Introduction to Information
Retrieval and Boolean model

Reference: Introduction to Information Retrieval
by C. Manning, P. Raghavan, H. Schutze

Structured vs unstructured data

e Structured data tends to refer to information
in “tables”

Employee Manager Salary
Smith Jones 50000
Chang Smith 60000
lvy Smith 50000

Typically allows numerical range and exact match
(for text) queries, e.q.,
Salary < 60000 AND Manager = Smith.

Unstructured data

e Typically refers to free text
e Allows

— Keyword queries including operators
— More sophisticated “concept” queries e.g.,

* find all web pages dealing with drug abuse

* Classic model for searching text documents

Unstructured (text) vs. structured (database)
data in late nineties

200 -
180 -
160 -
140 -
120 -
100 -

B Unstructured
B Structured

Data volume Market Cap

Unstructured (text) vs. structured (database)
data now

Google

(T)
Bai &

-- 1 .
@ Unstructured bl ng
W Structured I

Data volume Market Cap

Goal of IR

e Collection: A set of documents

e Goal: Find documents relevant to user’s
information need

Info.

Retrieval
IR system \

Answer list

=} http:fiwww.google.com.au - Google - Microsoft. .. |

Fil= Edit ‘Wiew Faworites Tools Help ."."'

EXample Qo - @ - [x] [&] @0 SO search

Google

A hitp:ffwww.google.com.au - Google Search: TREC conference . |Z||E”E| Australia
File Edit Wiew Favorites Tools Help |".'
- — n > —
Back + | | x = &3)) Search 5 7 Favarites o
@ et D @ W s W A= Web lmages Groups MNews more s

Web Images Groups MNews more» |THEC cnnferenu:el |

Google TREC conference |E [Google Search ” I'm Feeling Lucky]
Search: © the web O pages from Australia Search: @& the webh O pages from Australia o

Waeb Results 1- 10 of about 78,900 for TREC conference. (0.08 seconds) | » o

| L

Tip: Save tirme by hitting the return key instead of clicking on "search”

Text REtrieval Conference (TREC) Home Page

An annual information retrieval conference and competition, the purpose of
wehich

is to suppart and further research within the information retrieval ...
trec.nist.goy! - 4k - 13 Mar 2005 - Cached - Similar pages

Text REtrieval Conference (TREC) Ovenview

.. The Text REtrieval Conference (TREC), co-sponsored by the < Google
Mational Institute

of Standards and Technology (NIST) and US Department of
Defense, ...

trec.nist.gov/overview html - Sk - Cached - Similar pages

[Mare results from trec.nist.gov |

Crwerviews of the first TREC conference

.. The first Text REtrieval Conference (TREC-1) was held in early Novernber
1952

and was attended by about 100 peaple working in the 25 participating

groups ...

portal acrn.org/citation. cfim?id=180B92 - Similar pages

Investigative Report: On the TREC Trail

.. A guick look at the TREC conference guestions and the standards of
SUCCRES

imposed ... The 2004 TREC conference will be held this Novernber at NIST b

. | " -

Boolean Model for IR

* Queries are Boolean expressions.
— e.g., Caesar AND Brutus

* The search engine returns all documents that
satisfy the Boolean expression.

Boolean queries: Exact match

* Queries using AND, OR and NOT together with
query terms

— Views each document as a set of words
— Is precise: document matches condition or not.

* Primary commercial retrieval tool for many
years

* Professional searchers still like Boolean
qgueries:

— You know exactly what you’re getting.

Example: Library Search

l@v|ai[@c[@res|@c@|ks|nr|@c cx +

T

s el

C @ julac.hosted.exlibrisgroup.com/primo-explore/search?query=title,contains, AND...

Norary

DATABASE

JOURNAL A-Z SEARCH

Login
oearch -

O

Menu w

X

» @)

Search for:

@ cuik (O HKaLL

Search Scope: All

Material Type

Title ¥ contains v Allitems v
Language

AND w Title v contains = Any language v

Publication Date

AND w Subject (MeSH) ¥ contains = Any year v
-+ ADD A NEW LINE O CLEAR
HKALL
AW iAae

& unnamed.jpg ~

Simple
Search

Search in HKALL [£

Show all

X

10

Boolean Model

* Long, precise queries; proximity operators;
incrementally developed; not like web search

A Simple Example

* Consider a document collection of Shakespeare
plays

* Which plays of Shakespeare contain the words
Brutus AND Caesar but NOT Calpurnia?

