taylor expansion of the conditional expectation of the Dirac delta function. By extending Aït-

Sahalia (2002)’s Hermite expansion for univariate diffusions, Wan and Yang (2021) establishes

a multivariate version and links it with Yang et al. (2019)’s delta expansion method. For other

refinements of density expansions and applications, refer to Aït-Sahalia and Yu (2006), Aït-

Sahalia and Kimmel (2007, 2010), Filipović et al. (2013), Choi (2013, 2015), among others.

Deriving explicit formulas for coefficients of the pathwise expansion method is a challenging

task. Li (2013, 2014) make significant contributions to this topic. However, the building blocks

of Li (2013, 2014)’ formulas are the conditional expectation of the multiplication of iterated
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Stratonovich integrals. Deriving explicit formulas for these conditional expectation is also a

challenging task.1 Furthermore, the relationship between different expansions for transition

densities of multivariate diffusions remains unclear.

In this paper, initially, we derive explicit expansion formulas for the pathwise expansion

approach, and subsequently, we employ the result to show the equivalence between existing

density expansions. The validity of the pathwise expansion method follows Watanabe theory in

Malliavin calculus developed by Watanabe (1987), as well as further analysis of Yoshida (1992b)

and Li (2013).

To commence, we obtain formulas based on Hermite polynomials for the pathwise expansion

method introduced by Watanabe (1987), Yoshida (1992b), and Li (2013). These formulas allow

us to compute the conditional expectation of a “general function” on the diffusions, facilitating

calculations of the transition density, option prices, and moments. To achieve this goal, we first

introduce a quasi-Lamperti transform that unitizes the process’ diffusion matrix at the initial

time, enabling subsequent analysis. Then, we apply the theory of Watanabe (1987), Yoshida

(1992b) and Li (2013) to establish a pathwise Taylor expansion for a function on the transformed

diffusion. By utilizing explicit expressions for the conditional expectation of the multiplication

of iterated Itô integrals, we derive explicit expressions for the conditional expectation of the

expansion coefficients.

By considering the “general function” within the conditional expectation as the Dirac delta

function and Hermite polynomial functions, respectively, we derive alternative expressions for

the pathwise method based density expansion proposed by Li (2013) and the Hermite method

based density expansion introduced in Yang et al. (2019) and Wan and Yang (2021). The new

formulas allow us to collect the terms in the density expansion of Li (2013) according to the

ascending order of Hermite polynomials. As a consequence, we establish the equivalence between

Li (2013)’s pathwise expansion method and the Hermite expansion method introduced by Yang

et al. (2019) and Wan and Yang (2021).

This paper contributes to the literature in two aspects. First, we demonstrate that adopting

the quasi-Lamperti transform and explicit expressions for the conditional expectation of the
1Section 4 of Li et al. (2016) provides a six-page explanation to address this issue. As a comparison, this paper

uses the conditional expectation of the multiplication of iterated Itô integrals to avoid the conditional expectation

of the multiplication of iterated Stratonovich integrals and provides explicit formulas for them; see Lemma 3.2.

Furthermore, these formulas make it possible to establish equivalence with other expansion methods.
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multiplication of iterated Itô integrals facilitates the computation of conditional expectation via

the pathwaise Taylor expansion method.

In comparison to Li (2013)’s approach, which uses a diagonal matrix transformation leading

to a multi-dimensional correlated Brownian motion as the leading term, our quasi-Lamperti

transform yields an uncorrelated multi-dimensional standard Brownian motion. Consequently,

we can avoid calculating high-order derivatives for the general multivariate Hermite polynomials,

as indicated in (33) of Theorem 3.1, (39) of Theorem 4.1, (49) of Theorem 4.2. This innovation

enables us to reorganize terms according to the increasing order of Hermite polynomials.2 It

will have the same advantage when using the pathwise method to expand other conditional

expectations, such as the option prices, moments or cumulative distribution functions.

Second, we rigorously establish the equivalence of the density expansions between the path-

wise expansion of Li (2013) and the Hermite expansion of Yang et al. (2019) and Wan and Yang

(2021). This substantiates that the Hermite expansion presented in Wan and Yang (2021), with

its explicit recursive formulas, offers an alternative representation for the density expansion

elucidated in Li (2013).

Organization of the paper. The rest of the paper is organized as follows. Section 2 gives

the model setting. Section 3.1 introduces the quasi-Lamperti transform which transforms the

original multivariate diffusion X into a transformed diffusion Y . Section 3.2 derives expressions

based on Hermite polynomials for the conditional expectation of function f on a normalization

of Y via the pathwise expansion method. By taking f to be the Dirac delta function and the

Hermite polynomials, Section 4.1 and Section 4.2 recalculate the density expansion formula for

the pathwise expansion of Li (2013) and the Hermite expansion method of Yang et al. (2019)

and Wan and Yang (2021), respectively, and Section 4.3 establishes the equivalence of two

methods. Section 5 backtracks the density expansion for the original process X, and develops

the equivalence between the pathwise expansion of Li (2013) and the Hermite expansion of Yang

et al. (2019) and Wan and Yang (2021). Section 6 concludes the paper. Technical proofs are

collected in the Appendix.
2We can recursively define Hermite polynomials associated with multivariate correlated normal distributions. In

this case, when it comes to calculating high-order derivatives of a function combined with Hermite polynomials,

a recursive formulation is not achievable. However, in a sharp contrast, the Hermite polynomials associated

with multi-dimensional uncorrelated normal distributions emerge as straightforward products of their univariate

counterparts. Remarkably, these polynomials exhibit explicit expressions for their high-order derivatives.
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Notations. For ease of exposition, we will use the following notational conventions throughout

the paper. Note that the positive integer m represents the dimension of the state variable.

