
SEEM 3470: Dynamic Optimization and Applications 2013–14 Second Term

Handout 4: Deterministic Systems and the Shortest Path Problem

Instructor: Shiqian Ma January 27, 2014

Suggested Reading: Bertsekas’ Lecture Slides on Dynamic Programming; Sections 2.1 and 2.2
of Chapter 2 of Bertsekas, Dynamic Programming and Optimal Control: Volume I (3rd Edition),
Athena Scientific, 2005.

1 Introduction

In this handout, we will focus on deterministic finite–state systems, i.e., systems in which the
number of possible states in each time period is finite, and the parameter wk in each time period
k can only take on one value. Note that both the N–stage resource allocation problem and the
operations scheduling problem are examples of deterministic systems. However, the former is not
a finite–state system, while the latter is.

2 Finite–State Systems and Shortest Paths

2.1 Formulating a Deterministic Finite–State Problem as a Shortest Path Prob-
lem

Consider now a deterministic problem in which the number of possible states in each time period
k is finite. Then, at any state Sk, a control xk can be regarded as a transition from Sk to the
state Γk(Sk, xk, wk) at a cost Λk(Sk, xk, wk). In particular, we can use a graph to represent such a
system. Each node corresponds to a possible state of the system, and an arc (or a directed edge)
corresponds to a transition between states at successive stages. Furthermore, each arc is associated
with a cost. To take care of the final stage, an artificial terminal node t is added and each node
corresponding to a final–stage state SN are connected to t via an arc of cost ΛN (SN ). See Figure
1 for an illustration.

With the above setup, it is not hard to see that a control sequence x0, x1, . . . , xN−1 traces out
a path originating at the initial state s and terminating at a node corresponding to the final stage
in the transition diagram. Moreover, the cost associated with the control sequence is simply the
sum of the costs on the arcs from s to t. Thus, if we view the costs on the arcs as distances, then
the problem of finding a control sequence or policy that minimizes the cost function is equivalent
to finding the shortest path from s to t in the transition diagram.

Formally, let Sk be the set of possible states in time period k. Let akij denote the cost of

transition at stage k from state i ∈ Sk to state j ∈ Sk+1, and let aNit = ΛN (i) be the terminal cost
of state i ∈ SN . Here, we adopt the convention that if there is no transition from state i ∈ Sk to
state j ∈ Sk, then akij = ∞. Using these notations, the dynamic programming algorithm for the
deterministic finite–state system takes the following form:

JN (i) = aNit for all i ∈ SN ,

Jk(i) = min
j∈Sk+1

{
akij + Jk+1(j)

}
for all i ∈ Sk, k = 0, 1, . . . , N − 1.

(1)

1



Figure 1: Transition Diagram of a Deterministic Finite–State System

The optimal cost is just J0(s) and is equal to the length of the shortest path from s to t.
Just as in the standard dynamic programming algorithm, the above algorithm proceeds back-

ward in time. However, it is easy to convert it into an algorithm that proceeds forward in time.
The crucial observation is that an optimal path from s to t is also an optimal path from t to s if
we reverse all the directions of the arcs in the transition graph. Specifically, the algorithm for this
reverse problem starts from the set of states S1 in stage 1, then proceeds to the set of states S2 in
stage 2 and so on, until the states SN in stage N are reached. Formally, the forward algorithm for
the deterministic finite–state system is as follows:

J̃1(i) = a0si for all i ∈ S1,

J̃k(i) = min
j∈Sk−1

{
ak−1ji + J̃k−1(j)

}
for all i ∈ Sk, k = 2, . . . , N.

(2)

The optimal cost is then given by

J̃N+1(t) = min
i∈SN

{
aNit + J̃N (i)

}
.

Note that since the forward optimal path should coincide with the backward optimal path, we must
have

J0(s) = J̃N+1(t).

To further understand the forward algorithm, recall that Jk(i) is the optimal cost–to–go from state
i ∈ Sk to state t. Hence, we may interpret J̃k(i) as the optimal cost–to–arrive to state i ∈ Sk from
state s.

One of the advantages of the forward algorithm is that it does not require knowledge about the
problem data in time periods k + 1, . . . , N when making the decision for time period k. Later, we
will see how this comes to play in applications.

2



2.2 Formulating a Shortest Path Problem as a Deterministic Finite–State Prob-
lem

In the last sub–section, we have seen that a deterministic finite–state problem can be formulated as
a special type of shortest path problem, in which the graph has no cycles. As it turns out, a general
shortest path problem can also be formulated as a deterministic finite–state problem. Consequently,
one can apply the dynamic programming algorithm to solve the shortest path problem. To prove
this result, let us introduce some preliminaries. Let V = {1, 2, . . . , N, t} be the set of nodes of a
graph, and let aij be the cost of moving between nodes i and j. We assume that aij = aji, i.e., the
cost of moving between nodes i and j does not depend on the direction. Moreover, we set aij =∞
if one cannot move between nodes i and j directly. The node t is designated the destination. The
goal of the problem is to find a shortest path from each node i to the node t.

