
SEEM 3470: Dynamic Optimization and Applications 2013–14 Second Term

Handout 3: Dynamic Programming Examples

Instructor: Shiqian Ma January 20, 2014

1 The discrete budgeting problem

Assume that we have to allocate a budget of size R to a series of task T . Let at be the discrete
action representing the amount of money allocated to task t, and let Ct(at) be the contribution (or
reward) that we receive from this allocation. We would like to maximize our total contribution

max
a

∑
t∈T

Ct(at)

s.t.,
∑
t∈T

at = R

at ≥ 0, for all t ∈ T .

We will approach this problem by first deciding how much to allocate to task 1, then to task 2, and
so on, until the last task T . Let

Vt(Rt) = the value of having Rt rescources remaining to allocate to task t and later tasks.

Implicit in our definition of Vt(Rt) is that we are going to solve the problem of allocating Rt over
tasks t, t+ 1, . . . , T in an optimal way. The relationship between Rt+1 and Rt is given by

Rt+1 = Rt − at. (1)

Rt is known as the state variable. Equation (1) is the transition function that relates the state
at time t to the state at time t+ 1. Sometimes we need to explicitly refer to the transition function
(rather than just the state at time t+ 1), in which case we use

RM (Rt, at) = Rt − at. (2)

The relation between Vt(Rt) and Vt+1(Rt+1) is given by

Vt(Rt) = max
0≤at≤Rt

(Ct(at) + Vt+1(R
M (Rt, at)))

= max
0≤at≤Rt

(Ct(at) + Vt+1(Rt − at)).
(3)

The simplest strategy for solving our DP in (3) is to start by using VT+1(R) = 0 (for any value of
R). Then we would have

VT (RT ) = max
0≤aT≤RT

CT (aT )

for 0 ≤ RT ≤ R. Now we know VT (RT ) for any value of RT that might actually happen. Next we
can solve

VT−1(RT−1) = max
0≤aT−1≤RT−1

(CT−1(aT−1) + VT (RT−1 − aT−1)).

1



2 The continuous budgeting problem

Assume that the resources we are allocating are continuous (e.g., how much money to assign to
various activities), which means that Rt is continuous, as is the decision of how much to budget.
We assume that the contribution from allocating xt dollars to task t is given by

Ct(xt) =
√
xt.

We can solve this problem exactly using DP. We first note that if we have RT dollars left for the
last task, the value of being in this state is

VT (RT ) = max
xT≤RT

√
xT .

Since the contribution increases monotonically with xT , the optimal solution is xT = RT , which
means that VT (RT ) =

√
RT . Now consider the problem at time t = T − 1. The value of being in

state RT−1 would be

VT−1(RT−1) = max
xT−1≤RT−1

(
√
xT−1 + VT (RT (xT−1))) (4)

where RT (xT−1) = RT−1 − xT−1 is the money left over from time period T − 1. Since we know
VT (RT ), we can rewrite (4) as

VT−1(RT−1) = max
xT−1≤RT−1

(
√
xT−1 +

√
RT−1 − xT−1). (5)

We solve (5) by differentiating with respect to xT−1 and setting the derivative equal to zero. We
get x∗T−1 = 1

2RT−1. Thus,

VT−1(RT−1) = 2

√
RT−1

2
.

We can continue this and we will find that a general formula is

VT−t+1(RT−t+1) = t

√
RT−t+1

t

or equivalently,

Vt(Rt) = (T − t+ 1)

√
Rt

T − t+ 1
.

The optimal value of xt is found by solving

max
xt

(
√
xt + (T − t)

√
Rt − xt
T − t

).

It gives

x∗t =
Rt

T − t+ 1
.

This is a very intuitive result. This shows that we want to evenly divide the available budget
among all remaining tasks. This is what we would expect since all the tasks produce the same
contribution.

2



3 A stochastic model: The gambling problem

A gambler has to determine how much of his capital he should bet on each round of a game, where
he will play a total of N rounds. He will win a bet with probability p and lose with probability
q = 1−p (assume q < p). Let sn be his total capital after n plays, n = 1, 2, . . . , N , with s0 being his
initial capital. For this problem we refer to sn as the state of the system. Let an be the (discrete)
amount he bets in round n, where we require that an ≤ sn−1. Our gambler wants to maximize
log sN . Let

Wn =

{
1 if the gambler wins the n-th game,

0 otherwise.

