Expectation-Maximization (EM) and Gaussian Mixture Models

Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer

The E.M. Algorithm

- But now we'll look at an even simpler case with hidden information.
- The EM algorithm
 - Can do trivial things, such as the contents of the next few slides.
 - An excellent way of doing our unsupervised learning problem, as we'll see.
 - Many, many other uses, including inference of Hidden Markov Models

Silly Example

Let events be "grades in a class"

```
w_1 = \text{Gets an A} P(A) = \frac{1}{2}

w_2 = \text{Gets a} P(B) = \mu

w_3 = \text{Gets a} P(C) = 2\mu

w_4 = \text{Gets a} P(D) = \frac{1}{2} - 3\mu

(Note 0 \le \mu \le 1/6)
```

Assume we want to estimate μ from data. In a given class there were

a A's b B's c C's d D's

What's the maximum likelihood estimate of μ given a,b,c,d?

Trivial Statistics

P(A) =
$$\frac{1}{2}$$
 P(B) = μ P(C) = 2μ P(D) = $\frac{1}{2}$ - 3μ
P($a,b,c,d \mid \mu$) = K($\frac{1}{2}$)*(μ)*(2μ

Gives max like
$$\mu = \frac{b+c}{6(b+c+d)}$$

So if class got

A	В	С	۵		
14	6	9	10		

Max like
$$\mu = \frac{1}{10}$$

. . . . 4

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's = c

Number of D's = a

What is the max. like estimate of μ now?

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2\mu$$

$$P(D) = \frac{1}{2} - 3\mu$$

Same Problem with Hidden Information

Someone tells us that

Number of High grades (A's + B's) = h

Number of C's

Number of D's

REMEMBER

 $P(A) = \frac{1}{2}$

What is the max. like estimate of μ now?

We can answer this question circularly:

EXPECTATION

If we know the value of a and b expected value of a and b and $a = \frac{1}{1/2 + \mu}h$ $b = \frac{\mu}{1/2 + \mu}h$

Since the ratio a:b should be the same as the ratio $\mathcal{V}_2:\mu$

$$=\frac{\frac{1}{2}}{\frac{1}{2}+\mu}h$$

$$b = \frac{\mu}{1/(1 + \mu)}h$$

MAXIMIZATION

If we know the expected values of a and b we could compute the maximum likelihood value of μ

$$\mu = \frac{b+c}{6(b+c+d)}$$

E.M. for our Trivial Problem

We begin with a guess for μ

We iterate between EXPECTATION and MAXIMALIZATION to improve our estimates of μ and a and b.

REMEMBER

$$P(A) = \frac{1}{2}$$

$$P(B) = \mu$$

$$P(C) = 2i$$

$$P(D) = \frac{1}{2} - 3\mu$$

μ(t) the estimate of μ on the t'th iteration b(t) the estimate of b on t'th iteration

$$\mu(0) = initial guess$$

$$b(t) = \frac{\mu(t)h}{1/2 + \mu(t)} = E[b | \mu(t)]$$

$$\mu(t+1) = \frac{b(t)+c}{6(b(t)+c+d)}$$

= max like est of μ given b(t)

Continue iterating until converged.

E.M. Convergence

- Convergence proof based on fact that Prob(data | μ) must increase or remain same between each iteration [NOT OBVIOUS]
- But it can never exceed 1 [OBVIOUS]
 So it must therefore converge [OBVIOUS]

In our example,	t	μ(t)	b(t)
suppose we had	0	0	0
h = 20 c = 10	1	0.0833	2.857
d = 10	2	0.0937	3.158
$\mu(0) = 0$	3	0.0947	3.185
-	4	0.0948	3.187
Convergence is generally <u>linear</u> : error decreases by a constant factor each time	5	0.0948	3.187
step.	6	0.0948	3.187

Unsupervised Learning Motivation

- Unsupervised learning aims at finding some patterns or characteristics of the data.
- It does not need the class attribute.

Consider the following data set:

-0.39	0.12	0.94	1.67	1.76	2.44	3.72	4.28	4.92	5.53
0.06	0.48	1.01	1.68	1.80	3.25	4.12	4.60	5.28	6.22

- Model the density of the data points
- A simple and common way: single Gaussian model

Unsupervised Learning Motivation

- Unsupervised learning aims at finding some patterns or characteristics of the data.
- It does not need the class attribute.

