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1 Introduction

So far we have focused on the formulation and algorithmic solution of deterministic dynamic pro-
gramming problems. However, in many applications, there are random perturbations in the system,
and the deterministic formulations may no longer be appropriate. In this handout, we will intro-
duce some examples of stochastic dynamic programming problems and highlight their differences
from the deterministic ones.

2 Examples of Stochastic Dynamic Programming Problems

2.1 Asset Pricing

Suppose that we hold an asset whose price fluctuates randomly. Typically, the price change between
two successive periods is assumed to be independent of prior history. A question of fundamental
interest is to determine the best time to sell the asset, and as a by–product, infer the value of the
asset at the time of selling. To formulate this problem, let Pk be the price of the asset that is
revealed in period k. Note that in period k′, where k′ < k, the value of Pk is a random variable.
Now, in period k, after Pk is revealed, we have to make a decision xk, for which there are only two
choices:

xk =

{
1 sell the asset,
0 hold the asset.

(1)

We also use Sk to indicate the state of our asset right after Pk is revealed but before we make the
decision xk, where

Sk =

{
1 asset held,
0 asset sold.

With this setup, our goal is to solve the following optimization problem:

max
k

E [Pk] . (2)

Let K̂ be an optimal solution to the above problem. Then, by definition, K̂ is the time at which
the expected value of the asset, i.e., E

[
PK̂
]
, is largest. Hence, we should sell the asset at time K̂,

which implies that xK̂ = 1. We refer to K̂ as the optimal stopping time.
Before we discuss how to find the optimal stopping time, it is instructive to understand what

structures should it possess. Observe that it does not make sense for K̂ to be a fixed number.
Indeed, suppose for the sake of argument that K̂ is a fixed number, say K̂ = 3. This means that
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no matter what happens to the price of the asset in periods 1 to 3, you will sell it in period 3. Such
a strategy is certainly counter–intuitive, because it totally ignores the price information revealed
in periods 1 to 3. A more reasonable strategy is to let K̂ depend on the asset price and the state of
the system. As it turns out, this is one of the most important differences between deterministic and
stochastic systems. In a deterministic system, the optimal controls in each period can be fixed at
the beginning, i.e., before the system starts evolving. This is because the evolution of the system is
deterministic and there is no new information as time progresses. However, in a stochastic system,
there are random parameters whose values become known in each period. These new information
should be taken into account when devising the optimal controls. Thus, the optimal control in each
period should depend on the state and the realizations of the random parameters.

Returning to the asset pricing problem, in order to formalize the state and price dependence of
the optimal stopping time, we let the control xk in period k be given by xk = µk(Pk, Sk), where
µk(·, ·) is the policy in period k, Pk is the price of the asset in period k, and Sk is the state in period
k. By definition, if Sk = 0, then we no longer hold the asset, and we have xk = µk(Pk, 0) = 0. If
Sk = 1, then xk = µk(Pk, 1) can be either 0 or 1, where xk = µk(Pk, 1) = 1 means we sell the asset
in period k, and xk = µk(Pk, 1) = 0 means we hold the asset in period k (see (1)). Now, observe
that only one of the controls x0, x1, . . . can equal to 1 (the asset can only be sold once). Hence, we
can reformulate the problem of finding the optimal stopping time, i.e., problem (2), as follows:

max
µ0,µ1,...

E

[ ∞∑
k=0

µk(Pk, Sk) · Pk

]
. (3)

In other words, we are looking for the set of policies {µ0, µ1, . . .} that can maximize the expected
price of the asset.

In general, problem (3) is difficult to handle, since µ0, µ1, . . . are functions. To simplify the
problem, we may consider restricting our attention to functions of a certain type. For instance, we
may require µ0, µ1, . . . to take the form

µPk (Pk, Sk) =

{
1 if Pk ≥ P and Sk = 1,

0 otherwise,
(4)

where P > 0 is a fixed number. In words, the policy in (4) says that we will sell the asset in period
k if we still hold it in period k and the price Pk exceeds the threshold P . The upshot of using
policies of the form in (4) is that they are parametrized by a single number P , and the optimization
problem

max
P

E

[ ∞∑
k=0

µPk (Pk, Sk) · Pk

]
(5)

should be simpler than problem (3) because it involves a single decision variable P rather than
general functions µ0, µ1, . . .. However, the optimal value of problem (5) will generally be lower
than that of problem (3) (i.e., the maximum expected selling price given in (5) will be lower than
that given in (3)), because we only consider a special class of policies in (5). Thus, an important
problem is to determine when would the optimal policies for (3) take the form (4). We shall return
to this question later in the course.
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2.2 Batch Replenishment

Consider a single type of resource that is being stored, say, in a warehouse and consumed over time.
As the resource level runs low, we need to replenish the warehouse. However, there is economy of
scale when doing the replenishment. Specifically, it is cheaper on average to increase the resource
level in batches. To model this situation, let

• Sk be the resource level at the beginning of period k,

• xk be the resource acquired at the beginning of period k to be used between periods k and
k + 1,

• Wk be the (random) demand between periods k and k + 1, and

• N be the length of the planning horizon.

