
SEEM 3470: Dynamic Optimization and Applications 2013–14 Second Term

Handout 11: Infinite–Horizon Dynamic Programming Problems

Instructor: Shiqian Ma March 31, 2014

Suggested Reading: Chapters 7 of Bertsekas, Dynamic Programming and Optimal Control: Vol-
ume I (3rd Edition), Athena Scientific, 2005; Chapter 3 of Powell, Approximate Dynamic Program-
ming: Solving the Curse of Dimensionalty (2nd Edition), Wiley, 2010.

1 Introduction

In the previous handouts, we focused on dynamic programming (DP) problems with a finite horizon
and developed algorithms for solving them. In this handout, we will study infinite–horizon DP
problems. Such problems arise naturally if we want to understand the steady state of the underlying
system, or if we do not know in advance the number of periods we need to make a decision (such as
the Asset Pricing example in Handout 10). To solve infinite–horizon DP problems, a tempting idea
would be to apply the DP algorithm. Recall that in the DP algorithm, we start with the final–stage
problem and apply backward recursion. However, if there is an infinite number of stages, it is not
clear what the “final–stage” problem would be. Hence, we need some new techniques in order to
develop algorithms for solving infinite–horizon DP problems.

2 Examples

2.1 Example 1: Asset selling

Consider an infinite horizon version of the asset selling example of Handout 10, assuming the set
of possible offers is finite. Here, if accepted, the amount xk offered in period k, will be invested at
a rate of interest r. By depreciating the sale amount to period 0 dollars, we view (1 + r)−kxk as
the reward for selling the asset in period k at a price xk, where r > 0 is the rate of interest. Then
we have a total discounted reward problem with discount factor α = 1/(1 + r). The analysis (we
will learn shortly) shows that the optimal value function J∗ is the unique solution of the Bellman’s
equation (optimality condition)

J∗(x) = max

[
x,
E{J∗(w)}

1 + r

]
.

The optimal reward function is characterized by the critical number

ᾱ =
E{J∗(w)}

1 + r
,

which can be calculated as in Handout 10. An optimal policy is to sell if and only if the current
offer xk is greater than or equal to ᾱ.

1

2.2 Example 2: Minimum expected time

A spider and a fly move along a straight line at times k = 0, 1, The initial positions of the fly
and the spider are integer. At each time period, the fly moves one unit to the left with probability
p, one unit to the right with probability p, and stays where it is with probability 1 − 2p. The
spider, knows the position of the fly at the beginning of each period, and will always move one unit
towards the fly if its distance from the fly is more than one unit. If the spider is one unit away
from the fly, it will either move one unit towards the fly or stay where it is. If the spider and the fly
land in the same position at the end of a period, then the spider captures the fly and the process
terminates. The spider’s objective is to capture the fly in minimum expected time.

We view as state the distance between spider and fly. Then the problem can be formulated as
a stochastic shortest path problem with states 0, 1, . . . , n, where n is the initial distance. State 0
is the termination state where the spider captures the fly. Let us denote p1j(M) and p1j(M̄) the
transition probabilities from state 1 to state j if the spider moves and does not move, respectively,
and let us denote by pij the transition probabilities from a state i ≥ 2. We have

pii = p, pi(i−1) = 1− 2p, pi(i−2) = p, i ≥ 2,

p11(M) = 2p, p10(M) = 1− 2p,

p12(M̄) = p, p11(M̄) = 1− 2p, p10(M̄) = p,

with all other transition probabilities being 0.
For state i ≥ 2, Bellman’s equation is written as

J∗(i) = 1 + pJ∗(i) + (1− 2p)J∗(i− 1) + pJ∗(i− 2), i ≥ 2, (1)

where J∗(0) = 0 by definition. The only state where the spider has a choice is when it is one unit
away from the fly, and for that state Bellman’s equation is given by

J∗(1) = 1 + min [2pJ∗(1), pJ∗(2) + (1− 2p)J∗(1)] , (2)

where the first and the second expression within the bracket above are associated with the spider
moving and not moving, respectively. By writing Eq. (1) for i = 2, we obtain

J∗(2) = 1 + pJ∗(2) + (1− 2p)J∗(1),

from which

J∗(2) =
1

1− p
+

(1− 2p)J∗(1)

1− p
. (3)

Substituting this expression in (2), we obtain

J∗(1) = 1 + min

[
2pJ∗(1),

p

1− p
+
p(1− 2p)J∗(1)

1− p
+ (1− 2p)J∗(1)

]
,

or equivalently,

J∗(1) = 1 + min

[
2pJ∗(1),

p

1− p
+

(1− 2p)J∗(1)

1− p

]
.

