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Java – Generics, Interface, and 
Inheritance
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The ArrayList Class
 The ArrayList class is part of the java.util

package

 Like an array, it can store a list of values and 
reference each one using a numeric index

 However, you cannot use the bracket syntax 
with an ArrayList object

 Furthermore, an ArrayList object grows and 
shrinks as needed, adjusting its capacity as 
necessary
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The ArrayList Class
 An ArrayList object is created as follows:

ArrayList band = new ArrayList();

 A list of methods supported by ArrayList class is 
given in Chapter 7 of the text book. Some 
examples of methods:

void add(int index, Object obj)

Object get(int index)

 Elements can be inserted or removed with a 
single method invocation. For example:

band.add(2,“Paul”);

bandMember = band.get(1);
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The ArrayList Class
 When an element is inserted, the other 

elements "move aside" to make room

 Likewise, when an element is removed, the 
list "collapses" to close the gap

 The indexes of the elements adjust 
accordingly
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The ArrayList Class
 An ArrayList stores references to the Object

class, which allows it to store any kind of object

 We can also define an ArrayList object to 
accept a particular type of object

 The following declaration creates an ArrayList
object that only stores Family objects

 This is an example of generics and we can call
ArrayList a generic type

ArrayList<Family> reunion = new ArrayList<Family>();
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ArrayList Efficiency

 The ArrayList class is implemented using an 
underlying array

 The array is manipulated so that indexes remain 
continuous as elements are added or removed

 If elements are added to and removed from the 
end of the list, this processing is fairly efficient

 But as elements are inserted and removed from 
the front or middle of the list, the remaining 
elements are shifted



SEEM 3460 7

Collection Classes

 The Java standard library contains several 
classes that represent collections, often referred 
to as the Java Collections API

 Their underlying implementation is implied in 
the class names such as ArrayList and 
LinkedList

 The classes are implemented as generic types

 It means that the type of object can be 
established when an object of that collection 
type is instantiated.
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Generic Types
 A class can be defined to operate on a generic 

data type which is specified when the class is 
instantiated:

LinkedList<Book> myList = new LinkedList<Book>();

 By specifying the type stored in a collection, only 
objects of that type can be added to it

 Furthermore, when an object is removed, its type 
is already established
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Interfaces

 A Java interface is a collection of abstract 
methods and constants

 An abstract method is a method header without 
a method body

 An abstract method can be declared using the 
modifier abstract, but because all methods in 
an interface are abstract, usually it is left off

 An interface is used to establish a set of 
methods that a class will implement
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Interfaces

public interface Doable
{

public void doThis();
public int doThat();
public void doThis2 (float value, char ch);
public boolean doTheOther (int num);

}

interface is a reserved word
None of the methods in
an interface are given

a definition (body)

A semicolon immediately
follows each method header
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Interfaces

 An interface cannot be instantiated

 Methods in an interface have public visibility by 
default

 A class formally implements an interface by:

 stating so in the class header

 providing implementations for each abstract method 
in the interface

 If a class asserts that it implements an interface, 
it must define all methods in the interface
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Interfaces

public class CanDo implements Doable
{

public void doThis ()
{

// whatever
}

public void doThat ()
{

// whatever
}

// etc.
}

implements is a
reserved word

Each method listed
in Doable is

given a definition



SEEM 3460 13SEEM 3460 13

Interfaces

 A class that implements an interface can 
implement other methods as well

See Complexity.java
See Question.java
See MiniQuiz.java

 In addition to (or instead of) abstract methods, 
an interface can contain constants

 When a class implements an interface, it gains 
access to all its constants
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//*************************************************************
//  Complexity.java
//
//  Represents the interface for an object that can be assigned an
//  explicit complexity.
//*************************************************************

public interface Complexity
{

public void setComplexity (int complexity);
public int getComplexity();

}
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//*************************************************************
//  Question.java
//
//  Represents a question (and its answer).
//*************************************************************
public class Question implements Complexity
{

private String question, answer;
private int complexityLevel;

