SEEM 5680
Introduction to Lucene

Haoran Yang
2022.02.16

Popular IR packages

* For academic use:
» Galago (developed by CIIR center, Umass)
* Anserini (based on Lucene, focus on IR reproducibility)
 trec_eval (an official IR evaluation tool developed by TREC)

* For commercial use
e Lucene (low-level full text search library)
Elasticsearch (based on Lucene, enhanced support for distributed environments)
Solr (based on Lucene, enhanced performance with more functionalities)
Sphinx (a SQL database-like full text search engine)

General Architecture of Search Engine

Present
Search Result

Index Documents

Use Lucene with Java Development Kits (JDK

1. Download and install JDK (1.8.x or 1.9.x)

@ a oracle.com

Q, Products Industries Resources Support Events Developer Partners

this product. FAQs are available here

Commercial license and support are available for a low cost with Java SE Subscriptior
JDK 8 software is licensed under the Oracle Technology Network License Agre cle Java SE
JDK 8u321 che
Linux macOS Solaris Windows
t/fi File y

x86 Installer 15799 MB B jdk-Bu321-windows-i586.exe

x64 Installer 171.09 MB B idk-8u321-windo
JRE8 v
Server JRE8 v

Demos and samples v

Use Lucene with Java Development Kits (JDK)

2. Visit https://lucene.apache.org/core/downloads.html to download lucene

B & Q&=

QO 8 htips://lucene.apache.org/core/downloads.html

« code » lucene @ lucene-8.11.1 @ lucene-8.11.1

.
EF g HH ST
Apache Lucene is distributed under i 'a—_ﬁ-—\ :L*EKE "‘E ==
commercially friendly Apache fi
' analysis 2022/2/15 0:35 iE=
| baclward-codecs 2022/2/15 0:55 o La o
™D load
Lucene ownloads - I e
Apach= Luczne 9.0.0 \ benchmark 2022/2/15 35 g [t
Official releases are usually created when the developers feel there are sufficient changes,
improvements and bug fixes to warrant a release. Due to the voluntary nature of Lucene, no releases Resources ' ' e LEE — e
are scheduled in advance. System Requirements are detailed here. b ClﬂESIﬂCEtIUﬂ 2E22“ 2"1 = E'jj ':-‘:'1:‘:7‘_'
Mailing Lists
Developer 1 1 E LEE PR
Lucene 9.0.0 - " codecs 2022/2/15 (i35 =
. Releases
L 9.0.0 is5 th t t A he L | .

ucene is the most recent Apache Lucene release e T T core 2022/2/15 0:55 3‘;‘1:‘:.{.__‘_
® Source release: lucene-9.0.0-src.tgz [PGP] [SHAS12]

B | Ha -9.0.0.t PGP] [SHAS12 O — - -
® Binary releases: lucens gz [10] Release Docs der‘no 022/2/15 0255 —:_'._—1#_7_‘_
* Change log oo

9.0.0
Lucene 8.11.1 docs 2022/2/15 0:54 iE=
About o
Lucene 8.11.1 is the latest in the 8.x series. . e - e
License EeXpressions 2022/2/15 0:35 =
s Source release: lucene-8.11.1-src.tgz [PGP] [SHAS12] Who We are

Bi | Ha -8.11.1.% PGP] [SHAS512 I -8.11.1.zip [PGP] [SHAS12 e I = - 4
* Binary releases: lucene gz [PGP] [1/ lucene zip [PGP] [1 facet 2022/2/15 0235 __}.'-'__15"-%-%_
Change log Events oo
The above release files should be verified using the PGP signatures and the project release KEYS. See gr::lupirlg 2':22_."-2_.".‘ 5 E:ii _—:._'7_15‘-_;{,—‘;_
verification instructions for a description of using the PGP and KEYS files for verification. SHA
checksums are also provided as alternative verification method. APACH E

. . P - e P i
highlighter 2022/2/15 0:35 iE=

Older releases
' [I Hc Wl e _—
Archives for all past versions of Lucene are available at the Apache archives. mp:::_::_itiim jCIIf'I 2E22" 2-" - E':‘:‘ ':":'14-—'7‘_'
lirenses 0225215 035 =

https://lucene.apache.org/core/downloads.html

Building index in Lucene

Document

\—_’/

Field

=) Analyzer C—y | IndexWriter [——> Directory

Field

v
Field

Indexing Process

Document are the unit of indexing and search. A Document is a set of fields. Each field has a name
and a textual value. A field may be stored with the document, in which case it is returned with
search hits on the document. Thus each document should typically contain one or more stored
fields which uniquely identify it.

