C Multi-module Programs

SEEM 3460

C Multi-module Programs

o Recall that we have developed a
program previously that can reverse
a string.

SEEM 3460

/> reverse.c */
#include <stdio.h>

/* Function prototype */
void reverse (char* before, char* after);

/***/

int main()

{

10 char str[100]; /* buffer to hold reversed string */
11 reverse('cat",str); /* reverse the string "cat" */
12 printf ("reverse(\"cat\") = %s\n", str);

13 reverse("noon",str);

14 printf ("reverse(\"noon\") = %s\n", str);

15 }

16

OCoo~NOOO D~ WNLE

18 void reverse (char* before, char* after)

19 {

20 inti,j,len;

21

22 len = strlen(before);
23 1=0;

24 for (j=len-1; j>=0; j--)
25 {

26 after[i] = beforel[j];
27 I++;

28 }

29 after[len] = NULL;
30 }

C Multi-module Programs

o This reverse function built previously
cannot easily be used in other programs.

o Suppose that we wish to write a function
that returns 1 if a string Is a palindrome
and O otherwise.

A palindrome is a string that reads the same
forward and backward; for example, “noon” is a
palindrome, but “nono” is not.

o We could use the reverse function to
Implement the palindrome function.

SEEM 3460

C Multi-module Programs

o One way to do this is to cut and paste reverse() into
the palindrome program, but this is a poor technigque
for at least three reasons:

Performing a cut-and-paste operation is slow.

If we came up with a better piece of code for
performing a reverse operation, we’d have to replace
every copy of the old version with the new version,
which is a maintenance nightmare.

Each copy of reverse() soaks up disk space.
o There is a better way to share functions.

SEEM 3460

Reusable Functions

o A better strategy for sharing reverse() is to
remove the function from the reverse program,
compile it separately,

and then link the resultant object module into
whichever programs you wish to use it with.

o This technique avoids all three of the problems listed
in the previous section and allows the function to be
used in many different programs.

o Functions with this property are termed reusable.

SEEM 3460 6

Preparing a Reusable Function

o To prepare a reusable function, create a module that
contains the source code of the function, together with a
header file that contains the function’s prototype.

o Then compile the source code module into an object
module by using the -c option of gcc.

o An object module contains machine code, together with
information, in the form of a symbol table, that allows the
module to be combined with other object modules when
an executable file is being created. Here are the listings
of the new “reverse.c” and “reverse.h” files:

reverse.h

1 /* reverse.h */

2

3 void reverse (char *before, char *after);

4 /™ Declare but do not define this function */

SEEM 3460

Preparing a Reusable Function
(con’t)

reverse.c

1 /* reverse.c */

2

3 #include <stdio.h>
4 #include “reverse.h”

7

8 void reverse (char *before, char *after)
9

10 {

11 inti;

12 intj;

13 intlen;

14

15 len = strlen (before);

16

17 for (j =len -1, i=0; j>= 0; j--,i++) /*Reverse loop*/
18 after[i] = beforel[j];
19
20 after[len] = NULL; /* NULL terminate reversed string */
21 }

SEEM 3460

Preparing a Reusable Function
(con’t)

o Here’s a listing of a main program that uses reverse():

mainl.c

1 /* mainl.c */

2

3 #include <stdio.h>

4 #include “reverse.h” /*Contains the prototype of reverse)*/
~

8 int main ()

9

10 {

11 char str [100];

12

13 reverse (“cat”, str); /* Invoke external function */
14 printf (*reverse (\“cat\”) = %s\n”, str);

15 reverse (“noon”, str); /* Invoke external function */
16 printf (*reverse (*noon\”) = %s\n”, str);

17 }

SEEM 3460

Compiling And Linking Modules
Separately

o To compile each source code file separately, use the -c
option of gcc. This creates a separate object module for
each source code file, each with a “.0” suffix. The
following commands are illustrative:

cuse93:> gcc -c reverse.c ... compile reverse.c to reverse.o.
cuse93:> gcc -c mainl.c ... compile mainl.c to mainl.o.
cuse93:> Is -l reverse.o mainl.o

-rw-r--r-- 1 glass 311 Jan 5 18:24 mainl.o

-rw-r--r-- 1 glass 181 Jan 5 18:08 reverse.o

cuse93:>

SEEM 3460 10

Compiling And Linking Modules
Separately (con’t)

o Alternatively, you can list all of the source code files on one line:

cuse93:> gcc -c reverse.c mainl.c ... compile each .c file to .o file.
cuse93:>

o To link them all together into an executable called “mainl”, list the
names of all the object modules after the gcc command:

cuse93:> gcc reverse.o mainl.o —o mainl ...link object modules.
cuse93:> Is -l mainl

-rwxr—xr-x 1 glass 24576 Jan 5 18:25 mainl™*

cuse93:> ./mainl ... run the executable.
reverse (“cat”) = tac

reverse (“noon”) = noon

cuse93:>

SEEM 3460 11

Compiling And Linking Modules
Separately — Facilitate Code Sharing

reverse.c

#Hinclude “reverse.h”

gccC -C reverse.C l
(compiling) reverse.o

mainl.c

#Hinclude “reverse.h”

gcc -c mainl.c l
(compiling)

mainl.o

gcc reverse.o mainl.o —o mainl
(linking)

v
mainl

SEEM 3460

12

Modifying a Function

o Suppose that we modify the reverse function so that it
prints out the value of some variables for debugging
purpose.