To solve the above equation, we consider the two cases where the first expression with in the
bracket is larger and is smaller than the second expression. Thus we solve for J∗(1) in the two
cases where

J∗(1) = 1 + 2pJ∗(1), (4)

2

2pJ∗(1) ≤ p

1− p
+

(1− 2p)J∗(1)

1− p
, (5)

and

J∗(1) = 1 +
p

1− p
+

(1− 2p)J∗(1)

1− p
, (6)

2pJ∗(1) ≥ p

1− p
+

(1− 2p)J∗(1)

1− p
. (7)

The solution of Eq. (4) is seen to be J∗(1) = 1/(1 − 2p), and by substitution in Eq. (5), we
find that this solution is valid when

2p

1− 2p
≤ p

1− p
+

1

1− p
,

or equivalently (after some calculation), p ≤ 1/3. Thus for p ≤ 1/3, it is optimal for the spider to
move when it is one unit away from the fly.

Similarly, the solution of Eq. (6) is seen to be J∗(1) = 1/p, and by substitution in Eq. (7), we
find that this solution is valid when

2 ≥ p

1− p
+

1− 2p

p(1− p)
,

or equivalently (after some calculation), p ≥ 1/3. thus, for p ≥ 1/3 it is optimal for the spider not
to move when it is one unit away form the fly.

The minimal expected number of steps for capture when the spider is one unit away from the
fly was calculated earlier to be

J∗(1) =

{
1/(1− 2p) if p ≤ 1/3,
1/p if p ≥ 1/3.

Given the value of J∗(1), we can calculate from Eq. (3) the minimal expected number of steps for
capture when two units away, J∗(2), and we can then obtain the remaining values J∗(i), i = 3, . . . , n,
from Eq. (1).

3 Infinite–Horizon DP Problems: Preliminaries

We begin with the setup of the problem. Let S be a discrete state space. Let Sk and Wk be the
state and random parameter in period k, respectively. Given that the state and control in period
k is Sk = i and xk = x, respectively, the next state Sk+1 is specified by a probability distribution

pij(x) = Pr(Sk+1 = j |Sk = i, xk = x), (8)

and the cost incurred in period k is given by

Λ(Sk, xk,Wk).

It should be noted that pij(x) does not depend on the period k, and the cost function Λ(·, ·, ·) is
the same in every period. In other words, both the transition probabilities and the cost function
are time homogeneous. Moreover, the transition probabilities are Markov, i.e., pij(x) depends only

3

on the current state Sk and not on any of the previous states S0, S1, . . . , Sk−1. In the sequel, we
shall assume that the cost function Λ(·, ·, ·) is non–negative.

Now, given a policy π = {µ0, µ1, . . .} and an initial state S0 = s, the total expected cost of the
infinite–horizon problem associated with the above system is given by

J0(s, π) = E

[∞∑
k=0

γkΛ(Sk, µk(Sk),Wk)

∣∣∣∣∣S0 = s, µ0

]
, (9)

where γ ∈ (0, 1] is a discount factor. The meaning of γ < 1 is that future costs matter to us less
than the same costs incurred at the present time. As an example, think of k-th period dollars
depreciated to initial period dollars by a factor of (1 + r)−k, where r is a rate of interest; here
γ = 1/(1 + r).

Naturally, we are interested in choosing the policy that minimizes the above total expected cost,
i.e., we would like to solve the problem

J0(s) = min
π
J0(s, π) for every state s ∈ S. (10)

Towards that end, we shall make two simplifying assumptions:

1. The cost function does not depend on the random parameter Wk. In other words, we may
write Λ(Sk, µk(Sk)) instead of Λ(Sk, µk(Sk),Wk).