//-----------------------------------------------------------------
//  Constructor: Sets up the question with a default complexity.
//-----------------------------------------------------------------
public Question (String query, String result)
{

question = query;
answer = result;
complexityLevel = 1;

}

//-----------------------------------------------------------------
//  Sets the complexity level for this question.
//-----------------------------------------------------------------
public void setComplexity (int level)
{

complexityLevel = level;
}
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//-----------------------------------------------------------------
//  Returns the complexity level for this question.
//-----------------------------------------------------------------
public int getComplexity()
{

return complexityLevel;
}

//-----------------------------------------------------------------
//  Returns the question.
//-----------------------------------------------------------------
public String getQuestion()
{

return question;
}

//-----------------------------------------------------------------
//  Returns the answer to this question.
//-----------------------------------------------------------------
public String getAnswer()
{

return answer;
}
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//-----------------------------------------------------------------
//  Returns true if the candidate answer matches the answer.
//-----------------------------------------------------------------
public boolean answerCorrect (String candidateAnswer)
{

return answer.equals(candidateAnswer);
}

//-----------------------------------------------------------------
//  Returns this question (and its answer) as a string.
//-----------------------------------------------------------------
public String toString()
{

return question + "\n" + answer;
}

}
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//*************************************************************
//  MiniQuiz.java
//
//  Demonstrates the use of a class that implements an interface.
//*************************************************************

import java.util.Scanner;

public class MiniQuiz
{

//-----------------------------------------------------------------
//  Presents a short quiz.
//-----------------------------------------------------------------
public static void main (String[] args)
{

Question q1, q2;
String possible;

Scanner scan = new Scanner (System.in);

q1 = new Question ("What is the capital of Jamaica?",
"Kingston");

q1.setComplexity (4);

q2 = new Question ("Which is worse, ignorance or apathy?",
"I don't know and I don't care");

q2.setComplexity (10);
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System.out.print (q1.getQuestion());
System.out.println (" (Level: " + q1.getComplexity() + ")");
possible = scan.nextLine();
if (q1.answerCorrect(possible))

System.out.println ("Correct");
else

System.out.println ("No, the answer is " + q1.getAnswer());

System.out.println();
System.out.print (q2.getQuestion());
System.out.println (" (Level: " + q2.getComplexity() + ")");
possible = scan.nextLine();
if (q2.answerCorrect(possible))

System.out.println ("Correct");
else

System.out.println ("No, the answer is " + q2.getAnswer());
}

}
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MiniQuiz.java - Sample Execution
 The following is a sample execution of 

MiniQuiz.class

cuse93> java MiniQuiz
What is the capital of Jamaica? (Level: 4)
Kingston
Correct

Which is worse, ignorance or apathy? (Level: 10)
sorry i dont know
No, the answer is I don't know and I don't care
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Interfaces

 A class can implement multiple interfaces

 The interfaces are listed in the implements
clause

 The class must implement all methods in all 
interfaces listed in the header

class ManyThings implements interface1, interface2
{

// all methods of both interfaces
}
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Interfaces

 The Java standard class library contains 
many helpful interfaces

 The Comparable interface contains one 
abstract method called compareTo, which 
is used to compare two objects

 The String class implements 
Comparable, giving us the ability to put 
strings in lexicographic order
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The Comparable Interface

 Any class can implement Comparable to provide a 
mechanism for comparing objects of that type

if (obj1.compareTo(obj2) < 0)
System.out.println ("obj1 is less than obj2");

The value returned from compareTo should be negative is 
obj1 is less that obj2, 0 if they are equal, and positive if 
obj1 is greater than obj2

When a programmer designs a class that implements the 
Comparable interface, it should follow this intent
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The Comparable Interface

 It's up to the programmer to determine what 
makes one object less than another

 For example, you may define the compareTo
method of an Employee class to order 
employees by name (alphabetically) or by 
employee number

 The implementation of the method can be as 
straightforward or as complex as needed for the 
situation
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Interfaces

