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The E.M. Algorithm

« But now we'll look at an even simpler case with
hidden information.

+« The EM algorithm

1 Can do trivial things, such as the contents of the next
few slides.

-1 An excellent way of doing our unsupervised learming
problem, as we'll see,

- Many, many other uses, including inference of Hidden
Markov Models
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Silly Example

Let events be "grades in a class”

wy = Gets an A P(A) = 14
w, =Getsa B P(B) =

Wy =Getsa C P(C) = 2|
w,=0Getsa D P(D) = V=-31

(Mote 0= p=1/6)
Assume we want to estimate p from data. In a given class
there were
a As
b B's
c Cs
d D's

What's the maximum likelihood estimate of p given a,b,c,d ?
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Trivial Statistics

Plal=% PEB)=p PC)=2u PD)="12-3u

P{ ab.cd| ) = K(V)(u)A 2u)H V=-3u)
log Pl a80.cd| p)=log K+ Jog V= + Hog u + dog 2u + dog (V=-3u)

élogP

FOE MAX LIKE p SET — =0
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-EI_-:bgP=EJ+]t:_ 3a -0
gL u 2p 1/2-3p

Gives max ke =L

Glb+c+d)|
So 1f class got ; B c D
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Same Problem with Hidden Information

REMBEMBER
Someone tells us that o8 = %
Mumber of High grades (A5 + Bs) =/ PE) = 1
Mumber of Cs = R = 2y
Mumber of D's =g RD) = W3

What is the max. like astimate of U now?



Same Problem with Hidden Information

Someone tells us that

MNumber of High grades (A's + B's) = /&
MNumber of Cs =
Number of D's =
What is the max. like estimate of u now?
We can answer this quastion drcularly:

EXPECTATION

expected value of aand &

Since the ratio a:b showld be the same 25 the ratio Va2 p

-

MAXIMLZATION

If we know the expected values of and &
we could compute the maximum likelihood
value of |

LL

REMEMEER.
P(A) =
F(E) = 1
RiC) = 2p
P(D) = %3

If we know the value of p we could compute the

Y |
%‘7“ 2TH

bsrc

6lb+c+d|




FEMEMEER

E.M. for our Trivial Problem |-+

We beqgin with a guess for p PE)=p
We iterate between EXPECTATION and MAXIMALIZATION to PIC) = 2u
improve our estimates of uand 2and & P{D) = %3y

Define plt) the estimate of u on the t'th teration
bit) the estimate of Hon tth iteration
i) =1mitial guess

Witk

b(t) = =E|b|u(t)
%+.u|:r} [ ]
bt )+ ¢
F+1)=—r -
e+ 6lblt)+c=d|

= max like est of p given bt

Continue iterating until converged. v



E.M. Convergence

« Convergence proot based on fact that Prob{data | u) must increass or
remain same bebwsaen each iteration mor cevious)

« Butitcanneverexceed 1 josvous
So it must therefore converge  (oevious

In our example, t uit) b(t)
suppose we had olo 0
h=20 i |0.0833 2,857
c=10 2 | 0.0937 3,158
d=10 ' '
H':':'] =0 3 | 0.0947 3.185
- _ - 4 | 0.0948 3.187
onvergance is generally " efror
decreasss by a constant factor each time = | 00948 3187
step. & | 0.0948 3.187



Unsupervised Learning
Motivation

 Unsupervised learning aims at finding some
patterns or characteristics of the data.
|t does not need the class attribute.

Consider the following data set:

-0.39 0.12 094 167 176 244 372 428 492 553
006 048 101 168 180 3.25 412 460 528 6.22

e Model the density of the data points
e Asimple and common way: single Gaussian model



Unsupervised Learning
Motivation

 Unsupervised learning aims at finding some
patterns or characteristics of the data.
|t does not need the class attribute.

