
SEEM 3460 1SEEM 3460 11

Java – Generics, Interface, and
Inheritance

SEEM 3460 2

The ArrayList Class
 The ArrayList class is part of the java.util

package

 Like an array, it can store a list of values and
reference each one using a numeric index

 However, you cannot use the bracket syntax
with an ArrayList object

 Furthermore, an ArrayList object grows and
shrinks as needed, adjusting its capacity as
necessary

SEEM 3460 3

The ArrayList Class
 An ArrayList object is created as follows:

ArrayList band = new ArrayList();

 A list of methods supported by ArrayList class is
given in Chapter 7 of the text book. Some
examples of methods:

void add(int index, Object obj)

Object get(int index)

 Elements can be inserted or removed with a
single method invocation. For example:

band.add(2,“Paul”);

bandMember = band.get(1);

SEEM 3460 4

The ArrayList Class
 When an element is inserted, the other

elements "move aside" to make room

 Likewise, when an element is removed, the
list "collapses" to close the gap

 The indexes of the elements adjust
accordingly

SEEM 3460 5

The ArrayList Class
 An ArrayList stores references to the Object

class, which allows it to store any kind of object

 We can also define an ArrayList object to
accept a particular type of object

 The following declaration creates an ArrayList
object that only stores Family objects

 This is an example of generics and we can call
ArrayList a generic type

ArrayList<Family> reunion = new ArrayList<Family>();

SEEM 3460 6

ArrayList Efficiency

 The ArrayList class is implemented using an
underlying array

 The array is manipulated so that indexes remain
continuous as elements are added or removed

 If elements are added to and removed from the
end of the list, this processing is fairly efficient

 But as elements are inserted and removed from
the front or middle of the list, the remaining
elements are shifted

SEEM 3460 7

Collection Classes

 The Java standard library contains several
classes that represent collections, often referred
to as the Java Collections API

 Their underlying implementation is implied in
the class names such as ArrayList and
LinkedList

 The classes are implemented as generic types

 It means that the type of object can be
established when an object of that collection
type is instantiated.

SEEM 3460 8

Generic Types
 A class can be defined to operate on a generic

data type which is specified when the class is
instantiated:

LinkedList<Book> myList = new LinkedList<Book>();

 By specifying the type stored in a collection, only
objects of that type can be added to it

 Furthermore, when an object is removed, its type
is already established

SEEM 3460 9SEEM 3460 9

Interfaces

 A Java interface is a collection of abstract
methods and constants

 An abstract method is a method header without
a method body

 An abstract method can be declared using the
modifier abstract, but because all methods in
an interface are abstract, usually it is left off

 An interface is used to establish a set of
methods that a class will implement

SEEM 3460 10SEEM 3460 10

Interfaces

public interface Doable
{

public void doThis();
public int doThat();
public void doThis2 (float value, char ch);
public boolean doTheOther (int num);

}

interface is a reserved word
None of the methods in
an interface are given

a definition (body)

A semicolon immediately
follows each method header

SEEM 3460 11SEEM 3460 11

Interfaces

 An interface cannot be instantiated

 Methods in an interface have public visibility by
default

 A class formally implements an interface by:

 stating so in the class header

 providing implementations for each abstract method
in the interface

 If a class asserts that it implements an interface,
it must define all methods in the interface

SEEM 3460 12SEEM 3460 12

Interfaces

public class CanDo implements Doable
{

public void doThis ()
{

// whatever
}

public void doThat ()
{

// whatever
}

// etc.
}

implements is a
reserved word

Each method listed
in Doable is

given a definition

SEEM 3460 13SEEM 3460 13

Interfaces

 A class that implements an interface can
implement other methods as well

See Complexity.java
See Question.java
See MiniQuiz.java

 In addition to (or instead of) abstract methods,
an interface can contain constants

 When a class implements an interface, it gains
access to all its constants

SEEM 3460 14SEEM 3460 14SEEM 3460 14

//***
// Complexity.java
//
// Represents the interface for an object that can be assigned an
// explicit complexity.
//***

public interface Complexity
{

public void setComplexity (int complexity);
public int getComplexity();