 You could write a class that implements certain 
methods (such as compareTo) without formally 
implementing the interface (Comparable)

 However, formally establishing the relationship 
between a class and an interface allows Java to 
deal with an object in certain ways

 Interfaces are a key aspect of object-oriented 
design in Java
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Inheritance

 Inheritance allows a software developer to derive 
a new class from an existing one

 The existing class is called the parent class, or 
superclass, or base class

 The derived class is called the child class or 
subclass

 As the name implies, the child inherits 
characteristics of the parent

 That is, the child class inherits the methods and 
data defined by the parent class
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Inheritance
 Inheritance relationships are shown in a UML class 

diagram using a solid arrow with an unfilled triangular 
arrowhead pointing to the parent class

Vehicle

Car

• Proper inheritance creates an is-a relationship, 
meaning the child is a more specific version of the 
parent
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Inheritance
 A programmer can tailor a derived class as 

needed by adding new variables or methods, or 
by modifying the inherited ones

 Software reuse is a fundamental benefit of 
inheritance

 By using existing software components to 
create new ones, we capitalize on all the effort 
that went into the design, implementation, and 
testing of the existing software
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Deriving Subclasses
 In Java, we use the reserved word extends to 

establish an inheritance relationship

See Words.java
See Book.java
See Dictionary.java

class Car extends Vehicle
{

// class contents
}
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//*************************************************************
//  Words.java
//
//  Demonstrates the use of an inherited method.
//*************************************************************

public class Words
{

//-----------------------------------------------------------------
//  Instantiates a derived class and invokes its inherited and
//  local methods.
//-----------------------------------------------------------------
public static void main (String[] args)
{

Dictionary webster = new Dictionary();

System.out.println ("Number of pages: " + webster.getPages());

System.out.println ("Number of definitions: " +
webster.getDefinitions());

System.out.println ("Definitions per page: " +
webster.computeRatio());

}
}
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//*************************************************************
//  Book.java
//
//  Represents a book. Used as the parent of a derived class to
//  demonstrate inheritance.
//*************************************************************

public class Book
{

protected int pages = 1500;

//----------------------------------------------------------------
//  Pages mutator.
//----------------------------------------------------------------
public void setPages (int numPages)
{

pages = numPages;
}

//----------------------------------------------------------------
//  Pages accessor.
//----------------------------------------------------------------
public int getPages ()
{

return pages;
}

}
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//*************************************************************
//  Dictionary.java
//
//  Represents a dictionary, which is a book. Used to demonstrate
//  inheritance.
//*************************************************************

public class Dictionary extends Book
{

private int definitions = 52500;

//-----------------------------------------------------------------
//  Prints a message using both local and inherited values.
//-----------------------------------------------------------------
public double computeRatio ()
{

return definitions/pages;
}

//----------------------------------------------------------------
//  Definitions mutator.
//----------------------------------------------------------------
public void setDefinitions (int numDefinitions)
{

definitions = numDefinitions;
}
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//----------------------------------------------------------------
//  Definitions accessor.
//----------------------------------------------------------------
public int getDefinitions ()
{

return definitions;
}

}
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Words.java - Sample Execution
 The following is a sample execution of 

Words.class

cuse93> java Words
Number of pages: 1500
Number of definitions: 52500
Definitions per page: 35.0
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The protected Modifier
 Visibility modifiers affect the way that class 

members can be used in a child class

 Variables and methods declared with private 
visibility cannot be referenced by name in a child 
class

 They can be referenced in the child class if they 
are declared with public visibility -- but public 
variables violate the principle of encapsulation

 There is a third visibility modifier that helps in 
inheritance situations:  protected
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The protected Modifier
 The protected modifier allows a child class to reference 

a variable or method directly in the child class

 It provides more encapsulation than public visibility, but 
is not as tightly encapsulated as private visibility

 A protected variable is visible to any class in the same 
package as the parent class

 The details of all Java modifiers are discussed in 
Appendix E of the text book

 Protected variables and methods can be shown with a #
symbol preceding them in UML diagrams
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Class Diagram for Words