The system evolves according to

Sn = Sn−1 + anWn − an(1−Wn).

Let V n(Sn) be the value of having Sn dollars at the end of the n-th game. The value of being in
state Sn at the end of the n-th round can be written

V n(Sn) = max
0≤an+1≤Sn

E{V n+1(Sn+1) | Sn}

= max
0≤an+1≤Sn

E{V n+1(Sn + an+1Wn+1 − an+1(1−Wn+1)) | Sn}.

Here we claim that the value of being in state Sn is found by choosing the decision that maximizes
the expected value of being in state Sn+1 given what we know at the end of the n-th round. We
solve this by starting at the end of the N -th trial, and assuming that we have finished with SN

dollars. The value of this is
V N (SN ) = logSN .

Now step back to n = N − 1, where we may write

V N−1(SN−1) = max
0≤aN≤SN−1

E{V N (SN−1 + aNWN − aN (1−WN )) | SN−1}

= max
0≤aN≤SN−1

[p log(SN−1 + aN ) + (1− p) log(SN−1 − aN )].
(6)

The solution is given by
aN = (2p− 1)SN−1.

Now plugging this back into (6), gives

V N−1(SN−1) = logSN−1 + p log(2p) + (1− p) log(2(1− p))
= logSN−1 +K,

where K := p log(2p) + (1 − p) log(2(1 − p)), which is a constant. It turns out that we can keep
applying this same logic backward in time and obtain

V n(Sn) = log(Sn) +Kn, for all n,

where Kn is some constant that can be ignored. The optimal solution is

an = (2p− 1)Sn−1.

That is, the optimal strategy at each iteration is to bet a fraction β = (2p−1) of our current money
on hand. Of course, this requires that p > 0.5.

3



4 Oven temperature control

A certain material is passed through a sequence of two ovens (see Figure 1). Denote

• x0: initial temperature of the material

• xk, k = 1, 2: temperature of the material at the exit of oven k

• uk−1, k = 1, 2: prevailing temperature in oven k

Figure 1: Example of Oven Temperature Control: The temperature of the material evolves accord-
ing to xk+1 = (1− a)xk + auk

We assume a model of the form

xk+1 = (1− a)xk + auk, k = 0, 1,

where a is a known scalar from the interval (0, 1). The objective is to get the final temperature
x2 close to a given target T , while expending relatively little energy. This is expressed by a cost
function of the form

r(x2 − T )2 + u20 + u21,

where r > 0 is a given scalar. We assume no constraints on uk. The problem is deterministic. We
have N = 2 and a terminal cost g2(x2) = r(x2 − T )2, so the initial condition for the DP algorithm
is

J2(x2) = r(x2 − T )2.

For the next-to-last stage, we have

J1(x1) = min
u1

[u21 + J2(x2)]

= min
u1

[u21 + J2((1− a)x1 + au1)].

Substituting the previous form of J2, we obtain

J1(x1) = min
u1

[u21 + r((1− a)x1 + au1 − T )2]. (7)

By setting the first-order derivative to be 0, we obtain

0 = 2u1 + 2ra((1− a)x1 + au1 − T ).

4



By solving it for u1, we obtain

µ∗1(x1) = u1 =
ra(T − (1− a)x1)

1 + ra2
.

Note that this is not a single control but rather a control function, a rule that tells us the optimal
oven temperature u1 = µ∗1(x1) for each possible state x1. By substituting the optimal u1 in the
expression (7) for J1, we obtain

J1(x1) =
r2a2((1− a)x1 − T )2

(1 + ra2)2
+ r

(
(1− a)x1 +

ra2(T − (1− a)x1)

1 + ra2
− T

)2

=
r2a2((1− a)x1 − T )2

(1 + ra2)2
+ r

(
ra2

1 + ra2
− 1

)2

((1− a)x1 − T )2

=
r((1− a)x1 − T )2

1 + ra2
.

We now go back one stage. We have

J0(x0) = min
u0

[u20 + J1(x1)] = min
u0

[u20 + J1((1− a)x0 + au0)],

and by substituting the expression already obtained for J1, we have

J0(x0) = min
u0

[
u20 +

r
(
(1− a)2x0 + (1− a)au0 − T

)2
1 + ra2

]
.