Let Zm be the set of m-dimensional integers, and Zm
+ be the subset of Zm, the element of

which has nonnegative component. For h = (h1, h2, · · · , hm) ∈ Zm
+ , define |h| :=

∑m
i=1 hi

and h! = h1! · · ·hm!. Let ei be a special index vector, in which the i-th component is 1,

and the others are 0. We write xh = xh1
1 · · ·xhm

m for any x = (x1, . . . , xm)⊤ ∈ Rm, where ⊤

denotes transposition. Let µ ∈ Rm and ν ∈ Rm×m be a vector and a matrix respectively. We

use either µi or (µ)i to denote the i-th element of the vector µ without confusion. Similarly,

denote the (i, j)-element of the matrix ν to be νij or (ν)ij . Let ϕ(x) denote the density of the

standard m-dimensional multivariate normal distribution with mean 0 and identity variance-

covariance matrix, and let Hh(x) denote the corresponding multivariate Hermite polynomial;

that is, Hh(x) := (−1)|h|ϕ−1(x)∂h
xϕ(x), where ∂h

x := ∂|h|/(∂xh1
1 · · · ∂xhm

m ). In particular, Hh(x) =∏m
i=1Hhi

(xi), where Hhi
(xi) is the hi-th order standard univariate Hermite polynomial.

2 The Model

Consider a multivariate time homogeneous diffusion process

dX(s) = µX(X(s))dt+ σX(X(s))dW (s), (1)

where X(s) is an m × 1 vector of state variables in the domain DX ⊂ Rm and W (s) is a d-

dimensional standard Brownian motion, µX(X(s)) ∈ Rm and σX(X(s)) ∈ Rm×d are an m × 1

drift vector and an m × d volatility (or dispersion) matrix, respectively. The explicit forms of

µX and σX are known. Given two time points t and t′ such that t′ > t, let pX(t′, x′|t, x) denote

the conditional density of X(t′) = x′ given X(t) = x. Without loss of generality, we assume

m = d. The diffusion matrix is defined below

νX(ξ) = σX(ξ)(σX(ξ))⊤. (2)

We need the following technical assumptions to proceed the analysis, which are sufficient

to ensure the existence and uniqueness of a solution to SDE (1) with appropriate regularities

(Karatzas and Shreve, 1991). These assumptions are also standard in the literature of the

transition density expansions for diffusion processes (Watanabe, 1987; Yoshida, 1992b; Li, 2013).
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Assumption 1. The diffusion matrix νX(x) is positive definite; i.e. ζ⊤νX(x)ζ > 0 for any

nonzero vector ζ ∈ Rm and x ∈ DX .

Assumption 2. All the components of µX(x) and σX(x) are infinitely differentiable with

bounded derivatives of all orders.

3 Explicit formulas for the pathwise expansion method via Her-

mite polynomials

In this section, we first introduce a novel quasi-Lamperti transform that transforms the original

diffusion X into a new one Y whose diffusion matrix is the identity matrix at the initial time.3

This transformation makes the subsequent analysis possible. Then we derive explicit formulas

for the pathwise expansion of the conditional expectation the transformed process.

3.1 Quasi-Lamperti Transform X → Y

For fixed initial time t and state X(t) = x, define a process Y by the following linear transfor-

mation

Y (s) := ν
−1/2
0 X(s), s ≥ t, (3)

where the constant matrix ν0 := νX(x) is non-degenerate by Assumption 1. The dynamics of Y

defined by (3) satisfies

dY (s) = µY (Y (s))ds+ σY (Y (s))dW (s), Y (t) = y, (4)

where y = ν
−1/2
0 x, ζ = ν

−1/2
0 ξ, µY (ζ) = ν

−1/2
0 µX(ξ), and σY (ζ) = ν

−1/2
0 σX(ξ). The diffusion

matrix of the diffusion Y is given by

νY (ζ) = σY (ζ)σY (ζ)⊤.

Thus at time t, we can verify that the initial diffusion matrix of Y is the identity matrix, i.e.,

νY (y) = σY (y)σY (y)⊤ = ν
−1/2
0 σX(x)σX(x)⊤ν

−1/2
0 = Idm, (5)

3For univariate diffusions, the Lamperti transform can unitize the diffusion of the process throughout the whole

time domain. For multivariate diffusions, in general the Lamperti transform does not exist. However, as we aim

to derive a small time expansion, the quasi-Lamperti transform which unitizes the diffusion matrix at the initial

time is enough.
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where Idm is the m-dimensional identity matrix. The transformation defined through (3) is said

to be a quasi-Lamperti transform.4 The differential operators associated with Y are given below:

LY,0
ζ =

m∑
k=1

µY
k (ζ)∂

ek
ζ +

1

2

m∑
k,l=1

νYkj(ζ)∂
ek+el
ζ , (6)

LY,l
ζ =

m∑
k=1

σY
kl(ζ)∂

ek
ζ , l = 1, . . . ,m. (7)

Remark 3.1. Note that pX(t′, x′|t, x) and pY (t
′, y′|t, y) are transition densities for the original

process X and the transformed diffusion Y , respectively. By the Jacobian formula for the change

of density, we have

pX(t′, x′|t, x) = det (ν0)
−1/2 pY (t

′, ν
−1/2
0 x′|t, ν−1/2

0 x). (8)

Thus, once we have derived a L-th order density expansion, denoted as p
(L)
Y (t′, y′|t, y) for Y , we

can backtrack a density expansion, p
(L)
X (t′, x′|t, x), of the original process X analogy to (8) as

follows,

p
(L)
X (t′, x′|t, x) = det (ν0)

−1/2 p
(L)
Y (t′, ν

−1/2
0 x′|t, ν−1/2

0 x).

3.2 Explicit formulas for the pathwise expansion method

In this subsection, we apply the method of Watanabe (1987), Yoshida (1992b) and Li (2013)

to given a pathwise expansion of f
(Y (t′)−y√

t′−t

)
for a given “function” f , and then use the newly

derived formula for the conditional expectation of the multiplication of iterated Itô integrals to

present a Hermite polynomial based expression for the following conditional expectation

E
[
f

(
Y (t′)− y√

t′ − t

) ∣∣∣Y (t) = y

]
. (9)

The function f(·) can be a generalized function such as the Dirac delta function, an indicator

function, a Lipschitz function, etc. Such choice of f has wide applications in the expansion of

transition densities and option prices, etc. For these functions, the validity of the pathwise

expansion discussed in this paper is ensured by Watanabe theory in Malliavin calculus, see, e.g.,

Watanabe (1987); Yoshida (1992b); Li (2013, 2014). For ease of exposition, we do not impose

explicit conditions on the function f(·).
4If the initial volatility matrix σX(x) of X is invertible, we can use an alternative quasi-Lamperti transform

as follows: Y (s) :=
(
σX(x)

)−1
X(s) for s ≥ t.
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Three main steps for deriving explicit expansion coefficients are presented in Sections 3.2.1,

3.2.2, and 3.2.3 below.