In order for the problem to be well–defined, we need to assume that there is no negative cycles
in the graph, i.e., there does not exist a sequence of nodes j1, . . . , jk such that

aj1j2 + aj2j3 + · · ·+ ajk−1jk + ajkj1 < 0.

Under this assumption, all cycles have non–negative costs, and it is clear that a shortest path need
not take more than N moves. This motivates us to formulate the shortest path problem as an
N–stage dynamic programming problem, where each stage corresponds to a move in the graph,
and we allow degenerate moves of the form i→ i, whose associated cost is aii = 0. Now, let

Jk(i) = optimal cost of getting from i to t in N − k moves.

Then, the optimal cost of the path from i to t is J0(i).
To apply the dynamic programming algorithm to this problem, we simply observe that

Jk(i) = min
j∈{1,...,N}

{aij + Jk+1(j)} for i = 1, . . . , N, k = 0, 1, . . . , N − 2

JN−1(i) = ait for i = 1, . . . , N.
(3)

As an example, consider the following shortest path problem:
Here, we have N = 4 and node 5 is the destination node. From the dynamic programming

equations (3), we compute

J3(1) = 2, J3(2) = 7, J3(3) = 5, J3(4) = 3,

J2(1) = 2, J2(2) = 5.5, J2(3) = 4, J2(4) = 3,

J1(1) = 2, J1(2) = 4.5, J1(3) = 4, J1(4) = 3,

J0(1) = 2, J0(2) = 4.5, J0(3) = 4, J0(4) = 3.

The optimal path from, e.g., node 3 to node 5 can then be read off by tracing the above computation:

J0(3) = a33 + J1(3) node on path = 3

= a33 + J2(3) node on path = 3

= a34 + J3(4) node on path = 4

= 1 + 3 node on path = 5,

i.e., the optimal path is 3→ 4→ 5.

3



Figure 2: A Shortest Path Problem with N = 4 and t = 5

3 The Critical Path Analysis

Consider the problem of arranging a large project. There are many tasks to complete before the
entire project can be completed. Each task has a duration to finish. Different tasks may have
complicated precedence relationships. We may construct a graph where each arc represents a task,
with the duration being the weight on the arc.

Also, there is a task symbolizing the start of the project; let the node be s. And similarly there
is a task symbolizing the finish of the project; let the node be t. Suppose that (i, j) is a task (arc),
and the duration of the task is tij . The longest path from s to t is called a critical path. All the
jobs on critical paths are called critical tasks. The length of critical paths is the minimum total
completion time of the project. Let us denote it to be C.

The longest path from s to i is the earliest start time when the task (i, j) must be started
without affecting the completion of the entire project. Let this time be Ei. Similarly, the longest
path from j to t is the latest time when the task must be finished without affecting the completion
of the entire project. Let it be Lj . If C = Ei + Lj + tij , then the task (i, j) is critical. In general,
C − (Ei + Lj + tij) is the slack time for the task (i, j). It is clear that computing Ei can be
done by forward dynamic programming; and computing Lj can be done by backward dynamic
programming.

4 Hidden Markov Models

In many applications, the actual state may not be exactly observable. Instead, one may receive
some signals, suggesting the likelihood of the possible states. Let XN = {x0, x1, ..., xN} be the
true states undergone. As a transition takes place, a signal will be transmitted. Suppose that the
observed signals are ZN = {z1, ..., zN}. The question is: how can we determine the true states xN
from the observed signals zN? Suppose that the probability of a transition from xi to xj given zk is

4



Figure 3: Critical Path Analysis

r(zk;xi, xj). Suppose the probability of the initial state is P (x0) = πx0 . So what is the maximum
likelihood of XN , given ZN? Clearly,

P (XN | ZN ) =
P (XN , ZN )

P (ZN )
.

To maximize the likelihood, we need to find XN maximizing P (XN , ZN ). In fact we can establish

P (XN , ZN ) = πx0

N∏
k=1

pxk−1,xk
r(zk;xk−1, xk).

Now

lnP (XN , ZN ) = lnπx0 +

N∑
k=1

(
ln pxk−1,xk

+ ln r(zk;xk−1, xk)
)
.

The most likely sequence of the hidden states can be found by forward dynamic programming
(to find the longest path).

This approach is known as the Viterbi algorithm proposed by Andrew Viterbi in 1967.

Figure 4: Hidden Markov Models

5