By setting the first-order derivative to zero, we obtain

0 = 2u0 +
2r(1− a)a((1− a)2x0 + (1− a)au0 − T )

1 + ra2
.

This yields the optimal temperature of the first oven:

µ∗0(x0) =
r(1− a)a(T − (1− a)2x0)

1 + ra2(1 + (1− a)2)
.

The optimal cost is obtained by substituting this expression in the formula for J0. After lengthy
calculation, this in the end yields the following formula:

J0(x0) =
r((1− a)x0 − T )2

1 + ra2(1 + (1− a)2)
.

This completes the solution of the problem.

5 Inventory Control

Consider an inventory control problem, we assume that inventory xk and the demand wk are
nonnegative integers, and that the excess demand (wk − xk − uk) is lost. As a result, the stock
equation takes the form

xk+1 = max(0, xk + uk − wk).

5



We also assume that there is an upper bound of 2 units on the stock that can be stored, i.e., there
is a constraint xk + uk ≤ 2. The holding/storage cost for the k-th period is given by

(xk + uk − wk)2,

implying a penalty both for excess inventory and for unmet demand at the end of the k-th period.
The ordering cost is 1 per unit stock ordered. Thus the cost per period is

gk(xk, uk, wk) = uk + (xk + uk − wk)2.

The terminal cost is assumed to be 0, gN (xN ) = 0. The planning horizon N is 3 periods, and the
initial stock x0 is 0. The demand wk has the same probability distribution for all periods, given by

p(wk = 0) = 0.1, p(wk = 1) = 0.7, p(wk = 2) = 0.2.

The system can also be represented in terms of the transition probabilities pij(u) between the three
possible states, for the different values of the control. The starting equation for the DP algorithm
is

J3(x3) = 0,

since the terminal state cost is 0. The algorithm takes the form

Jk(xk) = min
0≤uk≤2−xk,uk=0,1,2

Ewk

{
uk + (xk + uk − wk)2 + Jk+1(max(0, xk + uk − wk))

}
,

where k = 0, 1, 2 and xk, uk, wk can take the values 0,1, and 2.
Period 2: We compute J2(x2) for each of the three possible states. We have

J2(0) = min
u2=0,1,2

Ew2{u2 + (u2 − w2)
2}

= min
u2=0,1,2

[u2 + 0.1(u2)
2 + 0.7(u2 − 1)2 + 0.2(u2 − 2)2].

We calculate the expectation of the right side for each of the three possible values of u2:

u2 = 0 :E{·} = 0.7 · 1 + 0.2 · 4 = 1.5,

u2 = 1 :E{·} = 1 + 0.1 · 1 + 0.2 · 1 = 1.3,

u2 = 2 :E{·} = 2 + 0.1 · 4 + 0.7 · 1 = 3.1.

Hence we have, by selecting the minimizing u2,

J2(0) = 1.3, µ∗2(0) = 1.

For x2 = 1, we have

J2(1) = min
u2=0,1

Ew2{u2 + (1 + u2 − w2)
2}

= min
u2=0,1

[u2 + 0.1(1 + u2)
2 + 0.7(u2)

2 + 0.2(u2 − 1)2].

The expected value in the right side is

u2 = 0 :E{·} = 0.1 · 1 + 0.2 · 1 = 0.3,

u2 = 1 :E{·} = 1 + 0.1 · 4 + 0.7 · 1 = 2.1.

6



Hence,
J2(1) = 0.3, µ∗2(1) = 0.

For x2 = 2, the only admissible control is u2 = 0, so we have

J2(2) = Ew2{(2− w2)
2} = 0.1 · 4 + 0.7 · 1 = 1.1,

J2(2) = 1.1, µ∗2(2) = 0.

Period 1: Again we compute J1(x1) for each of the three possible states x1 = 0, 1, 2, using the
values J2(0), J2(1), J2(2) obtained in the previous period. For x1 = 0, we have

J1(0) = min
u1=0,1,2

Ew1{u1 + (u1 − w1)
2 + J2(max(0, u1 − w1))},

u1 = 0 :E{·} = 0.1 · J2(0) + 0.7(1 + J2(0)) + 0.2(4 + J2(0)) = 2.8,

u1 = 1 :E{·} = 1 + 0.1(1 + J2(1)) + 0.7 · J2(0) + 0.2(1 + J2(0)) = 2.5,

u1 = 2 :E{·} = 2 + 0.1(4 + J2(2)) + 0.7(1 + J2(1)) + 0.2 · J2(0) = 3.68,

J1(0) = 2.5, µ∗1(0) = 1.