Retrieval for Shakespeare Document Collection

* Could grep all of Shakespeare’s plays for
Brutus and Caesar, then strip out lines
containing Calpurnia?

— Slow (for large corpora)
— NOT Calpurnia is non-trivial

— Other operations (e.g., find the phrase Romans
and countrymen) not feasible

Term-document incidence

Query: Brutus AND Caesar but NOT Calpurnia

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 if document contains
word, O otherwise

Incidence vectors

 So we have a 0/1 vector for each term.

* To answer query: take the vectors for Brutus,

Caesar and Calpurnia (complemented) =»
bitwise AND.

110100 AND 110111 AND 101111 =100100.

Answers to query

* Antony and Cleopatra, Act lll, Scene ii

Agrippa [Aside to DOMITIUS ENOBARBUS]: Why, Enobarbus,
When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

« Hamlet, Act lll, Scene i

Lord Polonius: | did enact Julius Caesar | was killed i' the
Capitol; Brutus killed me.

Bigger document collections

 Consider N =1 million documents, each with
about 1K termes.

* Avg 6 bytes/term including
spaces/punctuation
— 6GB of data in the documents.

e Say there are M = 500K distinct terms among
these.

Can’t build the matrix

e 500K x 1M matrix has half-a-trillion O’s and 1’s.
e Butit has no more than one billion 1’s.
— matrix is extremely sparse.

 What’s a better representation?

— We only record the 1 positions.

e For each term T: store a list of all documents that

Inverted index

contain T.
 Each document is identified by a document ID

Brutus| "©——>
Calpurnié“ﬂ:>
Caesar, "1—>

2

16

32

64

128

1

5

8

13

21

34

13

16

What happens if the word Caesar
is added to document 147

Inverted Index

* A fundamental structure that can support
various kinds of IR models including Google
search model.

https://www.google.com/search/howsearchworks
movie: Trillions of Questions, No Easy Answers

6:10 — 8:00 — senior staff

22:55-25:00 - indexing

Inverted index
e Use a variable-sized posting lists

— Dynamic space allocation
— Insertion of terms into documents easy

— In memory, can use linked lists
Sorted by document ID

Brutusl w——>|2—4—8~16—~32—64—128

Calpurnigr——"> 1 ~12|~3~{5~{8~13 |21 +{34

20

Inverted index construction

Documents to
be indexed

Token stream

Movre on

I

Friends, Romans, countrymen

these later.

Modified tokens

Inverted index

Tokenizer J
I Friends || Romans | | Countrymen
Linguistic
modules
l friend | |roman| |countryman

[Indexer] friend‘ > |2 1+ 4 |~

1 roman ﬂ[ll:>] g 2 "

countrym&“ﬁ:> 13 16

 Sequence of (Modified token, Document ID) pairs.

Doc 1

Indexer steps

Doc 2

| did enact Julius

Caesar | was killed
' the Capitol;

Brutus killed me.

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Term
I

did
enact
julius
caesar
|

was
killed
the
capitol
brutus
killed
me

SO

let

it

be

with
caesar
the
noble
brutus
hath

told

you
caesar
was
ambitious

NN NMNMNDDMNDMNONDDMNDMNNDMNMNDNMNNDNMNMNDNMNMNDNMNMNMMNMNDMN A2 A2 sy v v

Indexer steps

e Sort by terms.

Term

|

did
enact
julius
caesar
|

was
killed

i

the
capitol
brutus
killed
me

so

let

it

be
with
caesar
the
noble
brutus
hath
told
you
caesar
was
ambitious

Doc #

N NDNDNDNNNDNDNDNNNNNMNMNNN-_A 2222 aaaaaAaaAaa a aAaaaa

Term
ambitious
be
brutus
brutus
capito
caesar
caesar
caesar
did
enact
hath

julius
killed
killed
let
me
noble
SO
the
the
told
you
was
was
with

Doc #

NN DN DNNAACENNNNAAEN A A AN A A A aaaaaNNAAAaAa NN AN DdD

23

Indexer steps

* Multiple term entries
in a single document
are merged.