}

SEEM 3460 15SEEM 3460 15SEEM 3460 15

//***
// Question.java
//
// Represents a question (and its answer).
//***
public class Question implements Complexity
{

private String question, answer;
private int complexityLevel;

//---
// Constructor: Sets up the question with a default complexity.
//---
public Question (String query, String result)
{

question = query;
answer = result;
complexityLevel = 1;

}

//---
// Sets the complexity level for this question.
//---
public void setComplexity (int level)
{

complexityLevel = level;
}

SEEM 3460 16SEEM 3460 16SEEM 3460 16

//---
// Returns the complexity level for this question.
//---
public int getComplexity()
{

return complexityLevel;
}

//---
// Returns the question.
//---
public String getQuestion()
{

return question;
}

//---
// Returns the answer to this question.
//---
public String getAnswer()
{

return answer;
}

SEEM 3460 17SEEM 3460 17SEEM 3460 17

//---
// Returns true if the candidate answer matches the answer.
//---
public boolean answerCorrect (String candidateAnswer)
{

return answer.equals(candidateAnswer);
}

//---
// Returns this question (and its answer) as a string.
//---
public String toString()
{

return question + "\n" + answer;
}

}

SEEM 3460 18SEEM 3460 18SEEM 3460 18

//***
// MiniQuiz.java
//
// Demonstrates the use of a class that implements an interface.
//***

import java.util.Scanner;

public class MiniQuiz
{

//---
// Presents a short quiz.
//---
public static void main (String[] args)
{

Question q1, q2;
String possible;

Scanner scan = new Scanner (System.in);

q1 = new Question ("What is the capital of Jamaica?",
"Kingston");

q1.setComplexity (4);

q2 = new Question ("Which is worse, ignorance or apathy?",
"I don't know and I don't care");

q2.setComplexity (10);

SEEM 3460 19SEEM 3460 19SEEM 3460 19

System.out.print (q1.getQuestion());
System.out.println (" (Level: " + q1.getComplexity() + ")");
possible = scan.nextLine();
if (q1.answerCorrect(possible))

System.out.println ("Correct");
else

System.out.println ("No, the answer is " + q1.getAnswer());

System.out.println();
System.out.print (q2.getQuestion());
System.out.println (" (Level: " + q2.getComplexity() + ")");
possible = scan.nextLine();
if (q2.answerCorrect(possible))

System.out.println ("Correct");
else

System.out.println ("No, the answer is " + q2.getAnswer());
}

}

SEEM 3460 20SEEM 3460 20SEEM 3460 20

MiniQuiz.java - Sample Execution
 The following is a sample execution of

MiniQuiz.class

cuse93> java MiniQuiz
What is the capital of Jamaica? (Level: 4)
Kingston
Correct

Which is worse, ignorance or apathy? (Level: 10)
sorry i dont know
No, the answer is I don't know and I don't care

SEEM 3460 21SEEM 3460 21

Interfaces

 A class can implement multiple interfaces

 The interfaces are listed in the implements
clause

 The class must implement all methods in all
interfaces listed in the header

class ManyThings implements interface1, interface2
{

// all methods of both interfaces
}

SEEM 3460 22SEEM 3460 22

Interfaces

 The Java standard class library contains
many helpful interfaces

 The Comparable interface contains one
abstract method called compareTo, which
is used to compare two objects

 The String class implements
Comparable, giving us the ability to put
strings in lexicographic order

SEEM 3460 23SEEM 3460 23

The Comparable Interface

 Any class can implement Comparable to provide a
mechanism for comparing objects of that type

if (obj1.compareTo(obj2) < 0)
System.out.println ("obj1 is less than obj2");

The value returned from compareTo should be negative is
obj1 is less that obj2, 0 if they are equal, and positive if
obj1 is greater than obj2

When a programmer designs a class that implements the
Comparable interface, it should follow this intent

SEEM 3460 24SEEM 3460 24

The Comparable Interface

 It's up to the programmer to determine what
makes one object less than another

 For example, you may define the compareTo
method of an Employee class to order
employees by name (alphabetically) or by
employee number