3.2.1 Rescaling the process Y

Rescale the process Y defined by (4) as Y ϵ(s) := Y (ϵ2s + t), s ≥ 0, where ϵ :=
√
∆ =

√
t′ − t.

By (4), we have

dY ϵ(s) = ϵ2µY (Y ϵ(s))ds+ ϵσY (Y ϵ(s))dW ϵ(s), Y ϵ(0) = y, (10)

where {W ϵ(s), s ≥ 0} is a m-dimensional standard Brownian motion. For simplicity, we write

W ϵ(s) as W (s) when there is no confusion.

Note that Y (t′)−y√
t′−t

= Y ϵ(1)−y
ϵ since Y ϵ(1) = Y (t′) and ϵ = t′ − t. Define a normalization Γϵ of

Y ϵ(1) as follows:

Γϵ : =
Y ϵ(1)− y

ϵ
→ W (1), as ϵ → 0. (11)

The convergence result above holds because σY (y) is an identity matrix, cf. (5).

It’s worth mentioning that the normalization Γϵ here corresponds to the standardization in

Equation (3.16) of Li (2013), but there are significant differences between the two. Li (2013)

uses a diagonal matrix transformation to standardize the original diffusion X leading to a multi-

dimensional correlated Brownian motion (see Equation (3.17) of Li, 2013). Unlike Li (2013), we

use the quasi-Lamperti transform and the normalization Γϵ here converges to the uncorrelated

multi-dimensional standard Brownian motion W (1), which facilitates subsequent analysis. This

is one of the two key innovations that sets this paper apart from the computation of Li (2013).

With the normalization Γϵ in (11), the conditional expectation (9) now becomes

E
[
f

(
Y (t′)− y√

t′ − t

) ∣∣∣Y (t) = y

]
= E

[
f(Γϵ)

∣∣∣Y ϵ(0) = y
]
. (12)

3.2.2 Expanding f(Γϵ) with respect to ϵ

According to Theorem 3.3 of Watanabe (1987), we have the pathwise expansion of the random

variable Y ϵ(1) in Lemma 3.1 via successive application of Itô formula. Before presenting the

results, we introduce some notations first. Consider an index i = (i1, i2, . . . , in) ∈ {0, 1, . . . ,m}n

associated with the “norm”

∥i∥ =

m∑
l=1

(2 · 1{il=0} + 1{il ̸=0}). (13)
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Define a set of the indices as follows:

Mk = {i = (i1, i2, . . . , in)
∣∣∥i∥ = k}. (14)

Note that we can also recursively define (Mk)k≥0 below: M0 = ∅, M1 = {(1), · · · , (m)}, and

Mk+1 = {i
∣∣i1 = 0, (i2, . . . , in) ∈ Mk−1}

m⋃
α=1

{i
∣∣i1 = α, (i2, . . . , in) ∈ Mk}. (15)

The lemma below gives a pathwise expansion of Y ϵ(1) via the iterated Itô integral, instead

of the iterated Stratonovich integral in Lemma 1 of Li (2013).

Lemma 3.1. The expansion of the random variable Y ϵ(1) now reads as

Y ϵ(1) =

L∑
k=0

ϵkF Y
k +O

(
ϵL+1

)
, (16)

where F Y
0 = y, and the expansion coefficients have the following general form

F Y
k =

∑
i∈Mk

CY
i (y) · Ii(1), (17)

where i = (i1, i2, . . . , in), Mk is given by (14), and

CY
i (ζ) = (LY,in

ζ ◦ · · · ◦ LY,i2
ζ )σY

·i1(ζ). (18)

Here σY
·0 = µY , σY

·i1 = (σY
1i1

, · · · , σY
mi1

)⊤, and the operators are defined by (6)-(7). The iterated

Itô integral Ii(t) is defined through

Ii(t) =
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
dWin(tn) · · · dWi2(t2)dWi1(t1), (19)

where W0(t) = t by convention.

Then the pathwise expansion (16) and the definition in (11) imply that

Γϵ =
L∑

j=0

F Y
j+1ϵ

i +O(ϵL+1). (20)

Using the chain rule for differentiating composite functions,5 we have

f(Γϵ) = f(W (1)) +

L∑
k=1

Φk

(
y; f(·)

)
ϵk +O(ϵL+1). (21)

5See Theorem 3.5 of Watanabe (1987); Theorem 2.2 of Yoshida (1992b); Appendix B.1 of Li (2013) for the

cases that f is a generalized function.
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The coefficient Φk

(
y; f(·)

)
can be represented explicitly in terms of the derivatives of f(·) and

the product of F Y
j , 1 ≤ j ≤ k, that is,

Φk

(
y; f(·)

)
=

∑
(j1,j2,...,jl)∈Sk

∑
r∈{1,2,...,m}l

1

l!
∂br
z f (z)

∣∣∣
z=W (1)

l∏
ω=1

F Y
jω+1,rω , (22)

where r := (r1, . . . , rl) ∈ {1, 2, . . . ,m}l, br :=
∑l

ω=1 erω , F Y
jω+1 is given by (17), and Sk is defined

below

Sk =
{
j := (j1, j2, . . . , jl)

∣∣jω ≥ 1, ω = 1, · · · , l; j1 + j2 + · · ·+ jl = k; l = 1, 2, . . .
}
. (23)

Note that we can also define (Sk)k≥1 recursively by S1 = {(1)} and

Sk+1 ={j |j1 = 1, (j2, . . . , jl) ∈ Sk} ∪ {j |(j1 − 1, j2, . . . , jl) ∈ Sk}. (24)

3.2.3 Computing the expansion coefficients

To compute the conditional expectation (9) or (12), i.e., E[f(Γϵ)|Y ϵ(0) = y], we take conditional

expectation on both sides of (21), which leads to

E
[
f

(
Y (t′)− y√

t′ − t

) ∣∣∣Y (t) = y

]
= Ω0

(
y; f(·)