2. Since both the transition probabilities and cost function are time–homogeneous, it seems
reasonable to expect that the optimal policy π∗ that solves (10) is also time–homogeneous or
stationary, i.e., π∗ takes the form π∗ = {µ∗, µ∗, . . .}. Hence, we shall restrict our attention
to stationary policies. In fact, in many cases, this assumption can be made without loss of
generality. Since a stationary policy π is completely specified by the control function µ(·), we
shall abuse notation and use µ to denote a stationary policy.

With the above two assumptions, we can write J0(s, π) as

J0(s, µ) = E

[∞∑
k=0

γkΛ(Sk, µ(Sk))

∣∣∣∣∣S0 = s, µ

]
(11)

and
J0(s) = min

µ
J0(s, µ) for every state s ∈ S (12)

(compare (11) with (9) and (12) with (10)).
As mentioned in the Introduction section, one cannot apply the DP algorithm for finite–horizon

problems to (11) directly, as the definition of the “final–stage” problem in (11) is not clear. However,
for any given integer N ≥ 0, we can consider the truncated version of (11), i.e.,

QN (s, µ) = E

[
N−1∑
k=0

γkΛ(Sk, µ(Sk))

∣∣∣∣∣S0 = s, µ

]
(13)

and set
QN (s) = min

µ
QN (s, µ) for every state s ∈ S. (14)

4

The motivation for considering the above truncated problems is twofold. First, problem (14) is a
finite–horizon DP by construction, and hence we can use the DP algorithms we developed earlier to
solve it. Secondly, as we take N →∞, we have QN (s, µ)→ J0(s, µ). Hence, it seems intuitive that
QN (s)→ J0(s). In other words, we can perhaps use the truncated, finite–horizon problem (14) to
approximate the original, infinite–horizon problem (12), and at the limit, this approximation will
be exact.

To implement the above idea, we need to establish a relationship between QN (s) and J0(s). Let
us begin by computing

QN (s, µ) = Λ(s, µ(s)) +
N−1∑
k=1

γk · E [Λ(Sk, µ(Sk)) |S0 = s, µ] (15)

= Λ(s, µ(s)) +

N−1∑
k=1

γk

[∑
t∈S

(
E [Λ(Sk, µ(Sk)) |S1 = t, µ] · Pr(S1 = t |S0 = s, µ)

)]
(16)

= Λ(s, µ(s)) + γ
∑
t∈S

(
ps,t(µ(s)) · E

[
N−1∑
k=1

γk−1Λ(Sk, µ(Sk))

∣∣∣∣∣S1 = t, µ

])
, (17)

where (15) and (17) follow from linearity of expectation, and (16) follows by conditioning on S1
and using the Markov property of the transition probabilities, i.e.,

E [Λ(Sk, µ(Sk)) |S0 = s, µ] =
∑
t∈S

[
E [Λ(Sk, µ(Sk)) |S1 = t, S0 = s, µ] · Pr(S1 = t |S0 = s, µ)

]
=

∑
t∈S

(
ps,t(µ(s)) · E [Λ(Sk, µ(Sk)) |S1 = t, µ]

)
.

Now, observe that the problem

E

[
N−1∑
k=1

γk−1Λ(Sk, µ(Sk))

∣∣∣∣∣S1 = t, µ

]
in (17) has the same form as that in (13), except that the former has only N − 1 stages and starts
in the state t. Hence, we have

QN−1(t, µ) = E

[
N−1∑
k=1

γk−1Λ(Sk, µ(Sk))

∣∣∣∣∣S1 = t, µ

]
.

Upon substituting this into (17), we conclude that

QN (s, µ) = Λ(s, µ(s)) + γ
∑
t∈S

[
ps,t(µ(s)) ·QN−1(t, µ)

]
for all s ∈ S and µ (18)

From (18), we have

QN (s, µ) ≥ Λ(s, µ(s)) + γ
∑
t∈S

[
ps,t(µ(s)) ·

(
min
µ
QN−1(t, µ)

)]
= Λ(s, µ(s)) + γ

∑
t∈S

[
ps,t(µ(s)) ·QN−1(t)

]
(19)

5

Upon minimizing both sides of (19) with respect to µ(s), we have

QN (s) = min
µ
QN (s, µ) ≥ min

µ(s)

{
Λ(s, µ(s)) + γ

∑
t∈S

[
ps,t(µ(s)) ·QN−1(t)

]}
. (20)

On the other hand, let
µ̄ = arg min

µ
QN−1(t, µ),

so that QN−1(t) = QN−1(t, µ̄). Then, from (18),

QN (s) = min
µ

{
Λ(s, µ(s)) + γ

∑
t∈S

[
ps,t(µ(s)) ·QN−1(t, µ)

]}

≤ Λ(s, µ̄(s)) + γ
∑
t∈S

[
ps,t(µ̄(s)) ·QN−1(t)

]
.