 The implementation of the method can be as
straightforward or as complex as needed for the
situation

SEEM 3460 25SEEM 3460 25

Interfaces

 You could write a class that implements certain
methods (such as compareTo) without formally
implementing the interface (Comparable)

 However, formally establishing the relationship
between a class and an interface allows Java to
deal with an object in certain ways

 Interfaces are a key aspect of object-oriented
design in Java

SEEM 3460 26SEEM 3460 26

Inheritance

 Inheritance allows a software developer to derive
a new class from an existing one

 The existing class is called the parent class, or
superclass, or base class

 The derived class is called the child class or
subclass

 As the name implies, the child inherits
characteristics of the parent

 That is, the child class inherits the methods and
data defined by the parent class

SEEM 3460 27SEEM 3460 27

Inheritance
 Inheritance relationships are shown in a UML class

diagram using a solid arrow with an unfilled triangular
arrowhead pointing to the parent class

Vehicle

Car

• Proper inheritance creates an is-a relationship,
meaning the child is a more specific version of the
parent

SEEM 3460 28SEEM 3460 28

Inheritance
 A programmer can tailor a derived class as

needed by adding new variables or methods, or
by modifying the inherited ones

 Software reuse is a fundamental benefit of
inheritance

 By using existing software components to
create new ones, we capitalize on all the effort
that went into the design, implementation, and
testing of the existing software

SEEM 3460 29SEEM 3460 29

Deriving Subclasses
 In Java, we use the reserved word extends to

establish an inheritance relationship

See Words.java
See Book.java
See Dictionary.java

class Car extends Vehicle
{

// class contents
}

SEEM 3460 30SEEM 3460 30

//***
// Words.java
//
// Demonstrates the use of an inherited method.
//***

public class Words
{

//---
// Instantiates a derived class and invokes its inherited and
// local methods.
//---
public static void main (String[] args)
{

Dictionary webster = new Dictionary();

System.out.println ("Number of pages: " + webster.getPages());

System.out.println ("Number of definitions: " +
webster.getDefinitions());

System.out.println ("Definitions per page: " +
webster.computeRatio());

}
}

SEEM 3460 31SEEM 3460 31

//***
// Book.java
//
// Represents a book. Used as the parent of a derived class to
// demonstrate inheritance.
//***

public class Book
{

protected int pages = 1500;

//--
// Pages mutator.
//--
public void setPages (int numPages)
{

pages = numPages;
}

//--
// Pages accessor.
//--
public int getPages ()
{

return pages;
}

}

SEEM 3460 32SEEM 3460 32

//***
// Dictionary.java
//
// Represents a dictionary, which is a book. Used to demonstrate
// inheritance.
//***

public class Dictionary extends Book
{

private int definitions = 52500;

//---
// Prints a message using both local and inherited values.
//---
public double computeRatio ()
{

return definitions/pages;
}

//--
// Definitions mutator.
//--
public void setDefinitions (int numDefinitions)
{

definitions = numDefinitions;
}

SEEM 3460 33SEEM 3460 33

//--
// Definitions accessor.
//--
public int getDefinitions ()
{

return definitions;
}

}

SEEM 3460 34SEEM 3460 34

Words.java - Sample Execution
 The following is a sample execution of

Words.class

cuse93> java Words
Number of pages: 1500
Number of definitions: 52500
Definitions per page: 35.0

SEEM 3460 35SEEM 3460 35

The protected Modifier
 Visibility modifiers affect the way that class

members can be used in a child class

 Variables and methods declared with private
visibility cannot be referenced by name in a child
class

 They can be referenced in the child class if they
are declared with public visibility -- but public
variables violate the principle of encapsulation

 There is a third visibility modifier that helps in
inheritance situations: protected

SEEM 3460 36SEEM 3460 36

The protected Modifier
 The protected modifier allows a child class to reference

a variable or method directly in the child class

 It provides more encapsulation than public visibility, but
is not as tightly encapsulated as private visibility