)
+

L∑
k=1

Ωk

(
y; f(·)

)
ϵk +O(ϵL+1), (25)

where Ω0

(
y; f(·)

)
= E[f(W (1))] and for k = 1, . . . , L

Ωk

(
y; f(·)

)
:= E[Φk

(
y; f(·)

)
]. (26)

The leading order term is

Ω0

(
y; f(·)

)
=

∫
Rm

f (z)ϕ(z)dz. (27)

For the k-th order term, noting that Φk

(
y; f(·)

)
is given by (22), the conditional expectation of

the multiplication of the iterated Itô integrals, i.e.,

E

[
l∏

ω=1

Iiω(t)
∣∣∣W (t) = x

]
, (28)

plays a key role. Lemma 3.2 below gives an explicit recursive formulas for (28). It is worth

mentioning that by replacing the iterated Itô integrals in (28) with iterated Stratonovich in-

tegrals, the conditional expectation of the multiplication of iterated Stratonovich integrals are

9
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the building blocks of the pathwise expansion proposed by Li (2013). Appendix A of Li (2013)

provides an effective algorithm with three major steps for computing these conditional expec-

tations, which are further discussed by Section 4 of Li (2014) and Section 4 of Li et al. (2016).

Compared to algorithms described on several pages in Li (2013, 2014) and Li et al. (2016), our

approach does not involve the Stratonovich integrals and thus we do not need algorithms that

convert the multiplication of iterated Stratonovich integrals to the iterated Itô integrals. In

addition, our formula in Lemma 3.2 is explicit and easier for readers to implement.

Let ï := {i1, · · · , il} be a vector whose components are indices of the iterated Itô integrals

(19). Define the “norm” ∥ï∥ =
∑l

ω=1 ∥iω∥, where ∥iω∥ is given by (13). Let niω(α) and nï(α) be

the number of α (α = 0, 1, · · · ,m) in iω and ï, respectively, that is, niω(α) =
∑n

k=1 1{(iω)k=α} and

nï(α) =
∑l

ω=1 niω(α). We can further define niω = (niω(1), · · · , niω(m)) and n(ï) =
∑l

ω=1 niω .

Let ℓ(ï) be the total length of all indices iω (for ω = 1, . . . , l) in ï, that is,

ℓ(ï) = nï(0) +
m∑

α=1

nï(α) =
l∑

ω=1

(
niω(0) +

m∑
α=1

niω(α)

)
. (29)

With these notations, we can present the explicit formula for the conditional expectation of

the product of iterated Itô integrals in lemma below.

Lemma 3.2. The conditional expectation of the product of iterated Itô integrals is a linear

combination of the Hermite polynomials as follows

E

[
l∏

ω=1

Iiω(t)
∣∣∣W (t) = x

]
=

∑
0≤a≤⌊n(ï)/2⌋

w̃a,ï ·

( √
t
∥ï∥

(ℓ(ï)− |a|)!Hn(ï)−2a

(
x√
t

))
, (30)

where ï := {i1, · · · , il}, a = (a1, · · · , am). The coefficient w̃a,ï is recursively determined as

follows: w̃a,ï = 1{a=0} if ï = ∅ or {i1}; w̃a,ï = 0 if min(a) < 0 or max(2a − n(ï)) > 0; and

w̃a,ï =
l∑

ω1=1

w̃a,ï−ω1
+

∑
1≤ω1<ω2≤l

1{(iω1 )1=(iω2 )1 ̸=0}w̃a−e(iω1 )1
,ï−ω1−ω2

, (31)

where ï−ω1 means replacing the ω1-th component of ï, that is iω1 :=
(
(iω1)1, (iω1)2, · · · , (iω1)nω1

)
,

with −iω1 :=
(
(iω1)2, · · · , (iω1)nω1

)
in the set ï; eα (for α = 1, · · · ,m) is the m-dimensional

vector, in which the α-th component is 1, and the others are 0.

In particular, the conditional expectation of the iterated Itô integral defined in (19) is a

standard Hermite polynomial given below:

E[Ii(t)|W (t) = x] =

√
t
∥i∥

n!
Hni

(
x√
t

)
. (32)
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The explicit formulas (30) and (32) are first obtained in Lemmas B.2 and B.3 in Yang et al.

(2019). Using these two formulas, Yang et al. (2019) demonstrate that the Hermite expansion

and the pathwise expansion of Li (2013) have the same formulas up to any given order for one-

and two-dimensional diffusions through the symbolic computation function in Mathematica. In

this paper we further substantiate the equivalence of the expansion formulas between the Hermite

and pathwise expansion methods through theoretical proofs, with the help of the quasi-Lamperti

transform.

It is worth mentioning that an alternative polynomial expression for (32) is also provided by

Proposition 3 in Li (2014) and Section 4.1 of Li et al. (2016). However, explicit formulas for the

conditional expectation of the product of the iterated Itô integral (30) is new in the literature.

Furthermore, our formulas are expressed in terms of Hermite polynomials, which allows us to

derive an expression for the coefficients of the pathwise expansion based on Hermite polynomials.

In detail, using the explicit formulas (30) and (32) for the conditional expectation of the

product of the iterated Itô integral presented in Lemma 3.2, we can derive an explicit recursive

formulas for the coefficients Ωk

(
y; f(·)

)
. These coefficients associated with the pathwise expan-

sion method for the transformed process Y defined (4), with its initial diffusion matrix being

the identity matrix. The result is presented in the theorem below.

Theorem 3.1. The expansion coefficient Ωk

(
y; f(·)

)
in (25) is explicitly given by

Ωk

(
y; f(·)

)
=

∑
(j1,j2,...,jl)∈Sk

1

l!

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1

ω=1,··· ,l

(
l∏

ω=1

CY
iω ,rω(y)

)

·
∑

0≤a≤⌊n(ï)/2⌋
· w̃a,ï
(ℓ(ï)− |a|)! ·

∫
Rm

f (z)Hn(ï)−2a+br (z)ϕ(z)dz, (33)

where r := (r1, . . . , rl), br :=
∑l

ω=1 erω , ϕ(z) is the m-dimensional standard normal density func-

tion and Hh(z) denotes its corresponding multivariate Hermite polynomial, Sk, Mj, CY
iω ,rω

(y)

and w̃a,ï are recursively defined by (24), (15), (18) and (31), respectively.