Consider the following data set:

-0.39 0.12 094 167 176 244 372 428 492 553
006 048 101 168 180 3.25 412 460 528 6.22

e Model the density of the data points
e Asimple and common way: single Gaussian model

From histogram of the data
points, single Gaussian model
IS poor
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Mixture Model

Basic Framework

* Also called clustering

 Relate to grouping or segmenting a collection
of objects into subsets or “clusters”

 Within each cluster are more closely related to
one another than objects assigned to different
clusters

* Form descriptive statistics to ascertain
whether or not the data consists of a set
distinct subgroups



Mixture Model

Basic Framework

The mixture model is a probabilistic clustering
paradigm.

It is a useful tool for density estimation.

It can be viewed as a kind of kernel method.

Gaussian mixture model:
M

f(x) = 2 A P (X5 oy o)

m=1
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Mixture Model

Basic Framework

e Gaussian mixture model:
M

f(X) — z amqb(x; .um'zm)
m=1
* ,, are mixing proportions, and )., &, = 1
e Each Gaussian density has a mean u,,, and
covariance matrix X,

e (Can use any component densities in place of the
Gaussian

e The Gaussian mixture model is by far the most
popular



Mixture Model
Example

An example of Gaussian mixture model with 2 components.

Hpg = SO,UA = 5, Ay = 0.6

A

Up = 650-3 = Z,CZB = 0.4
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Sample data points generated from the model
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Mixture Model Learning

Sample Result
e Due to the apparent bi-modality

— Single Gaussian distribution would not be
appropriate
e Asimple mixture model for density estimation

e Associated EM algorithm for carrying out
maximum likelihood estimation

-

Maximum likelihood fit z
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Mixture Model Learning
Two-Component Model

Two separate underlying regimes

- instead model Y as mixture of two normal
distributions:

Y1 ~ N(uy, 012)

Yy ~ N(uy, 022)

Y=00-A)-Y;+A-Y,
where A € {0,1} withPr(A=1) =«
Generative representation is explicit: generate a
A € {0, 1} with probability ™

Depending on outcome, deliver Y; or Y,
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Mixture Model Learning
Two-Component Model

* Let ¢pg(x) denote the normal density with
parameters 8 = (u, 0%)

e Densityof Y:
gy(¥) = (1 —m)g, (y) + g, (¥)
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Mixture Model Learning
Two-Component Model

Denote the training data by Z = {y4,-*, yn}

Fit the model to the data by maximum likelihood,

the parameters:
0 = (T[: Hll 92) — (T[: U1, 0-12' U2, 0-22)
Log-likelihood based on the N training cases:

N
£0:2) = ) log[(1— m)pe, ) + 7hg, ()]
=1
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Mixture Model Learning
Two-Component Model

Direct maximization of £(0; Z) is quite difficult
numerically, because of the sum of terms inside

the logarithm

Consider unobserved latent variables A; taking

valuesOor 1
-if A; = 1 -2 Y; comes from model 2
- otherwise, comes from model 1
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Mixture Model Learning
Two-Component Model

e Suppose knew the values of the A;’s
- the log-likelihood:
30(9; Z,A)

Z[(l — A) 10g b5, () + Ay 10g b, ()]

_I_

Mz

(1 —A;)log(1 —m) + A;logm]
=1
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Mixture Model Learning
Two-Component Model

Maximum likelihood estimates:

11 and o - sample mean and variance for those
data with A; = 0

1, and g5 - sample mean and variance for those
datawith A; =1

Estimate of m would be the proportion of A; =1

A; is unknown -2 iterative fashion, substituting
for each A; in its expected value

yi(0) = E(4;16,Z) = Pr(4A; = 1(60,2)
¥; is also called responsibility of model 2 for
observation i



Two-Component Mixture Model
EM Algorithm

EM algorithm for two-component Gaussian
mixtures:

1. Take initial guesses for the parameters

N\ /\2/\

1, 61,0, 65,1

2. Expectation Step: compute the responsibilities
5 — ipg, (Vi)

© (-, ) + ipg, (Vi)

,1=1,2,...,N
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Two-Component Mixture Model
EM Algorithm