The transition function is given by

Sk+1 = max{0, Sk + xk −Wk}.

In words, the total resource available at the beginning of period k, namely, Sk + xk, is used to
satisfy the random demand Wk, and we assume that the unsatisfied demand is lost.

Now, the cost incurred in period k is given by

Λ(Sk, xk,Wk) = f · I(xk > 0) + p · xk + h ·max{0, Sk + xk −Wk}+ u ·max{0,Wk − Sk − xk},

where

I(xk > 0) =

{
1 if xk > 0,
0 if xk = 0

is the indicator of the event xk > 0, f is the fixed ordering cost, p is the unit ordering cost, h is
the unit holding cost, and u is the penalty for each unit of unsatisfied demand.

In general, the optimal control in each period will depend on the state in that period. Hence,
we are interested in finding a set of policies {µ0, µ1, . . . , µN} to minimize the total cost, i.e.,

min
µ0,...,µN

E

[
N−1∑
k=0

Λ(Sk, µk(Sk),Wk)

]
. (6)

Note that problem (6) essentially asks for two decisions, namely, when to replenish and how much
to replenish. Again, it may be difficult to deal with arbitrary policies. To simplify the problem, we
may consider, for instance, the following class of policies:

µQ,qk (Sk) =

{
0 if Sk ≥ q,

Q− Sk if Sk < q.
(7)

The policies in (7) are parametrized by a pair of numbers (Q, q). In words, it says that if the
resource level is larger than q, then we do not replenish. Otherwise, we replenish up to the level Q.
Then, we may consider the following optimization problem:

min
Q,q

E

[
N−1∑
k=0

Λ(Sk, µ
Q,q
k (Sk),Wk)

]
. (8)

Problem (8) is simpler than problem (6) in the sense that it only involves the two decision variables
Q, q. However, it is important to determine whether the optimal policies for problem (6) have the
same structure as those given in (7).
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3 The Dynamic Programming (DP) Algorithm Revisited

After seeing some examples of stochastic dynamic programming problems, the next question we
would like to tackle is how to solve them. Towards that end, it is helpful to recall the derivation of
the DP algorithm for deterministic problems. Suppose that we have an N–stage deterministic DP
problem, and suppose that at the beginning of period k (where 0 ≤ k ≤ N − 1), we are in state Sk.
Now, note that the next state Sk+1 is uniquely determined by the state Sk, the control xk, and the
parameter wk in period k, i.e., Sk+1 = Γk(Sk, xk, wk), because wk is deterministic. Thus, if we fix
the control xk, then we have

optimal cost to go from state Sk to the terminal state t by using control xk (9)

= optimal cost to go from state Sk to the terminal state t through state Sk+1 = Γk(Sk, xk, wk)

= Λk(Sk, xk, wk) + optimal cost to go from state Sk+1 = Γk(Sk, xk, wk) to the terminal state t,

where Λk(Sk, xk, wk) is the cost to go from Sk to Sk+1 = Γk(Sk, xk, wk); see Figure 1.

Figure 1: Illustration of the deterministic DP Algorithm. Given the current state Sk = i and
control xk = x, the next state Sk+1 = j is uniquely determined by the transition function Sk+1 =
Γk(Sk, xk, wk), and the cost incurred is Λk(Sk, xk, wk).

In particular, if we let

Jk(Sk) = optimal cost to go from state Sk to the terminal state t

= min
xk

{
optimal cost to go from state Sk to the terminal state t by using control xk

}
,

then we see from (9) that

Jk(Sk) = min
xk

{
Λk(Sk, xk, wk) + Jk+1(Γk(Sk, xk, wk))

}
for k = 0, 1, . . . , N − 1, (10)

with the boundary condition given by

JN (SN ) = ΛN (SN ). (11)

The reader should now recognize that (10) and (11) are precisely the recursion equations in the DP
algorithm.

As it turns out, the derivation of the DP algorithm for stochastic problems is largely similar.
The only difference is that the next state Sk+1 is no longer uniquely given by the state Sk, the
control xk and the (random) parameter Wk in period k. (Here, we capitalize W in Wk to indicate
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the fact that Wk is now a random variable.) Instead, we assume that the next state Sk+1 is specified
by a probability distribution:

pij(x) = Pr(Sk+1 = j |Sk = i, xk = x). (12)

One way to understand (12) is to observe that it specifies the transition probabilities of a Markov
chain for each fixed control xk = x. Thus, we can use the theory of Markov chains to study this
type of stochastic DP.