For x1 = 1, we have

J1(1) = min
u1=0,1

Ew1{u1 + (1 + u1 − w1)
2 + J2(max(0, 1 + u1 − w1))},

u1 = 0 :E{·} = 0.1(1 + J2(1)) + 0.7 · J2(0) + 0.2(1 + J2(0)) = 1.5,

u1 = 1 :E{·} = 1 + 0.1(4 + J2(2)) + 0.7(1 + J2(1)) + 0.2 · J2(0) = 2.68,

J1(1) = 1.5, µ∗1(1) = 0.

For x1 = 2, the only admissible control is u1 = 0, so we have

J1(2) = Ew1{(2− w1)
2 + J2(max(0, 2− w1))}

= 0.1(4 + J2(2)) + 0.7(1 + J2(1)) + 0.2 · J2(0)

= 1.68,

J1(2) = 1.68, µ∗1(2) = 0.

Period 0: Here we need to compute only J0(0) since the initial state is known to be 0. We
have

J0(0) = min
u0=0,1,2

Ew0{u0 + (u0 − w0)
2 + J1(max(0, u0 − w0))},

u0 = 0 :E{·} = 0.1 · J1(0) + 0.7(1 + J1(0)) + 0.2(4 + J1(0)) = 4.0,

u0 = 1 :E{·} = 1 + 0.1(1 + J1(1)) + 0.7 · J1(0) + 0.2(1 + J1(0)) = 3.7,

u0 = 2 :E{·} = 2 + 0.1(4 + J1(2)) + 0.7(1 + J1(1)) + 0.2 · J1(0) = 4.818,

J0(0) = 3.7, µ∗0(0) = 1.

Thus the optimal ordering policy for each period is to order one unit if the current stock is zero
and order nothing otherwise.

7



6 Optimizing a 2-Game Chess Match Strategy and Value of In-
formation

A player is about to play a chess match with an opponent, and wants to maximize his winning
chances. The player has two playing styles to choose.

• (1) Timid play with which he draws with probability pd > 0, and he loses with probability
(1− pd).

• (2) Bold play with which he wins with probability pw, and he loses with probability (1− pw).

Note that if the score is tied at the end of the second games, the match goes into sudden-death
mode, whereby the players continue to play until the first time one of them wins a game (and the
match).

Suppose the player chooses a policy of playing timid if and only if he is ahead in the score (we
will see later that this policy is optimal, assuming pd > pw). Then after the first game (in which
he plays bold), the score is 1-0 with probability pw and 0-1 with probability 1− pw. In the second
game, he plays timid in the former case and bold in the latter case. Thus after two games, the
probability of a match win is pwpd, the probability of a match loss is (1− pw)2, and the probability
of a tied score is pw(1 − pd) + (1 − pw)pw, in which case he has a probability pw of winning the
subsequent sudden-death game. Thus the probability of winning the match with the given strategy
is

pwpd + pw (pw(1− pd) + (1− pw)pw) ,

which, with some rearrangement, gives

Probability of a match win = p2w(2− pw) + pw(1− pw)pd. (8)

From (8) we can see that the chance of a match win can be greater than 50-50, provided that pw
is close enough to 1/2 and pd is close enough to 1. As an example, for pw = 0.45 and pd = 0.9, Eq.
(8) gives a match win probability of roughly 0.53.

• Open-Loop Minimization: Select all controls u0, . . . , uN−1 at once at time 0.

• Closed-Loop Minimization: Select a policy {µ0, . . . , µN−1} that applies the control µk(xk)
at time k with knowledge of the current state xk.

To calculate the value of information, let us consider the four open-loop policies, whereby we
decide on the type of play to be used without waiting to see the result of the first game. These are:

• (1). Play timid in both games; this has a probability p2dpw of winning the match.

• (2). Play bold in both games; this has a probability p2w + 2p2w(1 − pw) = p2w(3 − 2pw) of
winning the match.