Term: Its expression is a “word” in the text.

Token: term+metadata of the term (term type, start and offset position of term in the text.)

For example, A Chinese poem is a document. It contains fields like content, title, author, dynasty...

o

uilding index in Lucene

Document

Document 1

Field -
AN

The bright blue .
— Analyzer ——y | IndexWriter | ——> Directory gzt:gglgrr:;r;g? S ik Inverted index
ID Term Document
— -—> 1 best 2
and 2 blue 1,9
Document 2 ground 3 bright 1,3
- every 4 butterfly 1
Indexing Process .. tok :f’(;m 5 breeze 1
forget the great in 6 forget 2
fggrgf;g) o = ° > I great 2
every wind. not 8 hangs 1
. . on
Analyzer: tokenizer+filter(s) — one 2 e, E
Document 3 the 10 retire 2
to 1 search 3
. _) \-] 12 sky 2,3
Tokenizer: Split the text into tokens. The token Under bl — > | 33| wina 2
. . . — sky, in bright
contains a lot of information, such as the position of sunlight, one
term in the text, the original text of term, and the bemelbeiiecr

length of term...
Filters: Lowercase filter, ASCII folding filter, Synonyms
filter, Multiple language-stemming filter

Building index in Lucene

Document

v

Field

=) Analyzer C—y | IndexWriter [——> Directory

Field

~

Field

Indexing Process

Indexwriter is the core component of the indexing process. This class is responsible for creating a

new index, opening an existing index, and adding, deleting or updating the information of the
indexed document to the index, but it cannot read or search the index.

Indexwriter needs to open up a certain space to store indexes, which is completed by directory

Lucene demo

* Firstly | will show you the index building process (in Buildindex.java)

Lucene demo

* Create an Analyser
* Options

* WhitespaceAnalyzer
* divides text at whitespace

e SimpleAnalyzer
* divides text at non-letters
e convert to lower case

e StopAnalyzer
* SimpleAnalyzer
* removes stop words

e StandardAnalyzer
» good for most European Languages

* removes stop words
e convert to lower case

Lucene demo

* Firstly | will show you the index building process (in Buildindex.java)

public woid index(String indexDir} throws IOException {

this.writer=getIndexWriter(indexDir);

Connection cann = null;

Statement stmt = null;

try{
// M JoeC EEh
Class.forName("com.mysql.jdbc.Driver");

Load data from database
/f FIFEEE . oy
//System.out.println(" EEHIEE..."); for index bUIIdIng
conn = DriverManager.getConnection({DB_URL,USER,PASS);

/f HATER

{/system.out.println(” Efl{kstatement?dH...");

stmt = (Statement) conn.createStatement();

String sql;

sql = "SELECT id, name, zuczhe, chaocdai,content FROM my_ poem™;

ResultSet rs = stmt.executeQuery(sql);

Lucene demo

e Field.Store.YES/ Field.Store.No

2 Answers Active | Oldest | Score

There are two basic ways a document can be written into Lucene.

34 « Indexed - The field is analyzed and indexed, and can be searched.

e Stored - The field's full text is stored and will be returned with search results.

V If a document is indexed but not stored, you can search for it, but it won't be returned with search

results.

One reasonably commaon pattern is to use lucene for search, but only have an ID field being stored
which can be used to retrieve the full contents of the document/record from, for instance, a 5L

database, a file system, or an web resource.

You might also opt not to store a field when that field is just a search tool, but you wouldn't display
it to the user, such as a soundex/metaphone, or an alternate analysis of a content field.

https://stackoverflow.com/questions/32940650/|ucene-lfzield-store-yes-versus-field-store-no

Luence Index — Behind the Scene

The same prefix in an index directory means that

these files belong to the same segment.

Lucene can store segments in two ways.

