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Example 1. Let us define the function

fN (a) = max
R

[x1x2 · · ·xN ]

where R is the region determined by the conditions

a. x1 + x2 + · · ·+ xN = a, a > 0;

b. xi ≥ 0.

(1) Reformulate the above problem as a Dynamic Programming Problem.

(2) Using the result of (1), establish the arithmetic–geometric mean inequality, i.e.,(
x1 + x2 + · · ·+ xN

N

)N

≥ x1x2 · · ·xN ,

for xi ≥ 0, with equality only if x1 = x2 = · · · = xN .

Answers:

(1) Let us first consider the case N = 1, and it is easy to see that f1(a) = a. Now, we move one
step, say N = 2. By the description of the problem, we have

f2(a) = max
x1+x2=a,
x1≥0,x2≥0

[x1x2] .

Now let us choose an arbitrary x̄2, satisfied 0 ≤ x̄2 ≤ a, then we have

x1x̄2 = x̄2(a− x̄2) = x̄2f1(a− x̄2).

Since x̄2 is arbitrary, then for any feasible x2 the above relationship holds. As result, we have
following equivalence,

f2(a) = max
x1+x2=a,
x1≥0,x2≥0

[x1x2] = max
0≤x≤a

xf1(a− x).

We see that, when N = 2, the original problem can be reformulated as a dynamic program-
ming problem. Now we assume that

fN (a) = max
0≤x≤a

xfN−1(a− x), N ≥ 2.

By definition, we have
fN (a) = max

x1+x2+···+xN=a,
xi≥0, i=1,2,...,N

[x1x2 · · ·xN ] .
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Let x∗1, x
∗
2, . . . , x

∗
N denote the optimal solutions of fN (a), and x̂1, x̂2, . . . , x̂N denote the opti-

mal solutions of the dynamic programming we assumed. The following two inequalities are
easily verified by the optimality,

max
0≤x≤a

xfN−1(a− x) = x̂1x̂2 · · · x̂N ≤ max
x1+x2+···+xN=a,
xi≥0, i=1,2,...,N

[x1x2 · · ·xN ] = x∗1x
∗
2 · · ·x∗N ,

max
x1+x2+···+xN=a,
xi≥0, i=1,2,...,N

[x1x2 · · ·xN ] = x∗1x
∗
2 · · ·x∗N ≤ x∗NfN−1(a−x∗N ) ≤ max

0≤x≤a
xfN−1(a−x) = x̂1x̂2 · · · x̂N .

Thus this two problems are equivalent. In summary, we have the original problem be formu-
lated as the following dynamic programming problem

fN (a) = max
0≤x≤a

xfN−1(a− x), N ≤ 2,

with f1(a) = a.

(2) Let us exploit more structures of the dynamic reformulation. Now f2(a) = max0≤x≤a xf1(a−
x) = max0≤x≤a x(a − x), which is to maximize an univariate quadratic function over the

interval [0, a]. And it is easy to see the optimal f2(a) = a2

4 , when x1 = x2 = a
2 . We guess that

fN (a) =
aN

NN
, with x1 = x2 = · · · = xN .

We prove the above guess by mathematical induction. Since we already proved the case
N = 2, let us suppose the following holds

fN−1(a) =
aN−1|

(N − 1)N−1
, with x1 = x2 = · · · = xN−1.

By the result of (1), we have

fN (a) = max
0≤x≤a

xfN−1(a− x) = max
0≤x≤a

x
(a− x)N−1

(N − 1)N−1
.

Now the problem becomes to maximize a univariate nonlinear function f(x) = x (a−x)N−1

(N−1)N−1 over

the interval [0, a]. Let us compute the first order derivative f ′(x) = (a−x)N−1

(N−1)N−1 − x (a−x)N−2

(N−1)N−2 ,

and set it to zero we have

(a− x)N−2(x− a− x

N − 1
) = 0.

Then we have x = a or x = a
N . Clearly we can not have x = a, otherwise the objective value

will be 0. Then we have x = a
N , and by the inductive hypothesis we have the rest xi = a

N ,
which results in

fN (a) =
aN

NN
, with x1 = x2 = · · · = xN .

By the above result, we have

x1x2 · · ·xN ≤ fN (x1 + x2 + · · ·+ xN ) =

(
x1 + x2 + · · ·+ xN

N

)N

,

and the equality holds when x1 = x2 = · · · = xN .
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Example 2 Let us define the function

fN (a) = min
R

N∑
i=1

xpi ,

for some p > 0 and R is the region defined by

a.
∑N

i=1 xi ≥ a, a > 0;

b. xi ≥ 0, i = 1, 2, . . . , N.

Show that fN (a) satisfies the recurrence relation

fN (a) = min
0≤x≤a

[xp + fN−1(a− x)] , N ≥ 2,

with f1(a) = ap.
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