• (3). Play bold in the first game and timid in the second game; this has a probability pwpd +
p2w(1− pd) of winning the match.

• (4). Play timid in the first game and bold in the second game; this also has a probability
pwpd + p2w(1− pd) of winning the match.

8



This first policy is always dominated by the others, and the optimal open-loop probability of
winning the match is

Open-loop probability of win

= max
(
p2w(3− 2pw), pwpd + p2w(1− pd)

)
=p2w + pw(1− pw) max(2pw, pd).

(9)

Thus if pd > 2pw, we see that the optimal open-loop policy is to play timid in one of the two games
and play bold in the other, and otherwise it is optimal to play bold in both games. For pw = 0.45
and pd = 0.9, (9) gives an optimal open-loop match win probability of roughly 0.425. Thus, the
value of the information (the outcome of the first game) is the difference of the optimal closed-loop
and open-loop values, which is approximately 0.53− 0.425 = 0.105. More generally, by subtracting
Eq. (8) and (9), we see that

Value of information

=p2w(2− pw) + pw(1− pw)pd − p2w − pw(1− pw) max(2pw, pd)

=pw(1− pw) min(pw, pd − pw).

7 Optimizing an N-Game Chess Match Strategy

A player is about to play a chess match with an opponent, and wants to maximize his winning
chances. The player has two playing styles to choose.

• (1) Timid play with which he draws with probability pd > 0, and he loses with probability
(1− pd).

• (2) Bold play with which he wins with probability pw, and he loses with probability (1− pw).

Let us consider the general case of an N -game match, and let the state be the net score, that is,
the difference between the points of the player minus the points of the opponent (so a state of 0
corresponds to an even score). Note that if the score is tied at the end of the N games, the match
goes into sudden-death mode, whereby the players continue to play until the first time one of them
wins a game (and the match). The optimal cost-to-go function at the start of the k-th game is
given by the dynamic programming recursion

Jk(xk) = max[pdJk+1(xk) + (1− pd)Jk+1(xk − 1),

pwJk+1(xk + 1) + (1− pw)Jk+1(xk − 1)].
(10)

The maximum above is taken over the two possible decisions:

• (a). Timid play, which keeps the score at xk with probability pd, and changes xk to xk − 1
with probability 1− pd.

• (b). Bold play, which changes xk to xk + 1 or to xk − 1 with probabilities pw or (1 − pw),
respectively.

It is optimal to play bold when

pwJk+1(xk + 1) + (1− pw)Jk+1(xk − 1) ≥ pdJk+1(xk) + (1− pd)Jk+1(xk − 1)

9



or equivalently, if
pw
pd
≥ Jk+1(xk)− Jk+1(xk − 1)

Jk+1(xk + 1)− Jk+1(xk − 1)
. (11)

The DP recursion is started with

JN (xN ) =


1 if xN > 0,

pw if xN = 0,

0 if xN < 0.

(12)

In this equation, we have JN (0) = pw because when the score is even after N games (xN = 0), it
is optimal to play bold in the first game of sudden death.

By executing the DP algorithm (10) starting with the terminal condition (12), and using the
criterion (11) for optimality of bold play, we find the following, assuming that pd > pw:

JN−1(xN−1) = 1 for xN−1 > 1; optimal play: either

JN−1(1) = max [pd + (1− pd)pw, pw + (1− pw)pw]

= pd + (1− pd)pw; optimal play: timid

JN−1(0) = pw; optimal play: bold

JN−1(−1) = p2w; optimal play: bold

JN−1(xN−1) = 0 for xN−1 < −1; optimal play: either.

Also, given JN−1(xN−1), and Eqs. (10) and (11) we obtain

JN−2(0) = max [pdpw + (1− pd)p2w, pw(pd + (1− pd)pw) + (1− pw)p2w]

= pw(pw + (pw + pd)(1− pw))

and that if the score is even with 2 games remaining, it is optimal to play bold. Thus for a 2-game
match, the optimal policy for both periods is to play timid if and only if the player is ahead in the
score. The region of pairs (pw, pd) for which the player has a better than 50-50 chance to win a
2-game match is

R2 = {(pw, pd) | J0(0) = pw(pw + (pw + pd)(1− pw)) > 1/2} .

Note that it includes points where pw < 1/2.

10