Book
# pages : int

+ pageMessage() : void

Dictionary
- definitions : int

+ definitionMessage() : void

Words

+ main (args : String[]) : void
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The super Reference
 Constructors are not inherited, even though they 

have public visibility

 Yet we often want to use the parent's constructor 
to set up the "parent's part" of the object

 The super reference can be used to refer to the 
parent class, and often is used to invoke the 
parent's constructor

See Words2.java
See Book2.java
See Dictionary2.java
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//*************************************************************
//  Words2.java
//
//  Demonstrates the use of the super reference.
//*************************************************************

public class Words2
{

//-----------------------------------------------------------------
//  Instantiates a derived class and invokes its inherited and
//  local methods.
//-----------------------------------------------------------------
public static void main (String[] args)
{

Dictionary2 webster = new Dictionary2 (1500, 52500);

System.out.println ("Number of pages: " + webster.getPages());

System.out.println ("Number of definitions: " +
webster.getDefinitions());

System.out.println ("Definitions per page: " +
webster.computeRatio());

}
}
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//*************************************************************
//  Book2.java
//
//  Represents a book. Used as the parent of a derived class to
//  demonstrate inheritance and the use of the super reference.
//*************************************************************

public class Book2
{

protected int pages;

//----------------------------------------------------------------
//  Constructor: Sets up the book with the specified number of
//  pages.
//----------------------------------------------------------------
public Book2 (int numPages)
{

pages = numPages;
}

//----------------------------------------------------------------
//  Pages mutator.
//----------------------------------------------------------------
public void setPages (int numPages)
{

pages = numPages;
}
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//----------------------------------------------------------------
//  Pages accessor.
//----------------------------------------------------------------
public int getPages ()
{

return pages;
}

}
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//*************************************************************
//  Dictionary2.java
//
//  Represents a dictionary, which is a book. Used to demonstrate
//  the use of the super reference.
//*************************************************************

public class Dictionary2 extends Book2
{

private int definitions;

//-----------------------------------------------------------------
//  Constructor: Sets up the dictionary with the specified number
//  of pages and definitions.
//-----------------------------------------------------------------
public Dictionary2 (int numPages, int numDefinitions)
{

super(numPages);

definitions = numDefinitions;
}
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//-----------------------------------------------------------------
//  Prints a message using both local and inherited values.
//-----------------------------------------------------------------
public double computeRatio ()
{

return definitions/pages;
}

//----------------------------------------------------------------
//  Definitions mutator.
//----------------------------------------------------------------
public void setDefinitions (int numDefinitions)
{

definitions = numDefinitions;
}

//----------------------------------------------------------------
//  Definitions accessor.
//----------------------------------------------------------------
public int getDefinitions ()
{

return definitions;
}

}
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Words2.java - Sample Execution
 The following is a sample execution of 

Words2.class

cuse93> java Words2
Number of pages: 1500
Number of definitions: 52500
Definitions per page: 35.0



SEEM 3460 45SEEM 3460 45

The super Reference

 A child’s constructor is responsible for calling 
the parent’s constructor

 The first line of a child’s constructor should use 
the super reference to call the parent’s 
constructor

 The super reference can also be used to 
reference other variables and methods defined 
in the parent’s class
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Multiple Inheritance

 Java supports single inheritance, meaning that a 
derived class can have only one parent class

 Multiple inheritance allows a class to be derived 
from two or more classes, inheriting the members 
of all parents

 Collisions, such as the same variable name in two 
parents, have to be resolved

 Java does not support multiple inheritance

 In most cases, the use of interfaces gives us 
aspects of multiple inheritance without the 
overhead
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Overriding Methods
 A child class can override the definition of an 

inherited method in favor of its own

 The new method must have the same signature 
as the parent's method, but can have a different 
body

 The type of the object executing the method 
determines which version of the method is 
invoked