SEEM 3460

13

Modifying a Function

reverse.c
1 /* reverse.c */

2

3 #include <stdio.h>
4 #include “reverse.h”
5

7 void reverse (char* before, char* after)
8 {

9 inti,j,len;

10

11 len = strlen(before);

12 i=0;

13 for (j=len-1; j>=0; j--)

14 {

15 after[i] = beforelj];

16 I++;

17 /* for debugging */

18 printf (“i=%d j=%d\n",i,j);
19 }

20 after[len] = NULL;

21 }

SEEM 3460

14

Modifying a Function

o There is no need to re-compile the main function mainl.c since it
has not been modified.

o Only the reverse function needs to be compiled. Then link all
object modules and generate an executable (called “mainl”).

cuse93:> gcc -c reverse.c ... compile
cuse93:> gcc reverse.o mainl.o —o mainl ..link object modules

o The output of running mainl is:
cuse93:> ./mainl ... run the executable.
=1 j=2
=2 j=1
=3 J=0
reverse (“cat”) = tac
=1 j=3

SEEM 3460 15

Re-using a Function

o The reverse function (module) can also be used by other
programs such as main8.c and the compilation is as follows.

cuse93:> gcc -c main8.c ... compile
cuse93:> gcc reverse.o main8.0 —o main8 ...link object modules

SEEM 3460 16

Compiling And Linking Modules
Separately — Facilitate Code Sharing

reverse.c

#Hinclude “reverse.h”

gccC -C reverse.C l
(compiling) reverse.o

mainl.c

#Hinclude “reverse.h” main8.c

#Hinclude “reverse.h”

gcc -c mainl.c l

(compiling) Mainl.o gcc -c main8.c l
P (compiling)
gcc reverse.o mainl.o —o mainl ma||n8.0
(linking) gcc reverse.o main8.0 —o mainSl
v (linking)
mainl main8

SEEM 3460 17

Reusing The Reverse Function for
Building Another Re-usable Function

o The reverse module can be used to build a program
for testing palindrome

SEEM 3460 18

Reusing The Reverse Function for
Building Another Re-usable Function

/* palindromall.c */
#include <stdio.h>
#include <string.h>
#include "reverse.h"

int palindrome (char *str) {
char reversedStr[100];

reverse(str, reversedStr);

return(strcmp(str,reversedStr) == 0);

10 }

11

12 int main() {

13 printf("'palindrome(\"cat\") = %d\n", palindrome(‘'cat"));
14 printf("'palindrome(\""noon\") = 2cd\n"", palindrome(*'noon""));
15 }

OCO~NOOAWNE

SEEM 3460 19

Reusing The Reverse Function for
Building Another Re-usable Function

cuse93:> gcc —c palindromeall.c .. compile palindromeall.c to palindromeall.o

cuse93:> gcc reverse.o palindromeall.o -0 palindromall .. link them all

cuse93:> ./palindromeall ... run the program
palindrome (“cat”) =0
palindrome (“noon”) = 1

cuse93:>

SEEM 3460 20

Reusing The Reverse Function for
Building Another Re-usable Function

o The way to combine the “reverse” and
“palindromeall” modules is as we did
before:

compile the object modules,
and then link them.

o We don’t have to recompile “reverse.c”, as
It hasn’t changed since the “reverse.o”
object file was created.

SEEM 3460 21

Reusing The Reverse Function for
Building Another Re-usable Function

o The program can be further decomposed to multi-
modules. Here are the header and source code
listing of the palindrome function:

palindrome.h

1 /* palindrome.h */

2

3 int palindrome (char *str);

4 /™ Declare but do not define */

SEEM 3460

22

Reusing The Reverse Function for
Building Another Re-usable Function

palindrome.c

1 /* palindrome.c */

2

3 #include “palindrome.h”

4 #include “reverse.h”

5 #include <string.h>

6

8

9 int palindrome (char *str)

10

11 {

12 char reversedStr [100];

13 reverse (str, reversedStr); /* Reverse original */
14 return (strcmp (str, reversedStr) ==0);

15 /* Compare the two */
16 }

SEEM 3460

Reusing The Reverse Function for
Building Another Re-usable Function

o The program “main2.c” that tests the palindrome function

1 /* main2.c */

2

3 #include <stdio.h>

4 #include “palindrome.h”

2

8 int main ()

9

10 {

11 printf (“palindrome (\“cat\”) = %d\n”, palindrome (“cat”));

12 printf (“palindrome (\“noon\”) = %d\n”, palindrome(“noon”));

13 }

SEEM 3460

24

Reusing The Reverse Function for
Building Another Re-usable Function

o The way to combine the “reverse”,
“palindrome”, and “main2” modules is as
we did before:

compile the object modules,
and then link them.

o We don’t have to recompile “reverse.c”, as
It hasn’t changed since the “reverse.o”
object file was created.

SEEM 3460 25

Reusing The Reverse Function for
Building Another Re-usable Function

cuse93:> gcc —c palindrome.c ... compile palindrome.c to palindrome.o

cuse93:> gcc -c main2.c ... compile main2.c to main2.o

cuse93:> gcc reverse.o palindrome.o main2.0 -o main2 ... link them all.

cuse93:> Is -l reverse.o palincdrome.o main2.0 main2

-rwxr-xr-x 1 glass 24576 Jan 5 19:09 main2*
-rw-r--r-- 1 glass 306 Jan 5 19:00 main2.0
-rw-r--r-- 1 glass 189 Jan 5 18:59 palindrome.o
-rw-r--r-- 1 glass 181 Jan 5 18:08 reverse.o
cuse93:> ./main2 ... run the program.

palindrome (“cat”) =0
palindrome (“noon”) = 1
cuse93:>

SEEM 3460 26