* Frequency information
Is added.

Term Doc #
ambitious
be
brutus
brutus
capitol
caesar
caesar
caesar
did
enact
hath

I

I

i

it

julius
killed
killed
let

me
noble
SO

the

the
told
you
was
was
with

NN_2LGNDNDDNNESNNANAA A AN 2R A A aaa NN aND-_aNdND

|

Term Doc #
ambitious
be
brutus
brutus
capitol
caesar
caesar
did
enact
hath

|

i

it
julius
killed
let

me
noble
SO

the

the
told
you
was
was
with

term
frequency

Freq

NN=2NDNN-_2LNNN-2AN-2 AN 22N 222NN 2NN
PEQNEQ S Y Y QY Y NS VNSRS G SN G O R Y R RN R

24

* The result is split into a Dictionary file
and a Postings file.

Term Doc # Freq term
ambitious 2 1 total term frequency
be 2 1
brutus 1 1 frequency Doc # Freq
brutus 5 1 Term N docs Tot Freq/ 2 1
. ambitious 1 1 / 2 1
capitol 1 1 be 1 — 1 1
caesar 1 1 brutus 2 2 > 2 1
caesar 2 2 capitol 1 1 > 1 1
did 1 1 caesar 2 3 > 1 1
enact 1 1 did 1 1 \ 2 2
enact 1 1 \ 1 1
hath 2 ! hath 1 1 \ 1 1
F 1 f ! 1 ol 2 1
) i 1 i 1 2
it 2 1 # it 1 - 1 1
julius 1 1 julius 1 1 \ 2 1
killed 1 2 killed 1 2 \ 1 1
ot)] let 1 1 % 1 2
e 1 1 me 1 1 \ 2 1
noble 1 1 1 1
noble 2 1 S0 1 1 \ 5 1
S0 2 1 the 2 2 \ 2 1
the 1 1 told 1 1 \: 1 1
the 2 1 you 1 1 \ 2 1
told 2 1 was 2 £ \ 2 1
you 5 1 with 1 1 2 1
was 1 1 1 !
was 2 1 g 1
with 2 1

Query processing

* Consider processing the query:

Brutus AND Caesar

— Locate Brutus in the Dictionary;

* Retrieve its postings.

— Locate Caesar in the Dictionary;

* Retrieve its postings.

— “Merge” the two postings:
+ 16

» »
) L

=

2

1 4

" 8

" 32

{64

1128

1

" 2

13

13

21

{34

Brutus
Caesar

The merge

* Walk through the two postings
simultaneously, in time linear in the total
number of postings entries

24— 8—16—32—64—128| Brutus

8 -1 12135813 21~34| Caesar

If the list lengths are x and y, the merge takes O(x+y)
operations.
Crucial: postings sorted by doclID.

27

Basic postings intersection

A “merge” algorithm

INTERSECT(p1, p2)

1
2
3
4
5
6
7
8

9
10

answer — ()
while p; # NIL and p> # NIL
do if docID(p1) = docID(p3)
then ADD (answer,docID(pq))
p1 «— next(p1)
Py «— next(p,)
else if docID(p1) < docID(p>)
then p; «— next(pq)
else py «— next(ps)
return answer

28

Query optimization

 What is the best order for query
processing?

* Consider a query that is an AND of t terms.
* For each of the t terms, get its postings,

then AND together.
Brutus) ""——=[2[4 16| 32| 64128
Calpurnig™——">[1] 2 S8 [16] 21 34
Caesan "——=[13]16

Query: Brutus AND Calpurnia AND Caesar

Query optimization example

* Process in order of increasing document
frequency (freq):
— start with smallest set, then keep cutting further.

4

This is why we kept
freq in dictionary

Brutusg. "™——>[21471 8] 16[32 64[128
Calpurniq®——>[11 2] 31 518 [13 21 34
Caesar "——>[13]16

Execute the query as (Caesar AND Brutus) AND Calpurnia.