See Messages.java
See Thought.java
See Advice.java
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//*************************************************************
//  Messages.java
//
//  Demonstrates the use of an overridden method.
//*************************************************************

public class Messages
{

//-----------------------------------------------------------------
//  Creates two objects and invokes the message method in each.
//-----------------------------------------------------------------
public static void main (String[] args)
{

Thought parked = new Thought();
Advice dates = new Advice();

parked.message();

dates.message();  // overridden
}

}
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//*************************************************************
//  Thought.java
//
//  Represents a stray thought. Used as the parent of a derived
//  class to demonstrate the use of an overridden method.
//*************************************************************

public class Thought
{

//-----------------------------------------------------------------
//  Prints a message.
//-----------------------------------------------------------------
public void message()
{

System.out.println ("I feel like I'm diagonally parked in a " +
"parallel universe.");

System.out.println();
}

}
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//*************************************************************
//  Advice.java
//
//  Represents some thoughtful advice. Used to demonstrate the use
//  of an overridden method.
//*************************************************************

public class Advice extends Thought
{

//-----------------------------------------------------------------
//  Prints a message. This method overrides the parent's version.
//-----------------------------------------------------------------
public void message()
{

System.out.println ("Warning: Dates in calendar are closer " +
"than they appear.");

System.out.println();

super.message();  // explicitly invokes the parent's version
}

}
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Messages.java - Sample Execution
 The following is a sample execution of 

Messages.class

cuse93> java Messages
I feel like I'm diagonally parked in a parallel universe.

Warning: Dates in calendar are closer than they appear.

I feel like I'm diagonally parked in a parallel universe.
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Overriding

 A method in the parent class can be invoked 
explicitly using the super reference

 If a method is declared with the final modifier, 
it cannot be overridden

 The concept of overriding can be applied to data 
and is called shadowing variables

 Shadowing variables should be avoided because 
it tends to cause unnecessarily confusing code
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Overloading vs. Overriding

 Overloading deals with multiple methods with the 
same name in the same class, but with different 
signatures

 Overriding deals with two methods, one in a 
parent class and one in a child class, that have 
the same signature

 Overloading lets you define a similar operation in 
different ways for different parameters

 Overriding lets you define a similar operation in 
different ways for different object types
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Class Hierarchies
 A child class of one parent can be the 

parent of another child, forming a class 
hierarchy

Business

KMart Macys

ServiceBusiness

Kinkos

RetailBusiness
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Class Hierarchies
 Two children of the same parent are called 

siblings

 Common features should be put as high in the 
hierarchy as is reasonable

 An inherited member is passed continually down 
the line

 Therefore, a child class inherits from all its 
ancestor classes

 There is no single class hierarchy that is 
appropriate for all situations
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The Object Class
 A class called Object is defined in the java.lang

package of the Java standard class library

 All classes are derived from the Object class

 If a class is not explicitly defined to be the child of 
an existing class, it is assumed to be the child of 
the Object class

 Therefore, the Object class is the ultimate root of 
all class hierarchies
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The Object Class

 The Object class contains a few useful methods, 
which are inherited by all classes

 For example, the toString method is defined in 
the Object class

 Every time we define the toString method, we 
are actually overriding an inherited definition

 The toString method in the Object class is 
defined to return a string that contains the name 
of the object’s class along with some other 
information
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The Object Class

 The equals method of the Object class returns 
true if two references are aliases

 We can override equals in any class to define 
equality in some more appropriate way 

 As we've seen, the String class defines the 
equals method to return true if two String
objects contain the same characters

 The designers of the String class have 
overridden the equals method inherited from 
Object in favor of a more useful version
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Interface Hierarchies

 Inheritance can be applied to interfaces as well as 
classes

 That is, one interface can be derived from another 
interface

 The child interface inherits all abstract methods of 
the parent

 A class implementing the child interface must 
define all methods from both the ancestor and 
child interfaces

 Note that class hierarchies and interface 
hierarchies are distinct (they do not overlap)
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Visibility Revisited
 It's important to understand one subtle issue 

related to inheritance and visibility

 All variables and methods of a parent class, 
even private members, are inherited by its 
children