Upon minimizing both sides with respect to µ̄(s), we obtain

QN (s) ≤ min
µ(s)

{
Λ(s, µ(s)) + γ

∑
t∈S

[
ps,t(µ(s)) ·QN−1(t)

]}
.

This, together with (20), implies that

QN (s) = min
µ(s)

{
Λ(s, µ(s)) + γ

∑
t∈S

[
ps,t(µ(s)) ·QN−1(t)

]}
for all s ∈ S (21)

Now, we are ready to derive the optimality condition governing J0(s) using the finite–horizon
approximation QN (s). Recall that as N → ∞, we have QN (s, µ) → J0(s, µ) for every state s ∈ S
and control µ(·). Hence, upon taking N →∞ on both sides of (19), we obtain

J0(s, µ) ≥ Λ(s, µ(s)) + γ
∑
t∈S

[
ps,t(µ(s)) · J0(t)

]
.

Upon minimizing both sides with respect to µ and using the fact that J0(s) = minµ J0(s, µ), we
obtain

J0(s) ≥ min
µ(s)

{
Λ(s, µ(s)) + γ

∑
t∈S

[
ps,t(µ(s)) · J0(t)

]}
. (22)

On the other hand, let
µ̄ = arg min

µ
J0(t, µ),

so that J0(t) = J0(t, µ̄). Upon taking N →∞ on both sides of (18), we have

J0(s, µ) = Λ(s, µ(s)) + γ
∑
t∈S

[
ps,t(µ(s)) · J0(t, µ)

]
.

6

Hence,

J0(s) = min
µ
J0(s, µ) ≤ Λ(s, µ̄(s)) + γ

∑
t∈S

[
ps,t(µ̄(s)) · J0(t)

]
.

Upon minimizing both sides with respect to µ̄(s), we get

J0(s) ≤ min
µ(s)

{
Λ(s, µ(s)) + γ

∑
t∈S

[
ps,t(µ(s)) · J0(t)

]}
.

This, together with (22), shows that J0(·) must satisfy the following optimality equation:

J0(s) = min
µ(s)

{
Λ(s, µ(s)) + γ

∑
t∈S

[
ps,t(µ(s)) · J0(t)

]}
for all s ∈ S (23)

4 The Value Iteration Algorithm

Although the optimality equation (23) tells us the structure of the optimal total expected cost of
the infinite–horizon problem (11), it does not yet yield an algorithm for computing the optimal
value J0(s) or the optimal policy

µ∗(s) = arg min
µ

{
Λ(s, µ(s)) + γ

∑
t∈S

[
ps,t(µ(s)) · J0(t)

]}
.

The difficulty lies in the fact that J0 is involved in both sides of the optimality equation (23). To
circumvent this difficulty, we could try to decouple the two copies of J0 in (23). In fact, equation
(21) already gives a clue on how this could be done. Specifically, starting from an initial choice of
Q0, we could apply (21) iteratively to obtain a sequence Q0, Q1, This gives rise to the so–called
value iteration algorithm:

Algorithm 1 Value Iteration Algorithm for Finding J0
1: initialization: set Q0(s) = 0 for all s ∈ S and N = 1
2: repeat
3: find QN (s) using (21) for every s ∈ S
4: set N ← N + 1
5: until convergence

Let us illustrate the value iteration algorithm with an example.

Example 1 Consider a system with state space S = {1, 2} and control set C = {x1, x2}. The
transition probabilities associated with the controls are given by

P (x1) =
[
pi,j(x

1)
]

=

[
3/4 1/4
3/4 1/4

]
, P (x2) =

[
pi,j(x

2)
]

=

[
1/4 3/4
1/4 3/4

]
.

Furthermore, the transition costs are given by

Λ(1, x1) = 2, Λ(1, x2) = 1/2,

Λ(2, x1) = 1, Λ(2, x2) = 3.