 A protected variable is visible to any class in the same
package as the parent class

 The details of all Java modifiers are discussed in
Appendix E of the text book

 Protected variables and methods can be shown with a #
symbol preceding them in UML diagrams

SEEM 3460 37SEEM 3460 37

Class Diagram for Words

Book
pages : int

+ pageMessage() : void

Dictionary
- definitions : int

+ definitionMessage() : void

Words

+ main (args : String[]) : void

SEEM 3460 38SEEM 3460 38

The super Reference
 Constructors are not inherited, even though they

have public visibility

 Yet we often want to use the parent's constructor
to set up the "parent's part" of the object

 The super reference can be used to refer to the
parent class, and often is used to invoke the
parent's constructor

See Words2.java
See Book2.java
See Dictionary2.java

SEEM 3460 39SEEM 3460 39

//***
// Words2.java
//
// Demonstrates the use of the super reference.
//***

public class Words2
{

//---
// Instantiates a derived class and invokes its inherited and
// local methods.
//---
public static void main (String[] args)
{

Dictionary2 webster = new Dictionary2 (1500, 52500);

System.out.println ("Number of pages: " + webster.getPages());

System.out.println ("Number of definitions: " +
webster.getDefinitions());

System.out.println ("Definitions per page: " +
webster.computeRatio());

}
}

SEEM 3460 40SEEM 3460 40

//***
// Book2.java
//
// Represents a book. Used as the parent of a derived class to
// demonstrate inheritance and the use of the super reference.
//***

public class Book2
{

protected int pages;

//--
// Constructor: Sets up the book with the specified number of
// pages.
//--
public Book2 (int numPages)
{

pages = numPages;
}

//--
// Pages mutator.
//--
public void setPages (int numPages)
{

pages = numPages;
}

SEEM 3460 41SEEM 3460 41

//--
// Pages accessor.
//--
public int getPages ()
{

return pages;
}

}

SEEM 3460 42SEEM 3460 42

//***
// Dictionary2.java
//
// Represents a dictionary, which is a book. Used to demonstrate
// the use of the super reference.
//***

public class Dictionary2 extends Book2
{

private int definitions;

//---
// Constructor: Sets up the dictionary with the specified number
// of pages and definitions.
//---
public Dictionary2 (int numPages, int numDefinitions)
{

super(numPages);

definitions = numDefinitions;
}

SEEM 3460 43SEEM 3460 43

//---
// Prints a message using both local and inherited values.
//---
public double computeRatio ()
{

return definitions/pages;
}

//--
// Definitions mutator.
//--
public void setDefinitions (int numDefinitions)
{

definitions = numDefinitions;
}

//--
// Definitions accessor.
//--
public int getDefinitions ()
{

return definitions;
}

}

SEEM 3460 44SEEM 3460 44

Words2.java - Sample Execution
 The following is a sample execution of

Words2.class

cuse93> java Words2
Number of pages: 1500
Number of definitions: 52500
Definitions per page: 35.0

SEEM 3460 45SEEM 3460 45

The super Reference

 A child’s constructor is responsible for calling
the parent’s constructor

 The first line of a child’s constructor should use
the super reference to call the parent’s
constructor

 The super reference can also be used to
reference other variables and methods defined
in the parent’s class

SEEM 3460 46SEEM 3460 46

Multiple Inheritance

 Java supports single inheritance, meaning that a
derived class can have only one parent class

 Multiple inheritance allows a class to be derived
from two or more classes, inheriting the members
of all parents

 Collisions, such as the same variable name in two
parents, have to be resolved

 Java does not support multiple inheritance

 In most cases, the use of interfaces gives us
aspects of multiple inheritance without the
overhead

SEEM 3460 47SEEM 3460 47

Overriding Methods
 A child class can override the definition of an

inherited method in favor of its own

 The new method must have the same signature
as the parent's method, but can have a different
body

 The type of the object executing the method
determines which version of the method is
invoked

