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Introduction

e Observe multiple correlated variables
e.g. words in document, pixels in an image or genes
In @ microarray

- Compactly represent the joint distribution p(x|0)

— Use distribution to infer one set of variables given
another in a reasonable amount of computation
time
= Wide range of applications such as recommender

models, topic models, etc.

— Learn the parameters of this distribution with a
reasonable amount of data
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Abstract— This paper presents the first attempt at fusing data
from_inertial and vision depth sensors within the framework
of @ hidden Markov model for the application of hand gesture
recognition. The data fusion approach introduced in this paper
is general purpose in the sense that it can be used for recognition
of various body movements. It is shown that the fusion of data
from the vision depth and inertial sensors act in a complementary
manner leading to a more robust recognition outcome compared
with the situations when each sensor is used individually on its
own. The obtained recognition rates for the single hand gestures
in the Microsoft MSR data set indicate that our fusion approach
provides improved recognition in real-time and under realistic
conditions.

Index Terms—Sensor fusion, fusion of inertial and depth
sensor data, hand gesture recognition.

have previously appeared in [1]-[3]. Two major matching
techniques have been deployed for hand gesture recognition.
These techniques include Dynamic Time Warping (DTW) [4]
and Elastic Matching (EM) [5]. Statistical modeling techniques
such as particle filtering [6]. [7], and hidden Markov model
(HMM) [8] have also been utilized for hand gesture recogni-
tion. The application of depth sensors, in particular Kinect [9],
has been steadily growing for body movement measurements
and recognition. Several studies utilizing the depth sensor
Kinect have been reported in the literature for hand gesture
recognition. For example, in [10], depth images captured by
Kinect were used to achieve American Sign Language (ASL)
recognition. In [11], both depth and color information captured
by Kinect were used to achieve hand detection and gesture
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A set of Variables

Consider a security system of a property asset

There are some variables which can take on binary
values

Burglary Earthquake

true, false true, false true, false

We wish to conduct intelligent reasoning



Chain rule

e By chain rule of probability = represent a joint
distribution using any ordering of the variables:
p(x1.p)
= p(x)p(x2|x)p(x3|x2, x1)D(X4 X1, X2, X3) .. D (X ]X1.v—1)
e whereV is the number of variables
 Matlab-like notation 1: V denotes the set {1, 2, ..., V}
 Dropped the conditioning on the fixed parameters 6

for brevity

* More complicated to represent the conditional

distributions p(x;|x1.;—1) as t gets large



Chain rule

 Suppose all the variables have K states

* Represent p(x,) as a table of O(K) numbers,
representing a discrete distribution

e Represent p(x,|x;) as a table of 0(K?#) numbers
by writing p(x, = jlx; = i) = Tj;

e T isastochastic matrix:
- satisfies the constraint Zj T;; = 1 for all rows i

-0 < T;; < 1forall entries

 (alled conditional probability tables or CPTs



Chain rule

e There are O(K") parameters in the model

* Need an awful lot of data to learn so many
parameters

e This model is not useful for other kinds of
prediction tasks

e Each variable depends on all previous variables
- Need another approach



Conditional independence

e Make some assumption about conditional
independence (Cl) = representing large joint
distribution

e X andY are conditionally independent given Z,
denoted X L Y|Z, if and only if (iff) the
conditional joint can be written as a product of
conditional marginals:

X1Y|Z opX,Y|Z) =pX|2)p(Y|Z)
= pXI[Z,Y) = pX|Z)



Conditional independence

 Markov assumption:
assume that x;,1 L xq.;—1|x; (the future is
independent of the past given the present)

e Join distribution (Markov assumption + chain
rule): p(X1.y) = p(x1) H¥=1 p(xelxe—q)
e (Called a (first-order) Markov chain

 Characterized by an initial distribution over states
p(x; = i),plus a state transition matrix

p(xe = jlxe—q1 = 1)
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Graphical models

 Define distribution on arbitrary collections of
variables

e Represent a joint distribution by making Cl
assumptions

e The nodes in the graph represent random
variables

 The (lack of ) edges represent Cl assumptions

e Several kinds of graphical model, depending on
whether the graph is directed, undirected, or
some combination of directed and undirected



Graph terminology

e Agraph G = (V, ) consists of:

- a set of nodes or verticesV = {1, ..., V}
-aset of edges € = {(s,t):s,t € V}

e Represent the graph by its adjacency matrix:
G(s,t) = 1todenote (s,t) € E,i.e.,ifs > tis
an edge in the graph

e Undirected: If G(s,t) =1iffG(¢t,s) =1
Otherwise it is directed

* No self loops: assume G(s,s) =0



Directed graphical models

e Directed graphical model or DGM is a GM whose
graph is a DAG

e Known as Bayesian networks

e Also called belief networks — “belief” refers to
subjective probability

e Key property of DAGs:
topological ordering — nodes can be ordered such
that parents come before children
can be constructed from any DAG

13



Directed Graphical Models

Example

14



Directed Graphical Models

Example

Define the ordered Markov property:

assume that a node only depends on its
immediate parents, not on all predecessors in
the ordering:

Xs L Xpred(s)\pa(s) [Xpa(s)
pa(s) are the parents of node s

pred(s) are the predecessors of node s in the
ordering

Natural generalization of the first-order Markov
property to from chains to general DAGs



Directed Graphical Models

Example

Joint distribution:
p(xl:S)

= p(x)p(xa|x)p s lxy, ¥8)0 (x4 1061, X2, x3) 0 (X5 |2, 65, X3,263.)
= p(x)p(x2|x)p (sl ) (x4]x2, x3) P (X5]|x3)
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Directed Graphical Models

Example

* |ngeneral:

V
pGavl6) = | [ pCrelxpae)
t=1

where each term p(x;|Xp,()) is conditional
probability table (CPT)
o Written the distribution as p(x|G) = emphasize

the equation only holds if the Cl assumptions
encoded in DAG G are correct

 Drop this explicit conditioning in later
discussions for brevity



Directed Graphical Models

Example

* |If each node has O(F) parents and K states
— the number of parameters in the model is
O(VKF)

e Lessthan the O(K"Y) needed by a model which
makes no Cl assumptions

18



Markov Models

e A first-order Markov chain as a DAG

L1 L2 L3

 The assumption that the immediate past x;_4
captures everything we need to know about the
entire history

19



Markov Models

+ Second order Markov chain: = ®© & &
X1.t—o iS a bit strong = relax by adding a
dependence from x;_, to x;

e Corresponding joint has the following form:
p(X1.7) = p(xq, X2)p (X311, x2) 0 (xa X2, x3) ...

T
= p(x1,%2) 1_[ p(xelxe—1, Xe—2)
t=3

e (Can create higher-order Markov models in a
similar way

20



Markov Models

e Even the second-order Markov assumption may

be inadequate if there are long-range
correlations amongst the observations

 Cannot keep building even higher order models:
the number of parameters will blow up



Example in Medical Domain
Alarm Network
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Modeling relationship among variables in an intensive care
unit (ICU)



Simple Example for Security System

Modeling relationship among variables

Burglary Earthquake

e |ntuitively, an arrow from node X to node Y
means that X has a direct influenceonY

e Or X has acasual effectonY

e Sometimes it is easy for a domain expert to

determine these relationships
23



Directed Graphical Models

CPT Example
B P(B)
false | 0.999
true | 0.001
B E A P(A|B,E)
false | false | false | 0.999
false | false | true | 0.001
false |true | false | 0.71
false |true |true | 0.29
true | false | false | 0.06
true | false |true | 0.94
true |true | false | 0.05
true |true |true |0.95

E P(E)

false | 0.998

Earthquake ) | true |0.002

 Each node has a CPT that
guantifies the effect of the
parents on the node.

e CPT can be regarded as
one kind of parameters.
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Directed Graphical Models
CPT Example

Consider the CPT for the
node Alarm (A).

For a given combination
value of the parents (B and
E in this example), the
entries for P(A=true|B,E)
and P(A=false|B,E) must
add up to 1.