7

Consider the infinite–horizon DP:

J0(s) = min
µ

E

[∞∑
k=0

(0.9)k · Λ(Sk, µ(Sk))

∣∣∣∣∣S0 = s, µ

]
, where s ∈ S. (24)

In particular, we have γ = 0.9. Applying the value iteration algorithm to (24), the results for the
first two iterations are given as follows:

Initialization. Q0(1) = Q0(2) = 0.
Iteration 1. Since there are only two possible controls x1, x2, we have, from (21),

Q1(1) = min
{

Λ(1, x1) + 0.9
(
p1,1(x

1)Q0(1) + p1,2(x
1)Q0(2)

)
,

Λ(1, x2) + 0.9
(
p1,1(x

2)Q0(1) + p1,2(x
2)Q0(2)

)}
= min{2, 0.5}

= 0.5, with the corresponding control x2.

Similarly,

Q1(2) = min
{

Λ(2, x1) + 0.9
(
p2,1(x

1)Q0(1) + p2,2(x
1)Q0(2)

)
,

Λ(2, x2) + 0.9
(
p2,1(x

2)Q0(1) + p2,2(x
2)Q0(2)

)}
= min{1, 3}

= 1, with the corresponding control x1.

Iteration 2. We have

Q2(1) = min
{

Λ(1, x1) + 0.9
(
p1,1(x

1)Q1(1) + p1,2(x
1)Q1(2)

)
,

Λ(1, x2) + 0.9
(
p1,1(x

2)Q1(1) + p1,2(x
2)Q1(2)

)}
= min{2.5625, 1.2875}

= 1.2875, with the corresponding control x2,

and

Q2(2) = min
{

Λ(2, x1) + 0.9
(
p2,1(x

1)Q1(1) + p2,2(x
1)Q1(2)

)
,

Λ(2, x2) + 0.9
(
p2,1(x

2)Q1(1) + p2,2(x
2)Q1(2)

)}
= min{1.5625, 3.7875}

= 1.5625, with the corresponding control x1.

Note that in the above example, we can continue running the algorithm for more iterations. A
natural question then is when we can stop. One stopping criterion is when the difference between
successive iterates QN−1 and QN is small. More precisely, we can choose an accuracy threshold
ε > 0 and stop the algorithm when∑

s∈S
|QN (s)−QN−1(s)|2 < ε. (25)

8

Now, in order for the value iteration algorithm to be well defined, we must show that the stopping
criterion (25) will be satisfied eventually. Moreover, recall that we use the value iteration algo-
rithm to compute approximations of J0 in (23). Hence, it would be good to know how well QN
approximates J0 as N →∞. Both of these issues are addressed in the following theorem:

Theorem 1 Suppose that 0 ≤ Λ(·, ·) ≤ B for some constant B and 0 < γ < 1. Then, J0(s) =
limN→∞QN (s) for all s ∈ S.

Proof By definition (see (9) and (13)), we have

J0(s, µ) = QN (s, µ) + E

[∞∑
k=N

γkΛ(Sk, µ(Sk))

∣∣∣∣∣S0 = s, µ

]
.

Thus, if 0 ≤ Λ(·, ·) ≤ B and 0 < γ < 1, then

QN (s, µ) ≤ J0(s, µ) ≤ QN (s, µ) +B
∞∑
k=N

γk = QN (s, µ) +
BγN

1− γ
.

Upon optimizing with respect to µ, we have

min
µ
QN (s, µ) ≤ min

µ
J0(s, µ) ≤ min

µ
QN (s, µ) +

BγN

1− γ
,

or equivalently (using the definitions of J0(s) and QN (s) in (10) and (14)),

QN (s) ≤ J0(s) ≤ QN (s) +
BγN

1− γ
. (26)

The desired result now follows by taking N →∞. tu

Theorem 1 not only shows that the stopping criterion (25) will be satisfied eventually, but also
gives an error bound on how far the iterates Q0, Q1, . . . , produced by the value iteration algortihm
are from the target J0. Specifically, the inequalities in (26) show that

|QN (s)− J0(s)| ≤
BγN

1− γ
for every state s ∈ S.