See Messages.java
See Thought.java
See Advice.java

SEEM 3460 48SEEM 3460 48

//***
// Messages.java
//
// Demonstrates the use of an overridden method.
//***

public class Messages
{

//---
// Creates two objects and invokes the message method in each.
//---
public static void main (String[] args)
{

Thought parked = new Thought();
Advice dates = new Advice();

parked.message();

dates.message(); // overridden
}

}

SEEM 3460 49SEEM 3460 49

//***
// Thought.java
//
// Represents a stray thought. Used as the parent of a derived
// class to demonstrate the use of an overridden method.
//***

public class Thought
{

//---
// Prints a message.
//---
public void message()
{

System.out.println ("I feel like I'm diagonally parked in a " +
"parallel universe.");

System.out.println();
}

}

SEEM 3460 50SEEM 3460 50

//***
// Advice.java
//
// Represents some thoughtful advice. Used to demonstrate the use
// of an overridden method.
//***

public class Advice extends Thought
{

//---
// Prints a message. This method overrides the parent's version.
//---
public void message()
{

System.out.println ("Warning: Dates in calendar are closer " +
"than they appear.");

System.out.println();

super.message(); // explicitly invokes the parent's version
}

}

SEEM 3460 51SEEM 3460 51

Messages.java - Sample Execution
 The following is a sample execution of

Messages.class

cuse93> java Messages
I feel like I'm diagonally parked in a parallel universe.

Warning: Dates in calendar are closer than they appear.

I feel like I'm diagonally parked in a parallel universe.

SEEM 3460 52SEEM 3460 52

Overriding

 A method in the parent class can be invoked
explicitly using the super reference

 If a method is declared with the final modifier,
it cannot be overridden

 The concept of overriding can be applied to data
and is called shadowing variables

 Shadowing variables should be avoided because
it tends to cause unnecessarily confusing code

SEEM 3460 53SEEM 3460 53

Overloading vs. Overriding

 Overloading deals with multiple methods with the
same name in the same class, but with different
signatures

 Overriding deals with two methods, one in a
parent class and one in a child class, that have
the same signature

 Overloading lets you define a similar operation in
different ways for different parameters

 Overriding lets you define a similar operation in
different ways for different object types

SEEM 3460 54SEEM 3460 54

Class Hierarchies
 A child class of one parent can be the

parent of another child, forming a class
hierarchy

Business

KMart Macys

ServiceBusiness

Kinkos

RetailBusiness

SEEM 3460 55SEEM 3460 55

Class Hierarchies
 Two children of the same parent are called

siblings

 Common features should be put as high in the
hierarchy as is reasonable

 An inherited member is passed continually down
the line

 Therefore, a child class inherits from all its
ancestor classes

 There is no single class hierarchy that is
appropriate for all situations

SEEM 3460 56SEEM 3460 56

The Object Class
 A class called Object is defined in the java.lang

package of the Java standard class library

 All classes are derived from the Object class

 If a class is not explicitly defined to be the child of
an existing class, it is assumed to be the child of
the Object class

 Therefore, the Object class is the ultimate root of
all class hierarchies

SEEM 3460 57SEEM 3460 57

The Object Class

 The Object class contains a few useful methods,
which are inherited by all classes

 For example, the toString method is defined in
the Object class

 Every time we define the toString method, we
are actually overriding an inherited definition

 The toString method in the Object class is
defined to return a string that contains the name
of the object’s class along with some other
information

SEEM 3460 58SEEM 3460 58

The Object Class

 The equals method of the Object class returns
true if two references are aliases

 We can override equals in any class to define
equality in some more appropriate way

 As we've seen, the String class defines the
equals method to return true if two String
objects contain the same characters

 The designers of the String class have
overridden the equals method inherited from
Object in favor of a more useful version

SEEM 3460 59SEEM 3460 59

Interface Hierarchies

 Inheritance can be applied to interfaces as well as
classes

 That is, one interface can be derived from another
interface

 The child interface inherits all abstract methods of
the parent

 A class implementing the child interface must
define all methods from both the ancestor and
child interfaces

 Note that class hierarchies and interface
hierarchies are distinct (they do not overlap)