Now, the analog of (9) in the context of stochastic DP becomes

E [optimal cost to go from Sk = i to t by using xk = x]

=

l∑
p=1

E [optimal cost to go from Sk = i to t through Sk+1 = jp]× Pr(Sk+1 = jp |Sk = i, xk = x)

=

l∑
p=1

pi,jp(x) · E [Λk(i, x,Wk) + optimal cost to go from Sk+1 = jp to t]

=

l∑
p=1

pi,jp(x) ·
{
E [Λk(i, x,Wk)] + E [optimal cost to go from Sk+1 = jp to t]

}
,

= E [Λk(i, x,Wk)] +

l∑
p=1

pi,jp(x) · E [optimal cost to go from Sk+1 = jp to t] , (13)

where we assume that
l∑

p=1

pi,jp(x) = 1,

i.e., if the control in period k is xk = x, then Sk+1 ∈ {j1, . . . , jl}; see Figure 2.
Hence, if we let

Jk(Sk) = E [optimal cost to go from Sk to t] ,

then we deduce from (13) that

Jk(Sk) = min
xk

E [Λ(Sk, xk,Wk)] +

l∑
p=1

pSk,jp(xk) · Jk+1(jp)

 , (14)

with the boundary condition given by

JN (SN ) = ΛN (SN ). (15)

In particular, the stochastic DP algorithm is given by (14) and (15).
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Figure 2: Illustration of the stochastic DP Algorithm. Given the current state Sk = i and control
xk = x, the next state Sk+1 is random and is determined by the transition probabilities pij(x) =
Pr(Sk+1 = j |Sk = i, xk = x).

3.1 Example: Stochastic Inventory Problem

Consider an inventory system, where at the beginning of period k, the inventory level is Sk, and we
can order xk units of goods. The available units of goods are then used to serve a random demand
Wk, and the amount of inventory carried over to the next period is Sk+1 = max{0, Sk + xk −Wk}.
We assume that Sk, xk,Wk are non–negative integers, and that the random demand Wk follows the
probability distribution

Pr(Wk = 0) = 0.1, Pr(Wk = 1) = 0.7, Pr(Wk = 2) = 0.2 for all k = 0, 1, . . . , N − 1.

The cost incurred in period k is

Λk(Sk, xk,Wk) = (Sk + xk −Wk)
2 + xk.

Furthermore, there is a storage constraint in each period k, which is given by Sk + xk ≤ 2. The
terminal cost is given by ΛN (SN ) = 0.

Now, consider a 2–period problem, i.e., N = 2, where we assume that S0 = 0, and our goal is
to find the optimal ordering quantities x0 and x1. This can be done by applying the stochastic DP
algorithm (14)–(15). First, observe that because of the storage constraint, we have Sk ∈ {0, 1, 2}
for all k. Moreover, by the given terminal condition, we have

J2(0) = J2(1) = J2(2) = 0.
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Next, using (14), we consider

J1(S1) = min
0≤x1≤2−S1
x1 integer

E [Λ1(S1, x1,W1)] +

2∑
p=0

pS1,p(x1) · J2(p)


= min

0≤x1≤2−S1
x1 integer

E
[
(S1 + x1 −W1)

2 + x1
]

= min
0≤x1≤2−S1
x1 integer

[
x1 + (0.1)× (S1 + x1)

2 + (0.7)× (S1 + x1 − 1)2 + (0.2)× (S1 + x1 − 2)2
]
.

To find J1(S1), we can simply do an exhaustive search, since S1 can only equal to 0, 1 or 2. Now,
we compute

J1(0) = min
0≤x1≤2
x1 integer

[
x1 + (0.1)× x21 + (0.7)× (x1 − 1)2 + (0.2)× (x1 − 2)2

]
= min

0≤x1≤2
x1 integer

[
x21 − (1.2)× x1 + 1.5

]
= 1.3,

and the optimal control x∗1 when S1 = 0 is given by x∗1 = µ1(0) = 1. Similarly, we have

J1(1) = min
0≤x1≤1
x1 integer

[
x21 − (0.2)× x1 + 0.3

]
= 0.3 with x∗1 = µ1(1) = 0,

J1(2) = (0.1)× 4 + (0.7)× 1 + (0.2)× 0 = 1.1 with x∗1 = µ1(2) = 0.