(Alarm

Eartauate

B E A P(A|B,E)
false | false | false | 0.999
false | false | true | 0.001
false | true | false | 0.71
false | true |true | 0.29

true | false | false | 0.06

true | false |true | 0.94

true |true | false | 0.05

true |true |true |0.95
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Inference

e Graphical models provide a compact way to
define joint probability distributions

e Joint distribution — perform probabilistic
inference

e Estimating unknown quantities from known
guantities



Inference

* Inference problem: a set of correlated random
variables with joint distribution p(x4.,/|0)

e Assuming parameters 8 of the model are known

e Partition this vector into
- visible variables x,, (observed)
- hidden variables x; (unobserved)

e Computing the posterior distribution of the
unknowns given the knows:

P(xn X,10) _ p(XnXy|6)
p(lee) Zx}’lp(x;u lee)

p(Xh |Xv; 0) —



Inference

1. Conditioning on the data by clamping the visible
variables to their observed values x,,
2. Normalizing, go from p(xj, X,,) to p(Xy|X,)

 Probability of the evidence:
normalization constant p(x,|0) is the likelihood

of the data



Inference

 Onlyinterested in some of the hidden variables

e Partition the hidden variables:
- query variables x, the value wish to know

- remaining nuisance variables x,, are no
interested in

e Compute the interested variables by
marginalizing out the nuisance variables:

p(q[%0,6) = ) P (xqXnlx,, )
Xn



Inference

If we have discrete random variables, with K
states each, we can perform exact inference in
O(K"V) time, where V is the number variables.

For “tree-like” graph structure, we can perform
inference in O(VKY*1) where w is related to the
treewidth of the graph.

For more general graphs, exact inference:

 (Can take time exponential in the number of
nodes.

e Complicated to derive



Inference
Monte Carlo Inference

e Approximate inference algorithms are commonly used.
e Generate samples from posterior
x*~p(x|D) where D is the data
e Then use it to compute any quantity of interest such as:
e posterior marginal p(x4|D)
e posterior predictive p(y|D)
e The above quantities can be approximated by:

S
1
E[fID] ~ 5 ) f(x*)
s=1

for some suitable function f

31



Inference
Monte Carlo Inference

e By generating enough samples, we can achieve any desired
level of accuracy we like.

e The main issue: how do we efficiently generate samples
from a probability distribution, particularly in high
dimensions?

 Non-iterative methods
e.g. Importance Sampling

e Markov Chain Monte Carlo (MCMC) produces
dependent samples

e.g. Gibbs Sampling

32



Learning

* In graphical models literature, distinguish
between inference and learning

* |nference:
computing (functions of ) p(xy|x,, @), where
- v are the visible nodes
- h are the hidden nodes
- 0 are the parameters of the model (assume to

be known)




Learning

e Learning:
Given a set of training data of N records (cases),
we need to compute a MAP estimate of the

parameters given data

N
_. argmax
0 = gH Zlogp(xi’v‘0)+logp(0)
i=1

where X; ,, are the visible variables in case i

e Uniform prior p(@) < 1 - reduces to the
Maximum Likelihood as usual



Graphical Models

 |f we adopt a Bayesian view,

e we can model the parameters as unknown
variables (nodes)

 then infer the values (similar to inference)

 Under this modeling, the number of hidden
variables grows with the amount of training data

 |nferring parameters from data: assume the data
is iid



Graphical Models

e Represent using a
graphical model:

Q}<.<——Occ

e Left—data points x; are conditionally
independent given 0

 Right — plate notation (same model as left)
repeated x; nodes are inside a box (plate)
number in lower right hand corner N, specifies

the number of repetitions of the X; node
36



Graphical Models

e Assume each data case was generated
independently but from the same distribution

 Data cases are only independent conditional on
the parameters 6

 Marginally, the data cases are dependent

e The order in which the data cases arrive makes
no difference to the benefits about 6
(all orderings have same sufficient statistics)
— data is exchangeable



Plate Notation

e Avoid visual clutter:
use a form of syntactic sugar, called plates

 Draw a little box around the repeated variables

e With the convention that nodes within the box is
repeated when the model is unrolled

e Bottom right corner of the box: number of copies
or repetitions

e The corresponding joint distribution has the form:

N
p6,0) =p® || [pexil6)
_l=1 -



Learning from Complete Data

e If all variables are fully observed in each data instance
(case):
e No missing data and there are no hidden variables
e The datais complete

e The likelihood is:

N
p@16) = | |pxil6)
=1

N V 14
= l ll lp(xitlxi,pa(t): et) = HP(Dt|9t)
=1 t=1 t=1
where D;is the data associated with node t and its parents.
This is a product of terms, one per CPD.
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Learning from Complete Data

e The likelihood decomposes according to the
graph structure.

e The likelihood factorizes

40



Learning with Missing Data /
Latent Variables

e |f we have missing data and/or hidden variables,
the likelihood no longer factorizes.