 As we've mentioned, private members cannot 
be referenced by name in the child class

 However, private members inherited by child 
classes exist and can be referenced indirectly



SEEM 3460 61SEEM 3460 61

Visibility Revisited

 Because the parent can refer to the private member, the 
child can reference it indirectly using its parent's 
methods

 The super reference can be used to refer to the parent 
class, even if no object of the parent exists

See FoodAnalyzer.java
See FoodItem.java
See Pizza.java
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//*************************************************************
//  FoodAnalyzer.java
//
//  Demonstrates indirect access to inherited private members.
//*************************************************************

public class FoodAnalyzer
{

//-----------------------------------------------------------------
//  Instantiates a Pizza object and prints its calories per
//  serving.
//-----------------------------------------------------------------
public static void main (String[] args)
{

Pizza special = new Pizza (275);

System.out.println ("Calories per serving: " +
special.caloriesPerServing());

}
}
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//*************************************************************
//  FoodItem.java
//
//  Represents an item of food. Used as the parent of a derived class
//  to demonstrate indirect referencing.
//*************************************************************

public class FoodItem
{

final private int CALORIES_PER_GRAM = 9;
private int fatGrams;
protected int servings;

//-----------------------------------------------------------------
//  Sets up this food item with the specified number of fat grams
//  and number of servings.
//-----------------------------------------------------------------
public FoodItem (int numFatGrams, int numServings)
{

fatGrams = numFatGrams;
servings = numServings;

}
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//-----------------------------------------------------------------
//  Computes and returns the number of calories in this food item
//  due to fat.
//-----------------------------------------------------------------
private int calories()
{

return fatGrams * CALORIES_PER_GRAM;
}

//-----------------------------------------------------------------
//  Computes and returns the number of fat calories per serving.
//-----------------------------------------------------------------
public int caloriesPerServing()
{

return (calories() / servings);
}

}
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//*************************************************************
//  Pizza.java
//
//  Represents a pizza, which is a food item. Used to demonstrate
//  indirect referencing through inheritance.
//*************************************************************

public class Pizza extends FoodItem
{

//-----------------------------------------------------------------
//  Sets up a pizza with the specified amount of fat (assumes
//  eight servings).
//-----------------------------------------------------------------
public Pizza (int fatGrams)
{

super (fatGrams, 8);
}

}
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FoodAnalyzer.java - Sample Execution
 The following is a sample execution of 

FoodAnalyzer.class

cuse93> java FoodAnalyzer
Calories per serving: 309
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Designing for Inheritance

 As we've discussed, taking the time to create a 
good software design reaps long-term benefits

 Inheritance issues are an important part of an 
object-oriented design

 Properly designed inheritance relationships can 
contribute greatly to the elegance, maintainability, 
and reuse of the software

 Let's summarize some of the issues regarding 
inheritance that relate to a good software design
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Inheritance Design Issues

 Every derivation should be an is-a relationship

 Think about the potential future of a class 
hierarchy, and design classes to be reusable and 
flexible

 Find common characteristics of classes and push 
them as high in the class hierarchy as appropriate

 Override methods as appropriate to tailor or 
change the functionality of a child

 Add new variables to children, but don't redefine 
(shadow) inherited variables
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Inheritance Design Issues

 Allow each class to manage its own data; use the 
super reference to invoke the parent's constructor 
to set up its data

 Even if there are no current uses for them, 
override general methods such as toString and 
equals with appropriate definitions

 Use abstract classes to represent general concepts 
that lower classes have in common

 Use visibility modifiers carefully to provide needed 
access without violating encapsulation
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Restricting Inheritance
 The final modifier can be used to curtail 

inheritance

 If the final modifier is applied to a method, then 
that method cannot be overridden in any 
descendent classes

 If the final modifier is applied to an entire class, 
then that class cannot be used to derive any 
children at all

 Thus, an abstract class cannot be declared as final

 These are key design decisions, establishing that 
a method or class should be used as is