5 Policy Iteration Algorithm

In the last section, we study the value iteration algorithm, whose N–th iteration is essentially
computing an N–stage approximation QN to the infinite–horizon cost J0. In this section, we will
develop another algorithm, called the policy iteration algorithm, for computing J0. The main idea
is again to decouple the two copies of J0 in (23). In the value iteration algorithm, we achieve
this decoupling by approximating the J0 on the right–hand side of (23) by QN and optimizing the
resulting expression. In the policy iteration algorithm, we first fix a policy µ (which may not be
optimal). Then, we approximate the J0 on the right–hand side of (23) by J0(·, µ) and optimize the
resulting expression. Specifically, in the N–th iteration, we solve the following problem:

µN+1(s) = arg min
µ(s)

{
Λ(s, µ(s)) + γ

∑
t∈S

[
ps,t(µ(s)) · J0(t, µN)

]}
for all s ∈ S,

9

where we initialize the algorithm with an arbitrary policy µ0. However, in order to implement this
algorithm, we must know how to compute J0(·, µ) for any given policy µ. Towards that end, let us
first recall the definition of J0(s, µ) from (9):

J0(S, µ) = E

[∞∑
k=0

γkΛ(Sk, µ(Sk))

∣∣∣∣∣S0 = s, µ

]
. (27)

Consider the k = 1 term of (27). We have

E [Λ(S1, µ(S1)) |S0 = s, µ] =
∑
t∈S

[
Λ(t, µ(t)) · Pr(S1 = t |S0 = s, µ)

]
=

∑
t∈S

[
ps,t(µ(s)) · Λ(t, µ(t))

]
. (28)

If we let P (µ) = [pi,j(µ(i))] be the |S| × |S| transition matrix associated with µ and w(µ) be the
|S|–dimensional column vector whose s–th entry is Λ(s, µ(s)), where s ∈ S, then we can write (28)
more compactly as

E [Λ(S1, µ(S1)) |S0 = s, µ] = [P (µ)w(µ)]s,

where [P (µ)w(µ)]s is the s–th row of the vector P (µ)w(µ).
Now, consider the term k = 2. Upon conditioning on S1 and using the fact that the transition

probabilities are Markov, we have

E [Λ(S2, µ(S2)) |S0 = s, µ] =
∑
t∈S

[
Λ(t, µ(t)) · Pr(S2 = t |S0 = s, µ)

]

=
∑
t∈S

[
Λ(t, µ(t))

∑
t′∈S

Pr(S2 = t |S1 = t′, µ) · Pr(S1 = t′ |S0 = s, µ)

]

=
∑
t∈S

[
Λ(t, µ(t))

∑
t′∈S

pt′,t(µ(t′)) · ps,t′(µ(s))
]
. (29)

Observe that ∑
t′∈S

pt′,t(µ(t′)) · ps,t′(µ(s)) = [P 2(µ)]s,t.

Hence, we can write (29) as

E [Λ(S2, µ(S2)) |S0 = s, µ] = [P 2(µ)w(µ)]s.

Continuing in this fashion, one can prove that

E [Λ(Sk, µ(Sk)) |S0 = s, µ] = [P k(µ)w(µ)]s for k = 1, 2,

Substituting this into (27), we obtain

J0(s, µ) = Λ(s, µ(s)) +
∞∑
k=1

γk[P k(µ)w(µ)]s for all s ∈ S. (30)

10

Byletting Jµ0 to be the |S|–dimensional column vector whose s–th entry is J0(s, µ), where s ∈ S,
we can rewrite (30) as

Jµ0 = w(µ) +

∞∑
k=1

γkP k(µ)w(µ) = w(µ) + γP (µ)

∞∑
k=1

γk−1P k−1(µ)w(µ)︸ ︷︷ ︸
=Jµ0

= w(µ) + γP (µ)Jµ0 . (31)

From (31), we can derive two useful identities. First, upon expanding (31) and recalling the
definitions of Jµ0 and w(µ), we obtain

J0(s, µ) = Λ(s, µ(s)) + γ
∑
t∈S

[
ps,t(µ(s)) · J0(t, µ)

]
for all s ∈ S. (32)

Secondly, we can compute Jµ0 via

Jµ0 = (I − γP (µ))−1w(µ). (33)

The above identities allow us to finish the description of the policy iteration algorithm.