Multifile format: .nvd, .fnm, .fdt
Compound format:CFS(Compound File System)

e
[o.cfe

[0.cfs

[0si

D segments_1

[writelock

A=k

2022/2/15 1
2022/2/15 1
2022/2/15 1
2022/2/15 1

2022/2/15 1

HEF

CFE 3z
CFS 2%
SI 3zi%
i

LOCK 2%

o
1KB
2 KB
1 KB
1 KB

0 KB

Lucene Index

referencing

Segmenis_<h=
file

segments.gen write.lock

Compound & (Default)

Segment
A A
_X.cfs _X.si
_X.cfe
—
_X_N.del
OR

Segment

Multifile &

_X.cfs, X.cfe
e inverted index
e Stored Field
e Term Vector
e 129 Zs..

il gelle.) H

X fdt

_X.fdx
_X.fnm

9.

Search

* Firstly | will show you the index building process (in BuildIndex.java)
e Secondly, after building the index, we can search given a query.

14

Search

* Types of query:
e Boolean: [IST441 Giles] [IST441 OR Giles]
[java AND NOT SUN]
wildcard: [nu?ch] [nutc™]
phrase: [“JAVA TOMCAT”]
proximity: [“lucene nutch” ~10]
fuzzy: [roam~] matches roams and foam
e date range

Available query objects as of 3.4.0 are:

BooleanQuery

« ConstantScoreQuery

e CustomScoreQuery

DisjunctionMaxQuery
FilteredQuery
MatchAllDocsQuery
MultiPhraseQuery
MultiTermQuery
PhraseQuery
RangeQuery
SpanQuery

e TermQuery

e ValueSourceQuery

¥
public void search(S5tring gquerystr) throws ParseException, I0Exception, InvalidTo

Analyzer analyzer=new Standardinalyzer():

° ° ffQueryParser parser=new QueryParser ("sl",analyzer);
IVI u |t | F | e | d S e a rC } I QueryParser parser=new QueryParser ("s2",analvzer);
Query query=parser.parse (Querystr);

long start=5ystem.currsentTimseMillis():

The first way Is to construct a guery manually, this is what QueryParser is doing internally. This is
the most powerful way to do it, and means that you don't have to parse the user input if you want

to prevent access to some of the more exotic features of QueryParser .

The second way is to use MultiFieldQueryParser, this behaves like QueryParser, allowing access
to all the power that it has, except that it will search over multiple fields.

The final way is to use the special syntax of QueryParser see here.

https://stackoverflow.com/questions/2005084/how-to-specify-two-fields-in-lucene-queryparser

16

Default Scoring Function

https://lucene.apache.org/core/4 5 0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

Factors need to be considered:

Document boost: The weight value set for a document when indexing.

Field boost: The weight value set for a field during query.

Query boost: At search time users can specify boosts to each query, sub-query, and each query term

Coord: The adjustment factor calculated based on the number of query keywords contained in the document.
Inerse document frequency: The scoring formula uses this factor to increase the weight of documents
containing rare words.

Length norm: The longer the text of the field, the lower the weight of the factor.

Term frequency: you all know

Query norm: is a normalizing factor used to make scores between queries comparable.

Vig) - V{d)
score(gqd) = - - ————— -« doc-len-norm(d) - do

V(q]

Lucene Conceptual Scoring Formula

=
a)
o
r
*.

Default Scoring Function

score(q,d) = q.d) - gqueryNorm(q) - z (tftind) - idf(h2 - ¢ - norm(t.d))

ting

Lucene Practical Scoring Function

numbDocs

frequency 72 idf(t) = 1+log(——)
docFreg+1

tfit in d)

Document length norm doc-len-norm(d) and document boost doc-boost(d) are known at
indexing time. They are computed in advance and their multiplication is saved as a single
value in the index: norm(d). (In the equations below, norm(t in d) means norm(field(t) in

doc d) where field(t) is the field associated with term t.)

Python alternatives for Lucene

* PyLucene

* PyLucene is not a Lucene port but a Python wrapper around Java Lucene.
PyLucene embeds a Java VM with Lucene into a Python process. The
PyLucene Python extension, a Python module called lucene is machine-
generated by JCC.

* https://lucene.apache.org/pylucene/
* Requires manual compilation and installation (major disadvantage)
* Works for both Linux and Windows

https://lucene.apache.org/pylucene/

Appendix