3. Maximization Step:
Compute the weighted means and variances

A Z 1(1 Yiyi A2 Z 1(1 Vi) (yi— .ul)z

— 0O
H1 = z{V a7 >~ 17D
'a\ — Zl 1 YiVi 6\_2 Z 1]/1(371 Iiz)z
S X 2 >N P

and the mixing probability

N\ - N /N
T =)i=1Vi/N
4. Iterate steps 2 and 3 until convergence
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Two-Component Mixture Model
EM Algorithm

In expectation step — do soft assignment of each
observation to each model:

e Current estimates of the parameters are used
to assign responsibilities according to the
relative density of the training points under
each model

In maximization step — weighted maximum-
likelihood fits to update the estimates of the
parameters

24



Two-Component Mixture Model
EM Algorithm

e Construct initial guesses for ji; and [i,:
choose two of the y; at random

e Both 67 and 6% set equal to the overall sample
variance Y0, (v; — ¥)?/N

 Mixing proportion 7 can be started at the value
0.5
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Two-Component Mixture Model
Example of Running EM

e Returning to the previous data set

-0.39 0.12 094 167 176 244 372 428 492 553

00 02 04 08 08 10

006 048 101 168 180 3.25 412 460 528 6.22

IIIIII IIIIIII
0

2 4 6

e The progress of the EM algorithm
in maximizing the log-likelihood

44 43 -42 -4 -40 -39

Observed Data Log-likelihood

 fi=2;7i/N : : p o

the maximum likelihood estimate  |==gRIE
of the proportion of observations 1 0.485
in class 2, at selected iterations of 5 0.493

10 0.523

the EM procedure

15 0.544
20 0.546 26



Two-Component Mixture Model

Example of Running EM
e The final maximum likelihood estimates:

i, = 4.62, 6¢ = 0.87
i, = 1.06, 62 =0.77
ft = 0.546

e The estimated Gaussian mixture density from
this procedure (solid red curve), along with the
responsibilities (dotted green curve):

0

f 4 %

EM Algorithm
=

density

00 02 04 06 08 10
00 02 04 06 08 1

] IIIIII IIIIIII
0 2 4 6

27



Mixture Models
Heart Disease Risk Data Set

 Using Bayes’ theorem, separate mixture densities
in each class lead to flexible models for Pr(G|X)

 An application of mixtures to the heart disease
risk factor (CHD) study .

CHD Combined
ol
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Mixture Models
Heart Disease Risk Data Set

Using the combined data
- fit a two-component mixture of the form with
the (scalars) ¥y and X', not constrained to be

equal
Fitting via the EM algorithm: procedure does not
knowledge of the CHD labels
Resulting estimates:

i, =364, X =157.7 a4
i, =580, X,=15.6 &

[
Sy
w Jd
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Mixture Estimate

0.0 0.0005

Mixture Models
Heart Disease Risk Data Set

0.0025

0.0015

Lower-left and middle panels:

Component densities qb(ﬁl,f'l) and gb(ﬁz,f'z)
Lower-right panel:

Component densities (orange and blue) along
with the estimated mixture density (green)

Mixture Estimate
0.0 0.005 0.010 0.015 0.020 0.025

Mixture Estimate
0.0 0.005 0.010 0.015 0.020 0.025
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Mixture Models
Heart Disease Risk Data Set

 Mixture model provides an estimate of the
probability — observation i belongs to
component m:

N &mqb(xi;ﬁm» Zm)
im =™ M 4 P
oy QP (x5 A Z)
where x; is Age in the example

e Suppose threshold each value 73,
> define §; = I(#, > 0.5)
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Mixture Models
Heart Disease Risk Data Set

e Compare the classification of each observation
by CHD and the mixture model:

Mixture model

~

5=0 5=1

CHD No 232 70

Yes 76 84

e Although did not use the CHD labels, can
discover the two CHD subpopulations

76+70
e Errorrate: = 32%
462
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Mixture Models
Heart Disease Risk Data Set

* Linear logistic regression, using CHD as a
response:
same error rate (32%) when fit to these data
using maximum-likelihood
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