Algorithm 2 Policy Iteration Algorithm for Finding J0

1: initialization: select an arbitrary policy µ0 and set N = 1
2: repeat
3: compute P (µN−1) and w(µN−1)

4: compute Jµ
N−1

0 via (33)
5: solve

µN+1(s) = arg min
µ(s)

{
Λ(s, µ(s)) + γ

∑
t∈S

[
ps,t(µ(s)) · J0(t, µN)

]}
for each s ∈ S

6: set N ← N + 1
7: until µN (s) = µN+1(s) for all s ∈ S

Again, let us illustrate the policy iteration algorithm by applying it to Example 1.

Example 2 Using the data in Example 1, we run the policy iteration algorithm as follows:

Initialization. Set µ0(1) = µ0(2) = x1.
Iteration 1. We compute

P (µ0) =

[
3/4 1/4
3/4 1/4

]
, w(µ0) =

[
2
1

]
, Jµ

0

0 =

[
17.75
16.75

]
.

Since

min
x∈{x1,x2}

{
Λ(1, x) + 0.9

(
p1,1(x)J0(1, µ

0) + p1,2(x)J0(2, µ
0)
)}

= min{17.75, 15.8} = 15.8,

11

we have µ1(1) = x2. Similarly, since

min
x∈{x1,x2}

{
Λ(2, x) + 0.9

(
p2,1(x)J0(1, µ

0) + p2,2(x)J0(2, µ
0)
)}

= min{16.75, 18.3} = 16.75,

we have µ1(2) = x1.
Iteration 2. We compute

P (µ1) =

[
1/4 3/4
3/4 1/4

]
, w(µ1) =

[
1/2
1

]
, Jµ

1

0 =

[
7.32759
7.67241

]
.

Since

min
x∈{x1,x2}

{
Λ(1, x) + 0.9

(
p1,1(x)J0(1, µ

1) + p1,2(x
1)J0(2, µ

1)
)}

= min{17.75, 15.8} = 15.8,

we have µ2(1) = x2. Also,

min
x∈{x1,x2}

{
Λ(2, x) + 0.9

(
p2,1(x)J0(1, µ

1) + p2,2(x)J0(2, µ
1)
)}

= min{16.75, 18.3} = 16.75,

and hence µ2(2) = x1. Since µ2(1) = µ1(1) and µ2(2) = µ1(2), the algorithm terminates.

As in our investigation of the value iteration algorithm, we need to establish the correctness of the
above policy iteration algorithm. Towards that end, consider the sequence of policies µ0, µ1, . . .

and the associated cost vectors Jµ
0

0 , Jµ
1

0 , . . . generated by the algorithm. It can be shown that

Jµ
N

0 ≥ Jµ
N+1

0 for all N ≥ 0, i.e.,

J0(s, µ
N) ≥ J0(s, µN+1) for all s ∈ S and N ≥ 0; (34)

see Problem 2 of Homework 4. Since J0(s, µ
N) ≥ J0(s) = minµ J0(s, µ), the sequence {Jµ

N

0 }
will converge. Moreover, if there is only a finite number of states and controls, then the number
of different policies is finite. In this case, (34) implies that the policy iteration algorithm will
eventually settle on a policy, and hence the algorithm will terminate.

6 The Linear Programming Approach

As it turns out, besides the two iterative approaches mentioned in the previous sections, one can
also solve (23) via linear programming. Specifically, it can be shown that J0 is the optimal solution
to the following linear program:

maximize
∑
s∈S

J(s)

subject to J(s) ≤ Λ(s, x) + γ
∑
t∈S

ps,t(x)J(t) for all s and x.

As an illustration, consider Example 1 again. Since S = {1, 2} and C = {x1, x2}, the linear program
corresponding to the problem of finding J0 is given by

maximize J(1) + J(2)

subject to J(1) ≤ Λ(1, x1) + γ
(
p1,1(x

1)J(1) + p1,2(x
1)J(2)

)
,

J(1) ≤ Λ(1, x2) + γ
(
p1,1(x

2)J(1) + p1,2(x
2)J(2)

)
,

J(2) ≤ Λ(2, x1) + γ
(
p2,1(x

1)J(1) + p2,2(x
1)J(2)

)
,

J(2) ≤ Λ(2, x2) + γ
(
p2,1(x

2)J(1) + p2,2(x
2)J(2)

)
.

12