To calculate the explicit formulas for the expansion of (9) given by (25), (27) and (33),

we need to compute multivariate integrals in (27) and (33). For certain special functions such

as the Dirac delta function, the Hermite polynomial, and the option payoff function, these

multivariate integrals in (27) and (33) can be simplified into analytical formulas without the need

for integration. In the next section, we provide explicit formulas to compute the multivariate
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integrals in (27) and (33) for the Dirac delta function and the Hermite polynomials, in order to

recalculate formulas for the pathwise expansion of Li (2013) and the Hermite expansion of Yang

et al. (2019) and Wan and Yang (2021), respectively.

4 Equivalence of density expansions for the transformed process

Y

In this section, we focus on the transformed diffusion process Y defined in (4). Specially, we

apply the result of Theorem 3.1 to recalculate the density expansion formulas for both the

pathwise expansion of Li (2013) and the Hermite expansion of Yang et al. (2019) and Wan and

Yang (2021). This allows us to demonstrate their equivalence under the process Y .

4.1 Recalculate formulas for the pathwise expansion of Li (2013)

Li (2013) starts from the fact that the transition density admits the following representation

pY (t
′, y′|t, y) = E[δ(Y (t′)− y′)|Y (t) = y], (34)

where δ(·) is the Dirac delta function, see, e.g, Watanabe (1987). We can rewrite it using the

Jacobian formula for the change of density as follows:

pY (t
′, y′|t, y) = ∆−m

2 E
[
δ

(
Y (t′)− y√

∆
− γ

) ∣∣∣Y (t) = y

]
, (35)

where γ := (y′ − y)/
√
∆ and ∆ = t′ − t.

Recalling the conditional expectation defined in (9) and the transition density given by (35),

and considering

f(·) = δ(· − γ), (36)

we can provide explicit formulas for Li (2013)’ density expansion using the formulas derived in

Section 3. Specifically, the multivariate integrals in (27) and (33) now are given by

Ω0

(
y; f(·)

)
=

∫
Rm

δ (z − γ)ϕ(z)dz = ϕ(γ), (37)

and ∫
Rm

δ (z − γ)Hn(ï)−2a+br (z)ϕ(z)dz = Hn(ï)−2a+br(γ)ϕ(γ). (38)
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Thus we obtain an explicit recursive formulas for the expansion coefficients Ωk

(
δ(· − γ); y

)
presented in Theorem 4.1 below.

Theorem 4.1. The expansion coefficient Ωk

(
δ(· − γ); y

)
in (33)is explicitly given by

Ωk

(
y; δ(· − γ)

)
=ϕ(γ)

∑
(j1,j2,...,jl)∈Sk

1

l!

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1

ω=1,··· ,l

(
l∏

ω=1

CY
iω ,rω(y)

)

·
∑

0≤a≤⌊n(ï)/2⌋

w̃a,ï
(ℓ(ï)− |a|)!Hn(ï)−2a+br (γ) , (39)

where r := (r1, . . . , rl), br :=
∑l

ω=1 erω , γ := (y′ − y)/
√
t′ − t, ϕ(γ) is the m-dimensional

standard normal density function and Hh(γ) denotes its corresponding multivariate Hermite

polynomial, Sk, Mj, CY
iω ,rω

(y) and w̃a,ï are recursively defined by (24), (15), (18) and (31),

respectively.

By (25), (37) and (39), we obtain an explicit expression based on Hermite polynomials for

the L-th order expansion of Li (2013) for the transition density of Y (cf. Equation (3.21) of Li

(2013)):

p
(L,LI)
Y (t′, y′|t, y) =∆−m

2 ϕ(γ) + ∆−m
2

L∑
k=1

∆
k
2Ωk

(
y; δ(· − γ)

)
, (40)

and the true transition density pY (t
′, y′|t, y) admits

pY (t
′, y′|t, y) =p

(L,LI)
Y (t′, y′|t, y) +O(∆

L+1−m
2 ). (41)

Unlike the algorithms in Li (2013) and Li et al. (2016), the newly derived formula is explicitly

expressed as a linear combination of Hermite polynomials, which allows us to connect it with

the Hermite expansion and establish the equivalence result.

4.2 Recalculate formulas for the Hermite expansion of Yang et al. (2019) and
Wan and Yang (2021)

In this subsection, we apply the pathwise expansion method to recompute the coefficients of the

Hermite expansion, Equation (28) in Wan and Yang (2021), or equivalently Equation (22) in

Yang et al. (2019) for the transformed diffusion Y .
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For the process Y defined in (4), Wan and Yang (2021) expands the transition density

pY (t
′, y′|t, y) around ϕ(γ) to get the following expansion:

p
(J)
Y (t′, y′|t, y) :=∆−m

2 ϕ(γ) + ∆−m
2 ϕ(γ)

J∑
j=1

∑
|h|=j

η(h)(∆|t, y) ·Hh(γ), (42)

where ∆ = t′ − t, γ = (y′ − y)/
√
∆, and the coefficients {η(h), h = (h1, h2, · · · , hm) ∈ Zm

+} are

given by the conditional expectations

η(h)(∆|t, y) = 1

h!
E
[
Hh

(
Y (t+∆)− y√

∆

)∣∣∣∣Y (t) = y

]
. (43)

In Theorem 2.1 of Wan and Yang (2021)), they show that the error of the expansion is of order

O(∆(L+1−m)/2) when J = 3L, that is,

pY (t
′, y′|t, y) = p

(3L)
Y (t′, y′|t, y) +O(∆

L+1−m
2 ).

Furthermore, computing the coefficients η(h) of (43) in p
(3L)
Y of (42) via the Itô-Taylor expansion

method up to the order of O(∆L/2), that is

η(h)(∆|t, y) = η
(h)
L (∆|t, y) +O(∆

L+1
2 ), (44)

and replacing η(h) with η
(h)
L in (42) for J = 3L, they arrive at the L-th order reduced Hermite

expansion; see Equation (28) of Wan and Yang (2021).