Now, using (14) again, we have

J0(S0) = min
0≤x0≤2−S0
x0 integer

E [Λ0(S0, x0,W0)] +
2∑
p=0

pS0,p(x0) · J1(p)

 .

By assumption, S0 = 0. Thus, the above equation simplifies to

J0(0) = min
0≤x0≤2
x0 integer

x0 + (0.1)× x20 + (0.7)× (x0 − 1)2 + (0.2)× (x0 − 2)2 +
2∑
p=0

p0,p(x0) · J1(p)


= min

0≤x0≤2
x0 integer

x20 − (1.2)× x0 + 1.5 +
2∑
p=0

p0,p(x0) · J1(p)

︸ ︷︷ ︸
f(x0)

.

Now, observe that

p0,0(0) = Pr(S1 = max{0, 0−W0} = 0 |S0 = 0, x0 = 0) = 1, p0,1(0) = p0,2(0) = 0,

p0,0(1) = Pr(S1 = max{0, 1−W0} = 0 |S0 = 0, x0 = 1) = 0.9, p0,1(1) = 0.1, p0,2(1) = 0,

p0,0(2) = Pr(S1 = max{0, 2−W0} = 0 |S0 = 0, x0 = 2) = 0.2, p0,1(2) = 0.7, p0,2(2) = 0.1.
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Hence, we have

f(0) = 0− (1.2)× 0 + 1.5 +

2∑
p=0

p0,p(0) · E [J1(p)] = 1.5 + J1(0) = 2.8,

f(1) = 1− (1.2)× 1 + 1.5 +
2∑
p=0

p0,p(1) · E [J1(p)] = 1.3 + (0.9)× J1(0) + (0.1)× J1(1) = 2.5,

f(2) = 4− (1.2)× 2 + 1.5 +

2∑
p=0

p0,p(2) · E [J1(p)] = 3.68.

In particular, we conclude that

J0(0) = 2.5 with x∗0 = µ0(0) = 1.

3.2 Example: Stochastic Shortest Path

Example: Find an optimal policy to go from A(0, 0) to the line B with minimum expected cost
where the probability of succeeding at each vertex is p = 0.75. �

Let L((x1, y1), (x2, y2)) = the cost incurred when traveling from (x1, y1) to (x2, y2), where
x2 = x1 + 1.

Stage: x-coordinate, i.e., x = 0, 1, 2, 3.
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State: yx = y-coordinate at stage x:

y0 = 0, y1 = 1,−1, y2 = 2, 0,−2, y3 = 3, 1,−1,−3.

Decision: dx(yx) = move direction at state yx of stage x.
dx(yx) = U , D, for all yx, x.

Transition Equation: yx+1 =


yx + 1 with probability p, if dx(yx) = U
yx − 1 with probability 1− p, if dx(yx) = U
yx + 1 with probability 1− p, if dx(yx) = D
yx − 1 with probability p, if dx(yx) = D

Recursive Relation and Boundary Conditions:
fx(yx, dx(yx))

= minimum expected cost from state yx of stage x to the line B, given that dx(yx) is the decision
at state yx of stage x

=



p[L((x, yx), (x+ 1, yx + 1)) + f∗x+1(yx + 1)]
+ (1− p)[L((x, yx), (x+ 1, yx − 1)) + f∗x+1(yx − 1)],

if dx(yx) = U ,
(1− p)[L((x, yx), (x+ 1, yx + 1)) + f∗x+1(yx + 1)]
+ p[L((x, yx), (x+ 1, yx − 1)) + f∗x+1(yx − 1)],

if dx(yx) = D.
f∗x(yx)
= minimum expected cost from state yx of stage x to the line B
= min

dx(yx)
fx(yx, dx(yx)), for x = 0, 1, 2

f∗3 (3) = 0, f∗3 (1) = 0, f∗3 (−1) = 0, f∗3 (−3) = 0.

Goal: f∗0 (0).

Stage 3:

y3 f∗3 (y3)

3 0
1 0
−1 0
−3 0

Stage 2:

d2(y2) = U d2(y2) = D
y2 f2(y2, U) f2(y2, D) f∗2 (y2) d∗2(y2)

2 0 0 0 U or D
0 900 300 300 D
−2 12 12 12 U or D

Stage 1:

d1(y1) = U d1(y1) = D
y1 f1(y1, U) f1(y1, D) f∗1 (y1) d∗1(y1)

1 75 225 75 U
−1 228 84 84 D
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Stage 0:

d0(y0) = U d0(y0) = D
y0 f0(y0, U) f0(y0, D) f∗0 (y0) d∗0(y0)

0 84.75 84.25 84.25 D

Answers: The minimum expected cost = 84.25.
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