* We can only compute a locally optimal Maximum
Likelihood / MAP estimate

41



Conditional Independence
Properties of DGMSs

Any graphical model is a set of conditional
independence (Cl) assumptions

X, Le Xg|X:if A is independent of B given C in
the graph G

Using the semantics to be defined below

42



Conditional Independence
Properties of DGMSs

Let I(G) be the set of all such Cl statements
encoded by the graph

G is an I-map (independence map) for p, or p is
Markov wrt G, iff I(G) S I(p)

where I(p) is the set of all Cl statements that
hold for distribution p

The graph is an I-map if it does not make any
assertions of Cl that are not true of the
distribution

43



Conditional Independence
Properties of DGMSs

* Allow to use the graph as a safe proxy for p when
reasoning about p’s Cl properties

 Helpful for designing algorithms that work for
large classes of distributions, regardless of their
specific numerical parameters 6

 Fully connected graph is an I-map of all
distributions: makes no Cl assertions at all since
it is not missing any edges

44



Conditional Independence
Properties of DGMSs

e (isaminimal I-map of p if:

-G isanl-mapofp

-thereisno G' € G which is an I-map of p
e Specify how to determine if X, 1L, Xg|Xc

 Easy to derive these independencies for
undirected graph

e DAG situation is complicated, because of the
need to respect the orientation of the directed
edges

45



d-separation

 There is a general topological criterion called
d-separation

e d-separation determines whether a set of node X

is independent of another set Y given a third set
E.



d-separation

 An undirected path P is d-separated by a set of
nodes E (containing the evidence) iff at least one
of the following conditions hold:

1. Pcontainsachain,s > m > tors <« m «t,
wherem € E

2. P contains a tent or fork, /"*\;, wherem € E

3. P contains a collider or v-structure, S\, /¢,
where m is not in E and nor is any descendant of

m



d-separation

e Asetofnodes A is d-separated from a different
set of nodes B given a third observed set E iff
each undirected path from every node a € A to
every node b € B is d-separated by E

 Define the Cl properties of a DAG:
X, Le Xp|Xp & Ais d-separated from B given E



d-separation

* We can conclude that x, 1 x¢|{x{, x5} since:
e 2 -5 > 6pathis blocked by xc
e 2-1- 3 —> 6pathis blocked by x4

e 254 -7 — 6 path contains a v-structure at
x- and x- is not in the given (observed) set;
therefore blocked by x-

* X, X x¢|{xq,x5,x7}since2 -4 - 7 — 6 path no

longer blocked by x-




Explaining Away

The v-structure 5\, has the effect of explaining
away.

e Also called inter-causal reasoning or Berkson’s paradox

s and t are marginally independent

Conditioning on a common child, i.e. m, its parents,
i.e. s and t become dependent.

As an example, suppose we toss two coins
representing binary numbers 0 and 1, and we
observe their sum.

e Suppose that we observe the sum is 1:

e |f the first coinis 0, then we know the second coinis 1



Markov Blanket and Full Conditionals

t’s Markov blanket mb(t):

the set of nodes that renders a node t
conditionally independent of all the other nodes
in the graph

Markov blanket of node in a DGM is equal to the
parents, the children, and the co-parents
i.e., other nodes who are also parents of its
children:

mb(t) £ ch(t) U pa(t) U copa(t)

51



Markov Blanket and Full Conditionals

« mb(5) 2 {6,7} U {2,3}u {4} ={2,3,4,6,7}
where 4 is a co-parent of 5 because they share a
common child, namely 7
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Markov Blanket and Full Conditionals

e (Co-parents are in the Markov blanket

e When we derive
p(xelx_¢) = plee, x_¢) /p(X_¢)
- all terms do not involve x; will cancel out
between numerator and denominator
- left with a product of CPDs which contain x;
in their scope

* plxglx_¢) p(xt‘xpa(t)) HSECh(t) p(xs‘xpa(s))
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Markov Blanket and Full Conditionals

* plxs|x_5) x
p(XS xz,xg)p(x6|x3,x5)p(x7|x4, X5,X6)

e Resulting expression: t’s full conditional which is
useful for Gibbs sampling
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