Next, we recalculate the Hermite expansion coefficient η(h) of (43) in p
(3L)
Y of (42) using

the pathwise expansion method up to the same order O(∆L/2). This allows us to derive an

alternative expression for the reduced Hermite expansion of Wan and Yang (2021).

Recalling the conditional expectation defined in (9) and the Hermite expansion coefficient

η(h) given by (43), and taking

f(·) = Hh(·), (45)

we can use the formulas obtained in Section 3 to derive alternative approximate formulas for the

Hermite expansion coefficients. Specifically, by the orthogonality of the Hermite polynomials,

the multivariate integrals in (27) and (33) now are given by

Ω0

(
y;Hh(·)

)
=

∫
Rm

Hh (z)ϕ(z)dz = 1{h=0}, (46)
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and ∫
Rm

Hh (z)Hn(ï)−2a+br (z)ϕ(z)dz =h! · 1{n(ï)−2a+br=h}. (47)

Thus by (25), for h = (h1, h2, · · · , hm) ∈ Zm
+ , the coefficients η(h) in (43) can be expanded as

follows

η(h)(∆|t, y) = 1

h!
Ω0

(
y;Hh(·)

)
+

1

h!

L∑
k=1

Ωk

(
y;Hh(·)

)
ϵk +O(∆

L+1
2 )

=
1

h!

L∑
k=1

Ωk

(
y;Hh(·)

)
∆

k
2 +O(∆

L+1
2 ), (48)

where the expansion coefficient Ωk(y;Hh(·)) is explicitly given in the theorem below.

Theorem 4.2. Given h = (h1, h2, · · · , hm) ∈ Zm
+ , the expansion coefficient Ωk

(
y;Hh(·)

)
in (48)

is explicitly given by

Ωk(y;Hh(·)) =
∑

(j1,j2,...,jl)∈Sk

1

l!

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1

ω=1,··· ,l

(
l∏

ω=1

CY
iω ,rω(y)

)

· w̃a,ï
(ℓ(ï)− |a|)! · h! · 1{a = n(ï)+br−h

2 ,a∈Zm}
, (49)

where r := (r1, . . . , rl), br :=
∑l

ω=1 erω , Sk, Mj, CY
iω ,rω

(y) and w̃a,ï are recursively defined by

(24), (15), (18) and (31), respectively.

Truncating the coefficient η(h) in (48) at the order ∆L
2 , and plugging it into (42) for J = 3L,

using the formula (49) for Ωk

(
y;Hh(·)

)
, we get an alternative expression for the L-th order

reduced Hermite expansion of Wan and Yang (2021) as follows,

p
(L,WY )
Y (t′, y′|t, y) =∆−m

2 ϕ(γ) + ∆−m
2 ϕ(γ)

3L∑
j=1

∑
|h|=j

1

h!

L∑
k=1

Ωk

(
y;Hh(·)

)
∆

k
2 ·Hh(γ). (50)

4.3 Equivalence for the transformed diffusion Y

With the newly derived formulas in Theorems 4.1 and 4.2, the theorem below shows that the L-th

order pathwise expansion of Li (2013) coincides with the L-th order reduced Hermite expansion

of Wan and Yang (2021) or Yang et al. (2019) for the transformed diffusion Y .

Theorem 4.3. For the transformed diffusion process Y defined in (4), we have

p
(L,LI)
Y (t′, y′|t, y) = p

(L,WY )
Y (t′, y′|t, y), (51)
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where p
(L,LI)
Y (t′, y′|t, y) is given by (40) and (39), and p

(L,WY )
Y (t′, y′|t, y) is given by (50) and

(49).

5 Equivalence of density expansions for the original diffusion X

In this section, we establish the equivalence result of the pathwise expansion of Li (2013) and the

Hermite expansion of Wan and Yang (2021) or Yang et al. (2019) for the original diffusion X.

We achieve this by utilizing the Jacobian formula for the change of density and the equivalence

result for the transformed diffusion process Y .

5.1 Explicit alternative formulas of Li (2013)’s pathwise expansion for the
original diffusion X

To return to the density expansion for the original diffusion, we can define p
(L,LI)
X below via

p
(L,LI)
Y of (40) and (39) developed in Section 4.1:

p
(L,LI)
X (t′, x′|t, x) := det (ν0)

−1/2 p
(L,LI)
Y (t′, ν

−1/2
0 x′|t, ν−1/2

0 x). (52)

The proposition below demonstrates that p
(L,LI)
X defined in (52) is exactly equivalent to Li

(2013)’s density expansion for the original process X, denoted by p̃
(L,LI)
X . As a result, p(L,LI)X

defined in (52) is an explicit alternative formulas for Li (2013)’s pathwise expansion for the

original diffusion X. The advantage of p
(L,LI)
X in (52) is that it does not involve the condi-

tional expectation of the multiplication of iterated Stratonovich integrals and their derivatives

in Equation (3.26) of Li (2013).

Proposition 5.1. The two expansions p
(L,LI)
X defined in (52) and p̃

(L,LI)
X provided by Equation

(3.21) and (3.25) of Li (2013) are the same, that is,

p
(L,LI)
X (t′, x′|t, x) = p̃

(L,LI)
X (t′, x′|t, x). (53)

5.2 Equivalence for the original diffusion X

Similar to (52), we also define the Hermite expansion p
(L,WY )
X for the original process X via the

Hermite expansion p
(L,WY )
Y of (50) and (49) developed in Section 4.2:

p
(L,WY )
X (t′, x′|t, x) := det (ν0)

−1/2 p
(L,WY )
Y (t′, ν

−1/2
0 x′|t, ν−1/2

0 x). (54)
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Note that p(L,WY )
Y of (50) and (49) is an alternative formula for the (reduced) Hermite expansion

(28) in Wan and Yang (2021) for the transformed process Y . Consequently p
(L,WY )
X defined in

(54) is an alternative formula for the Hermite expansion (32) in Wan and Yang (2021) for the

original process X.

