Encoder-Decoder Models and
Attention

Reference:
- D. Jurafsky and J. Martin, “Speech and Language Processing”

Motivation

We have explored recurrent neural networks along with
some of their common use cases, including language
modeling, contextual generation, and sequence labeling.

A common thread in these applications was the notion of
transduction — input sequences being transformed into
output sequences in a one-to-one fashion.

Here, we’ll explore an approach that extends these
models and provides much greater flexibility across a
range of applications.

Specifically, we’ll introduce encoder-decoder networks,
or sequence-to-sequence models, that are capable of
generating contextually appropriate, arbitrary length,
output sequences.

Motivation

* Encoder-decoder networks have been applied to a very
wide range of applications including machine translation,
summarization, question answering, and dialogue
modeling.

* The key idea underlying these networks is the use of an
encoder network that takes an input sequence and
creates a contextualized representation of it.

* This representation is then passed to a decoder which
generates a task-specific output sequence.

* Besides, with the deep networks, the encoder-decoder
architecture allows networks to be trained in an end-to-
end fashion for each application.

Neural Language Models and Generation Revisited

To understand the design of encoder-decoder networks let’s
return to neural language models and the notion of
autoregressive generation.

In a simple recurrent network, the value f the hidden state at a
particular point in time is a function of the previous hidden
state and the current input;

The network output is then a function of this new hidden state.
he = g(Uhi—1 + Wxy)

ye = f(Vh)

Here, U, V, and W are weight matrices which are adjusted
during training, g is a suitable non-linear activation function
such as tanh or ReLU, and in the common case of classification
f is a softmax over the set of possible outputs.

Neural Language Models and Generation Revisited

* In practice, gated networks using LSTMs or GRUs are used
in place of these simple RNN:s.

* To reflect this, we’ll abstract away from the details of the
specific RNN being used and simply specify the inputs on
which the computation is being based.

* So the earlier equations will be expressed as follows with
the understanding that there is a suitable RNN underneath.

he = g(he—q,x¢)
ye = f(he)

* To create an RNN-based language model, we train the
network to predict the next word in a sequence using a
corpus of representative text.

Neural Language Models and Generation Revisited

* Given a trained model, we can ask the network to generate
novel sequences (autoregressive generation)

First randomly sampling an appropriate word as the beginning of a
sequence.

We then condition the generation of subsequent words on the
hidden state from the previous time step as well as the embedding
for the word just generated, again sampling from the distribution
provided by the softmax.

More specifically, during generation the softmax output at each
point in time provides us with the probability of every word in the
vocabulary given the preceding context, that is P(y;|y<;)Vi € V;

We then sample a particular word, y;, from this distribution and
condition subsequent generation on it.

The process continues until the end of sentence token <\s> is
generated.

Neural Language Models and Generation Revisited

We consider a simple variation on this scheme. Instead of
having the language model generate a sentence from
scratch, we have it complete a sequence given a specified
prefix.

More specifically, we first pass the specified prefix through
the language model using forward inference to produce a
sequence of hidden states, ending with the hidden state
corresponding to the last word of the prefix.

We then begin generating as we did earlier, but using the
final hidden state of the prefix as our starting point.

The result of this process is a novel output sequence that
should be a reasonable completion of the prefix input.

Neural Language Models and Generation Revisited

Fig. 1 illustrates this basic scheme. The portion of the
network on the left processes the provided prefix, while
the right side executes the subsequent autoregressive
generation.

Note that the goal of the lefthand portion of the network is
to generate a series of hidden states from the given input;
there are no outputs associated with this part of the
process until we reach the end of the prefix.