Consider the following data set:

-0.39	0.12	0.94	1.67	1.76	2.44	3.72	4.28	4.92	5.53
0.06	0.48	1.01	1.68	1.80	3.25	4.12	4.60	5.28	6.22

- Model the density of the data points
- A simple and common way: single Gaussian model

From histogram of the data points, single Gaussian model is poor

Basic Framework

- Also called clustering
- Relate to grouping or segmenting a collection of objects into subsets or "clusters"
- Within each cluster are more closely related to one another than objects assigned to different clusters
- Form descriptive statistics to ascertain whether or not the data consists of a set distinct subgroups

Basic Framework

- The mixture model is a probabilistic clustering paradigm.
- It is a useful tool for density estimation.
- It can be viewed as a kind of kernel method.
- Gaussian mixture model:

$$f(x) = \sum_{m=1}^{M} \alpha_m \phi(x; \mu_m, \Sigma_m)$$

Basic Framework

Gaussian mixture model:

$$f(x) = \sum_{m=1}^{M} \alpha_m \phi(x; \mu_m, \Sigma_m)$$

- ullet $\ lpha_m$ are mixing proportions, and $\ \sum_m lpha_m = 1$
- Each Gaussian density has a mean μ_m and covariance matrix $\pmb{\Sigma}_m$
- Can use any component densities in place of the Gaussian
- The Gaussian mixture model is by far the most popular

Example

An example of Gaussian mixture model with 2 components.

Sample data points generated from the model

51
48
64
42
48
41
3 1 1

Sample Result

- Due to the apparent bi-modality
 Single Gaussian distribution would not be appropriate
- A simple mixture model for density estimation
- Associated EM algorithm for carrying out maximum likelihood estimation

Two-Component Model

Two separate underlying regimes
 → instead model Y as mixture of two normal distributions:

$$Y_1 \sim N(\mu_1, \sigma_1^2)$$

$$Y_2 \sim N(\mu_2, \sigma_2^2)$$

$$Y = (1 - \Delta) \cdot Y_1 + \Delta \cdot Y_2$$
 where $\Delta \in \{0, 1\}$ with $\Pr(\Delta = 1) = \pi$

- Generative representation is explicit: generate a $\Delta \in \{0,1\}$ with probability π
- Depending on outcome, deliver Y_1 or Y_2

Two-Component Model

- Let $\phi_{\theta}(x)$ denote the normal density with parameters $\theta=(\mu,\sigma^2)$
- Density of *Y*:

$$g_Y(y) = (1 - \pi)\phi_{\theta_1}(y) + \pi\phi_{\theta_2}(y)$$

Two-Component Model

- Denote the training data by $oldsymbol{Z} = \{oldsymbol{y_1}, \cdots, oldsymbol{y_N}\}$
- Fit the model to the data by maximum likelihood, the parameters:

$$\theta = (\pi, \theta_1, \theta_2) = (\pi, \mu_1, \sigma_1^2, \mu_2, \sigma_2^2)$$

Log-likelihood based on the N training cases:

$$\ell(\theta; \mathbf{Z}) = \sum_{i=1}^{N} \log[(1 - \pi)\phi_{\theta_1}(y_i) + \pi\phi_{\theta_2}(y_i)]$$

Two-Component Model

- Direct maximization of $\ell(\theta; \mathbf{Z})$ is quite difficult numerically, because of the sum of terms inside the logarithm
- Consider unobserved latent variables Δ_i taking values 0 or 1
 - if $\Delta_i = 1 \rightarrow Y_i$ comes from model 2
 - otherwise, comes from model 1

Two-Component Model

- Suppose knew the values of the Δ_i 's
 - → the log-likelihood:

$$\ell_0(\theta; \mathbf{Z}, \Delta)$$

$$= \sum_{i=1}^{N} \left[(1 - \Delta_i) \log \phi_{\theta_1}(y_i) + \Delta_i \log \phi_{\theta_2}(y_i) \right]$$

$$+ \sum_{i=1}^{N} \left[(1 - \Delta_i) \log(1 - \pi) + \Delta_i \log \pi \right]$$

Two-Component Model

- Maximum likelihood estimates:
 - μ_1 and σ_1^2 sample mean and variance for those data with $\Delta_i=0$
 - μ_2 and σ_2^2 sample mean and variance for those data with $\Delta_i=1$
- Estimate of π would be the proportion of $\Delta_i=1$
- Δ_i is unknown \rightarrow iterative fashion, substituting for each Δ_i in its expected value

$$\gamma_i(\theta) = E(\Delta_i | \theta, \mathbf{Z}) = \Pr(\Delta_i = 1 | \theta, \mathbf{Z})$$

• γ_i is also called *responsibility* of model 2 for observation i

EM algorithm for two-component Gaussian mixtures:

1. Take initial guesses for the parameters

$$\hat{\mu}_1$$
, $\hat{\sigma}_1^2$, $\hat{\mu}_2$, $\hat{\sigma}_2^2$, $\hat{\pi}$

2. Expectation Step: compute the responsibilities

$$\hat{\gamma}_{i} = \frac{\hat{\pi}\phi_{\hat{\theta}_{2}}(y_{i})}{(1 - \hat{\pi})\phi_{\hat{\theta}_{1}}(y_{i}) + \hat{\pi}\phi_{\hat{\theta}_{2}}(y_{i})}, i = 1, 2, ..., N$$