On one hand, we show in Section 4.3 that for the transformed diffusion Y , Li (2013)’s

pathwise expansion p
(L,LI)
Y (t′, y′|t, y) given by (40) and (39) is identical to the Hermite expansion

p
(L,WY )
Y (t′, y′|t, y) given by (50) and (49). Hence, when we backtrack to the original process X,

we can see that p
(L,LI)
X defined through (52) is the same as the Hermite expansion p

(L,WY )
X

defined through (54). On the other hand, we prove in Proposition 5.1 that p
(L,LI)
X defined in

(52) is identical to Li (2013)’s density expansion for the original process X. Consequently, we

establish the equivalence between Li (2013)’s pathwise expansion and Wan and Yang (2021)’s

Hermite expansion for the original process X.

Furthermore, Wan and Yang (2021) prove that the Hermite expansion p
(L,WY )
X in (54) is

the same as the delta expansion of Yang et al. (2019) for the transition density of the original

process X under the choice of µ0 = 0. In conclusion, we summarize the equivalence result in

the following theorem:

Theorem 5.1. For a multivariate diffusion X defined in (1), the pathwise expansion (3.21) in

Li (2013), and the Hermite expansion (32) in Wan and Yang (2021) (or equivalently (22) in

Yang et al. (2019) under the choice of µ0 = 0) have the same formulas.

6 Concluding Remarks

In this paper, we derive explicit formulas for the conditional expectation of the pathwise Taylor

expansion of a “general function” on a transformed diffusion. To achieve this, we employ a

quasi-Lamperti transform to unify the process’ diffusion matrix at the initial time, and we also

utilize explicit expressions for the conditional expectation of the multiplication of iterated Itô

integrals. The obtained result is new in the literature, providing a solution to the challenging

problem of finding explicit formulas for the pathwise Taylor expansion.

Using the above result, we show the equivalence of different transition densities expansions

existing in the literature. Initially, we apply the method to recalculate density expansions

based on the pathwise expansion method of Li (2013) and the Hermite expansion of Yang et al.
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(2019) and Wan and Yang (2021) for the transformed diffusion. The newly derived formulas

in both cases are expressed in terms of Hermite polynomials. By rearranging the terms in the

density expansions according to the increasing order of the Hermite polynomials, we establish

the equivalence between the two methods for the transformed process. Subsequently, we utilize

the Jacobian formula to perform a change of variable from the transformed process to the

original process, thereby establishing the connections between the two expansion methods for

the original process. This enables us to refer to both of them as the Hermite expansion method.

Furthermore, we can conveniently implement the relatively simple expression for the Hermite

expansion method, as presented in Equation (22) by Yang et al. (2019).

In addition, the explicit formulas for the conditional expectation of the pathwise Taylor

expansion has wide-ranging applications in various areas. They are particular useful for find-

ing small-time approximations of functionals of multivariate diffusion process, including option

prices, moment generating functions, and various statistics, among others. These topics offer

exciting prospects for future research.
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A The Proofs

Proof of Theorem 3.1. Recall the coefficient Φk

(
y; f(·)

)
in (22):

Φk

(
y; f(·)

)
=

∑
(j1,j2,...,jl)∈Sk

∑
r∈{1,2,...,m}l

1

l!
∂br
z f (z)

∣∣∣
z=W (1)

l∏
ω=1

F Y
jω+1,rω , (55)

with r := (r1, . . . , rl), br :=
∑l

ω=1 erω , Sk is given by (24), and F Y
jω+1 is given by (17).

To compute the expectation Ωk

(
y; f(·)

)
= E[Φk

(
y; f(·)

)
] defined in (26), using integration
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by parts formula, we have

E
[
∂br
z f (z)

∣∣∣
z=W (1)

l∏
ω=1

F Y
jω+1,rω

]
=

∫
Rm

∂br
z f (z)

(
E
[ l∏
ω=1

F Y
jω+1,rω |W (1) = z

]
ϕ(z)

)
dz

=(−1)l
∫
Rm

f (z) ∂br
z

(
E
[ l∏
ω=1

F Y
jω+1,rω |W (1) = z

]
ϕ(z)

)
dz,

(56)

where we have used the fact that |br| = l. The conditional expectation is given by (cf. (17))

E

[
l∏

ω=1

F Y
jω+1,rω

∣∣∣∣∣W (1) = z

]
=

∑
iω∈Mjω+1

ω=1,··· ,l

(
l∏

ω=1

CY
iω ,rω(y) · E

[
l∏

ω=1

Iiω(1)
∣∣∣W (1) = z

])
, (57)

where CY
iω ,rω

(y) is given by (18), and Mj is recursively defined by (15). By Lemma 3.2,

E

[
l∏

ω=1

Iiω(1)
∣∣∣W (1) = z

]
=

∑
0≤a≤⌊n(ï)/2⌋

w̃a,ï
(ℓ(ï)− |a|)!Hn(ï)−2a (z) . (58)

Furthermore, using the definition of Hermite polynomials, noting that |br| = l, we have

(−1)l∂br
z

(
Hn(ï)−2a (z)ϕ(z)

)
=(−1)l+|n(ï)−2a|∂br+n(ï)−2a

z ϕ(z) = Hn(ï)−2a+br (z)ϕ(z). (59)

Plugging (57), (58) and (59) into (56), we have

E
[
∂br
z Hh (z)

∣∣∣
z=W (1)

l∏
ω=1

F Y
jω+1,rω

]
=

∑
iω∈Mjω+1

ω=1,··· ,l

(
l∏

ω=1

CY
iω ,rω(y)

) ∑
0≤a≤⌊n(ï)/2⌋

w̃a,ï
(ℓ(ï)− |a|)! ·

∫
Rm

Hh (z)Hn(ï)−2a+br (z)ϕ(z)dz.

Then, the proposition is proved by substituting the above equation into the expectation of

(55).

Proof of Theorem 4.3. As the reduced Hermite expansion p
(L,WY )
Y (t′, y′|t, y) given by (50) and

(49) is arranged according to the increasing order of the Hermite polynomials. To compare with

it, we first show that the pathwise expansion p
(L,LI)
Y (t′, y′|t, y) given by (40) and (39) can also

be rearranged according to the increasing order of the Hermite polynomials as follows:

p
(L,LI)
Y (t′, y′|t, y) =∆−m

2 ϕ(γ) + ∆−m
2 ϕ(γ)

3L∑
j=1

∑
|h|=j

η(h,LI)(∆|t, y) ·Hh (γ) , (60)
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where the coefficient η(h,LI)(∆|t, y) is given by

η(h,LI)(∆|t, y) =
L∑

k=1

∆
k
2

∑
(j1,j2,...,jl)∈Sk

1

l!