Query optimization

INTERSECT({f1,...,t,))

terms < SORTBYINCREASINGFREQUENCY ((t1,...,fn))

result « POSTINGS(FIRST(terms))

terms «— REST(terms)

while terms #= NIL and result # NIL

do [ist «— POSTINGS(FIRST(terms))
result « INTERSECT (result, POSTINGS (FIRST (terms)))
terms «— REST(terms)

D1 = W M =

O Q0 N O

return result

» Figure 1.8 Algorithm for conjunctive queries that returns the set of documents
containing each term in the input list of terms.

31

More general optimization

e.g., (madding OR crowd) AND (ignoble OR
strife)

Get freq’s for all terms.

Estimate the size of each OR by the sum of its
freq’s (conservative).

Process in increasing order of OR sizes.

Phrase queries

* We want to be able to answer queries such as
“air conditioner” — as a phrase

* Thus the sentence “After washing my hair with
this conditioner, | dry my hair with hot air” is not
a match.

— The concept of phrase queries has proven easily
understood by users; one of the few “advanced
search” ideas that works

— Many more queries are implicit phrase queries
* For this, it no longer suffices to store only
<term : docs> entries

A first attempt: Biword indexes

Index every consecutive pair of terms in the text
as a phrase

For example the text “Friends, Romans,
Countrymen” would generate the biwords
— friends romans

— romans countrymen

Each of these biwords is now a dictionary term

Two-word phrase query-processing is now
immediate.

Longer phrase queries

* Longer phrases can be processed by breaking
them down

 air conditioner filter system can be broken into
the Boolean query on biwords:

air conditioner AND conditioner filter AND filter
system

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain

the phrase. _

Can have false positives!

Issues for biword indexes

* False positives, as noted before
* Index blowup due to bigger dictionary

— Infeasible for more than biwords, big even for
them

e Biword indexes are not the standard solution
(for all biwords) but can be part of a
compound strategy

Solution 2: Positional indexes

* In the postings, store, for each term the
position(s) in which tokens of it appear:

<term: termID;
docl: positionl, position2 ...;
doc2: positionl, position2 ... ;

Example:

<t0: 993427;

1:7, 18, 33,72, 86, 231;
2: 3, 149;

4: 8,16, 190,429, 433;
5: 363, 367, ...>

Positional index example

* For phrase queries, we use a merge
algorithm recursively at the document level

e But we now need to deal with more than
just equality

Processing d phrase query
e Extract inverted index entries for each distinct
term: to, be, or, not.

* Merge their doc:position lists to enumerate all
positions with “to be or not to be”.

<t0: 993427,

1: 7,18, 33, 72, 86, 231;

2: 3, 149;

4:8, 16, 190, 429, 433; jl Which of docs 1,2.4,5
5: 363, 367;...> could contain “to be
<be: 178239: or not to be”?

1: 17, 25;

4:17,191, 291, 430, 434,

D: 149 199 1019 e Answer: 4

Proximity queries

Same general method for proximity searches
Within k word proximity search
e.g. employment /3 place

/k means “within k words of”.

The algorithm for “merge” two posting lists
can be extended to handle within k word
proximity search

Clearly, positional indexes can be used for
such queries; biword indexes cannot.

Positional index size

* A positional index expands postings storage

substantially
— Even though indices can be compressed

* Nevertheless, a positional index is now
standardly used because of the power and
usefulness of phrase and proximity queries ...
whether used explicitly or implicitly in a
ranking retrieval system.

Rules of thumb

* A positional index is 2—4 as large as a non-
positional index

 Positional index size 35-50% of volume of
original text

— Caveat: all of this holds for “English-like”
languages

Combination schemes

 These two approaches can be profitably
combined
— For particular phrases (“Michael Jackson”, “Britney

Spears”) it is inefficient to keep on merging positional
postings lists

* Even more so for phrases like “The Who”

* Williams et al. (2004) evaluate a more
sophisticated mixed indexing scheme

— A typical web query mixture was executed in % of the
time of using just a positional index

— |t required 26% more space than having a positional
index alone

Semi-structured data

e Butin fact almost no data is “unstructured”

* E.g., this slide has distinctly identified zones
such as the Title and Bullets

 Facilitates “semi-structured” search such as

— Title contains data AND Bullets contain search