SEEM 3460 60SEEM 3460 60

Visibility Revisited
 It's important to understand one subtle issue

related to inheritance and visibility

 All variables and methods of a parent class,
even private members, are inherited by its
children

 As we've mentioned, private members cannot
be referenced by name in the child class

 However, private members inherited by child
classes exist and can be referenced indirectly

SEEM 3460 61SEEM 3460 61

Visibility Revisited

 Because the parent can refer to the private member, the
child can reference it indirectly using its parent's
methods

 The super reference can be used to refer to the parent
class, even if no object of the parent exists

See FoodAnalyzer.java
See FoodItem.java
See Pizza.java

SEEM 3460 62SEEM 3460 62

//***
// FoodAnalyzer.java
//
// Demonstrates indirect access to inherited private members.
//***

public class FoodAnalyzer
{

//---
// Instantiates a Pizza object and prints its calories per
// serving.
//---
public static void main (String[] args)
{

Pizza special = new Pizza (275);

System.out.println ("Calories per serving: " +
special.caloriesPerServing());

}
}

SEEM 3460 63SEEM 3460 63

//***
// FoodItem.java
//
// Represents an item of food. Used as the parent of a derived class
// to demonstrate indirect referencing.
//***

public class FoodItem
{

final private int CALORIES_PER_GRAM = 9;
private int fatGrams;
protected int servings;

//---
// Sets up this food item with the specified number of fat grams
// and number of servings.
//---
public FoodItem (int numFatGrams, int numServings)
{

fatGrams = numFatGrams;
servings = numServings;

}

SEEM 3460 64SEEM 3460 64

//---
// Computes and returns the number of calories in this food item
// due to fat.
//---
private int calories()
{

return fatGrams * CALORIES_PER_GRAM;
}

//---
// Computes and returns the number of fat calories per serving.
//---
public int caloriesPerServing()
{

return (calories() / servings);
}

}

SEEM 3460 65SEEM 3460 65

//***
// Pizza.java
//
// Represents a pizza, which is a food item. Used to demonstrate
// indirect referencing through inheritance.
//***

public class Pizza extends FoodItem
{

//---
// Sets up a pizza with the specified amount of fat (assumes
// eight servings).
//---
public Pizza (int fatGrams)
{

super (fatGrams, 8);
}

}

SEEM 3460 66SEEM 3460 66

FoodAnalyzer.java - Sample Execution
 The following is a sample execution of

FoodAnalyzer.class

cuse93> java FoodAnalyzer
Calories per serving: 309

SEEM 3460 67SEEM 3460 67

Designing for Inheritance

 As we've discussed, taking the time to create a
good software design reaps long-term benefits

 Inheritance issues are an important part of an
object-oriented design

 Properly designed inheritance relationships can
contribute greatly to the elegance, maintainability,
and reuse of the software

 Let's summarize some of the issues regarding
inheritance that relate to a good software design

SEEM 3460 68SEEM 3460 68

Inheritance Design Issues

 Every derivation should be an is-a relationship

 Think about the potential future of a class
hierarchy, and design classes to be reusable and
flexible

 Find common characteristics of classes and push
them as high in the class hierarchy as appropriate

 Override methods as appropriate to tailor or
change the functionality of a child

 Add new variables to children, but don't redefine
(shadow) inherited variables

SEEM 3460 69SEEM 3460 69

Inheritance Design Issues

 Allow each class to manage its own data; use the
super reference to invoke the parent's constructor
to set up its data

 Even if there are no current uses for them,
override general methods such as toString and
equals with appropriate definitions

 Use abstract classes to represent general concepts
that lower classes have in common

 Use visibility modifiers carefully to provide needed
access without violating encapsulation

SEEM 3460 70SEEM 3460 70

Restricting Inheritance
 The final modifier can be used to curtail

inheritance

 If the final modifier is applied to a method, then
that method cannot be overridden in any
descendent classes

 If the final modifier is applied to an entire class,
then that class cannot be used to derive any
children at all

 Thus, an abstract class cannot be declared as final

 These are key design decisions, establishing that
a method or class should be used as is