3. Maximization Step:

Compute the weighted means and variances

$$\hat{\mu}_{1} = \frac{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i}) y_{i}}{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i})}, \quad \hat{\sigma}_{1}^{2} = \frac{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i}) (y_{i} - \hat{\mu}_{1})^{2}}{\sum_{i=1}^{N} (1 - \hat{\gamma}_{i})}$$

$$\hat{\mu}_{2} = \frac{\sum_{i=1}^{N} \hat{\gamma}_{i} y_{i}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}, \quad \hat{\sigma}_{2}^{2} = \frac{\sum_{i=1}^{N} \hat{\gamma}_{i} (y_{i} - \hat{\mu}_{2})^{2}}{\sum_{i=1}^{N} \hat{\gamma}_{i}}$$

and the mixing probability

$$\hat{\pi} = \sum_{i=1}^{N} \hat{\gamma}_i / N$$

4. Iterate steps 2 and 3 until convergence

- In expectation step do soft assignment of each observation to each model:
 - Current estimates of the parameters are used to assign responsibilities according to the relative density of the training points under each model
- In maximization step weighted maximumlikelihood fits to update the estimates of the parameters

- Construct initial guesses for $\hat{\mu}_1$ and $\hat{\mu}_2$: choose two of the y_i at random
- Both $\hat{\sigma}_1^2$ and $\hat{\sigma}_2^2$ set equal to the overall sample variance $\sum_{i=1}^N (y_i \bar{y})^2/N$
- Mixing proportion $\hat{\pi}$ can be started at the value 0.5

Two-Component Mixture Model

Example of Running EM

Returning to the previous data set

-0.39	0.12	0.94	1.67	1.76	2.44	3.72	4.28	4.92	5.53
0.06	0.48	1.01	1.68	1.80	3.25	4.12	4.60	5.28	6.22

- The progress of the EM algorithm in maximizing the log-likelihood
- $\hat{\pi} = \sum_i \hat{\gamma}_i/N$ the maximum likelihood estimate of the proportion of observations in class 2, at selected iterations of the EM procedure

Iteration	$\widehat{m{\pi}}$
1	0.485
5	0.493
10	0.523
15	0.544
20	0.546

Two-Component Mixture Model

Example of Running EM

• The final maximum likelihood estimates:

$$\hat{\mu}_1 = 4.62,$$
 $\hat{\sigma}_1^2 = 0.87$
 $\hat{\mu}_2 = 1.06,$ $\hat{\sigma}_2^2 = 0.77$
 $\hat{\pi} = 0.546$

 The estimated Gaussian mixture density from this procedure (solid red curve), along with the responsibilities (dotted green curve):

Heart Disease Risk Data Set

- Using Bayes' theorem, separate mixture densities in each class lead to flexible models for Pr(G|X)
- An application of mixtures to the heart disease risk factor (CHD) study

- Using the combined data \rightarrow fit a two-component mixture of the form with the (scalars) Σ_1 and Σ_2 not constrained to be equal
- Fitting via the EM algorithm: procedure does not knowledge of the CHD labels
- Resulting estimates:

$$\hat{\mu}_1 = 36.4, \qquad \widehat{\Sigma}_1 = 157.7 \qquad \qquad \hat{\alpha}_1 = 0.7 \\ \hat{\mu}_2 = 58.0, \qquad \widehat{\Sigma}_2 = 15.6 \qquad \qquad \hat{\alpha}_2 = 0.3$$

- Lower-left and middle panels: Component densities $\phi(\widehat{\mu}_1,\widehat{\pmb{\Sigma}}_1)$ and $\phi(\widehat{\mu}_2,\widehat{\pmb{\Sigma}}_2)$
- Lower-right panel:
 Component densities (orange and blue) along with the estimated mixture density (green)

 Mixture model provides an estimate of the probability – observation i belongs to component m:

$$\hat{r}_{im} = \frac{\hat{\alpha}_{m} \phi(x_{i}; \hat{\mu}_{m}, \widehat{\Sigma}_{m})}{\sum_{k=1}^{M} \hat{\alpha}_{k} \phi(x_{i}; \hat{\mu}_{k}, \widehat{\Sigma}_{k})}$$

where x_i is Age in the example

• Suppose threshold each value \hat{r}_{i2} \rightarrow define $\hat{\delta}_i = I(\hat{r}_{i2} > 0.5)$

 Compare the classification of each observation by CHD and the mixture model:

$$\begin{array}{c|cccc} & \text{Mixture model} \\ & \hat{\delta} = 0 & \hat{\delta} = 1 \\ \hline \text{CHD} & \text{No} & 232 & 70 \\ & \text{Yes} & 76 & 84 \\ \hline \end{array}$$

 Although did not use the CHD labels, can discover the two CHD subpopulations

• Error rate:
$$\frac{76+70}{462} = 32\%$$

 Linear logistic regression, using CHD as a response: same error rate (32%) when fit to these data using maximum-likelihood