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1

ω=1,··· ,l

(
l∏

ω=1

CY
iω ,rω(y)

)

· w̃a,ï
(ℓ(ï)− |a|)! · 1{a=n(ï)+br−h

2
,a∈Zm}. (61)

Here, r := (r1, . . . , rl), br :=
∑l

ω=1 erω , ϕ(γ) and Hh(γ) are the m-dimensional standard normal

density function and the corresponding multivariate Hermite polynomial, respectively; Sk, Mj ,

CY
iω ,rω

(y) and w̃a,ï are recursively defined by (24), (15), (18) and (31), respectively.

If (60) with (61) holds, comparing the formula Ωk(y;Hh(·)) in (49) and η(h,LI)(∆|t, y) in

(61), we have

η(h,LI)(∆|t, y) = 1

h!

L∑
k=1

Ωk(y;Hh(·))∆
k
2 . (62)

Plugging (62) into (60), and comparing the result with (50), the theorem is proved.

Now, we begin to prove (60) with (61). According to the definition of the coefficient w̃a,ï in

Lemma 3.2, w̃a,ï = 0 if min(a) < 0 or max(2a − n(ï)) > 0. Thus, we can take summation for a

over all m-dimensional integers in (39). Plugging it into (40), we have

p
(L,LI)
Y (t′, y′|t, y) =∆−m

2 ϕ(γ) + ∆−m
2 ϕ(γ)

L∑
k=1

∆
k
2

∑
(j1,j2,...,jl)∈Sk

1

l!

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1

ω=1,··· ,l

·
( l∏

ω=1

CY
iω ,rω(y)

) ∑
a∈Zm

w̃a,ï ·
1

(ℓ(ï)− |a|)!Hn(ï)−2a+br (γ) . (63)

Consider the following change of variable:

h = n(ï)− 2a + br. (64)

Note that in (64) each component of n(ï) + br − h is even, or a := (n(ï) + br − h)/2 is an

integer-valued vector, i.e., a ∈ Zm. Thus, (63) becomes (for simplification, below we still use

both h and a satisfying the relationship (64))

p
(L,LI)
Y (t′, y′|t, y) =∆−m

2 ϕ(γ) + ∆−m
2 ϕ(γ)

L∑
k=1

∆
k
2

∑
(j1,j2,...,jl)∈Sk

1

l!

∑
r∈{1,2,...,m}l

∑
iω∈Mjω+1

ω=1,··· ,l

·
( l∏

ω=1

CY
iω ,rω(y)

) ∑
h∈Zm

w̃a,ï ·
1

(ℓ(ï)− |a|)!Hh (γ) · 1{h=n(ï)−2a+br,a∈Zm}. (65)
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Interchanging the order of summation with respect to k and h leads to (please refer to (61) for

the definition of η(h,LI))

p
(L,LI)
Y (t′, y′|t, y) =∆−m

2 ϕ(γ) + ∆−m
2 ϕ(γ)

∑
h∈Zm

Hh (γ) η
(h,LI)(∆|t, y). (66)

Then, we get (60) by recalling the definition of w̃a,ï. Indeed, to get a non-zero w̃a,ï, it requires

that

0 ≤ 2a ≡ n(ï) + br − h ≤ n(ï) ⇔ br ≤ h ≤ n(ï) + br. (67)

Noting that |br| = l, and for ï := {i1, · · · , il} and iω ∈ Mjω+1, ω = 1, · · · , l, and recalling the

definition of Mjω+1 and Sk in (14) and (23) respectively, then we have

|n(ï)| :=
m∑

α=1

nï(α) =
l∑

ω=1

m∑
α=1

niω(α) =

l∑
ω=1

(||iω|| − 2niω(0))

=
l∑

ω=1

(jω + 1)− 2nï(0) = k + l − 2nï(0). (68)

Furthermore, for 1 ≤ k ≤ L and (j1, j2, . . . , jl) ∈ Sk, we have that 1 ≤ l ≤ k ≤ L. Then,

combining (67) and (68), we have

1 ≤ l ≤ |h| ≤ (k + l − 2nï(0)) + l ≤ k + 2l ≤ 3k ≤ 3L.

This proves that (60) with (61) holds. The proof is finished.

Proof of Proposition 5.1. Noting (11) and (35), the quasi-Lamperti transform (3), and the Ja-

cobian formula for the change of variable lead to the transition density of X below:

pX(t′, x′|t, x) = ∆−m
2 det (ν0)

−1/2 E
[
δ (Γϵ − γ)

∣∣∣Y (t) = y
]
, (69)

where Γϵ = (Y ϵ(1)− y)/ϵ = (Y (t′)− y)/ϵ, γ = (y′ − y)/ϵ, ϵ =
√
∆, and ∆ = t′ − t.

The expansion p
(L,LI)
X (t′, x′|t, x) given in (52) is the L-th order Taylor expansion of the right

hand side of (69) with respect to ϵ.

On the other hand, Li (2013) characterizes the transition density of X as following

pX(t′, y′|t, y) = ∆−m
2 det(D(x))E[δ(Ỹ ϵ − ỹ)|X(t) = x] (70)

where D(x) is a diagonal matrix given by Equation (3.12) in Li (2013):

D(x) := diag

 1√∑m
j=1 σ

2
1j(x)

, · · · , 1√∑m
j=1 σ

2
mj(x)

 ,
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Ỹ ϵ := D(x)(Xϵ(1)− x)/ϵ, and ỹ = D(x)(x′−x)/ϵ. The expansion p̃
(L,LI)
X provided by Equation

(3.21) and (3.25) of Li (2013) is the L-th order Taylor expansion of the right hand side of (70)

with respect to ϵ.

Noting that,

Ỹ ϵ − ỹ = D(x)
Xϵ(1)− x′

ϵ
= D(x)ν

1/2
0 (Γϵ − γ),

by the Jacobian formula for the change of variable, the right hand side of (69) and (70) are

identical. Thus, the proposition is proved.
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