Neural Language Models and Generation Revisited

F|g. 1 7 R //“ s

| s

C th@:re) : C |i\.:“ed) i C ﬁ DR | @b\b_lt) i Q/‘SL) Sarrlid Words
| |
| |
@Dﬂ : @JJL:D G‘JL]D i @[Lnj i EJJ]D Softmax
A | A | 7y T
i | i
i |

. F— — ==+ =] |~ Sl

A A A A A

|
|
|
|
|
|
I
[

[oo_x_ooj (W:T) @@+ 0200 [io--:n--coj [io--q:--co) (oo--:l 00 @@ ¢ - 00 @@+ @+ 00 Embeddings
4 'y h A A
|
Chole) (C in) (the) round) | (there) | (Ilved) (a) ([}obbit)
Iy// |\.// k// "/

N N -/

YT Y

Prefix Autogenerated completion

Using an RNN to generate the completion of an input phrase

Neural Language Models and Generation Revisited

Now, consider an ingenious extension of this idea from the
world of machine translation (MT), the task of
automatically translating sentences from one language into
another.

The primary resources used to train modern translation
systems are known as parallel texts, or bitexts.

These are large text collections consisting of pairs of
sentences from different languages that are translations of
one another.

Traditionally in MT, the text being translated is referred to
as the source and the translation output is called the
target.

Neural Language Models and Generation Revisited

* To extend language models and autoregressive generation
to machine translation, we’ll first add an end-of-sentence
marker at the end of each bitext’s source sentence and
then simply concatenate the corresponding target to it.

* These concatenated source-target pairs can now serve as
training data for a combined language model.

* Training proceeds as with any RNN-based language model.

 The network is trained autoregressively to predict the next
word in a set of sequences comprised of the concatenated
source-target bitexts, as shown in Fig. 2.

Neural Language Models and Generation Revisited

-~ -~
e Ve 7
o 2 P) VR s I

Fig. 2 Iived/)l (a2) (hobbit) | (</s> X vivﬂ)i un), Chobbit) 1 (</s>)
A A

I
|
A | A I | A A |
I
I
|

entienilenilenilentNeniNenilen

—— HL»| o S S e T — S —

A

A A

I

|

I

|

|
@0 -~ - 009 | @0 .- 00 |
ﬂ I I
I

I

I

|

|

|

@@ - g 00 @0 +-0+-00

I
I
|
|
I
I
[|
I
I
I
I
I

00 - j[* Q0

(there) (Ilved)

/

(a)} (hobb.t) (</s>) mm

/
/

|
(un)| (Chobbit)
v -

< -

I
|
|
|
|
|
|
I |
|
|
|
|
\

N— J& _

—~ —

Source Target

Training setup for a neural language model approach to machine translation. Source-target
bitexts are concatenated and used to train a language model.

12

Encoder-Decoder Networks

Early efforts using the above approach demonstrated
surprisingly good results on standard datasets and led to a
series of innovations that were the basis for networks
discussed below.

Fig. 3 abstracts away from the specifics of machine translation
and illustrates a basic encoder-decoder architecture.

The elements of the network on the left process the input
sequence and comprise the encoder, the entire purpose of
which is to generate a contextualized representation of the
input.

In this network, this representation is embodied in the final
hidden state of the encoder, h,;, which in turn feeds into the
first hidden state of the decoder.

The decoder network on the right takes this state and
autoregressively generates a sequence of outputs.

Encoder-Decoder Networks

F|g3 Decoder
-
~ —
(y o Cx) () (Y D)
UHANEBANES (Coli)
N N p)

Loo--x--oo] @@ -0 +-00 @0+ 0 200
A A
Cx) Cx%) GED)
N -
——

Encoder

Basic RNN-based encoder-decoder architecture. The final hidden state of the encoder
RNN serves as the context for the decoder in its role as hy in the decoder RNN.

14

Encoder-Decoder Networks

e This basic architecture is consistent with the original
applications of neural models to machine translation.

* However, it embodies a number of design choices that are
less than optimal.

* Among the major ones are that the encoder and the
decoder are assumed to have the same internal structure
(RNNs in this case), that the final state of the encoder is the
only context available to the decoder, and finally that this
context is only available to the decoder as its initial hidden
state.

Encoder-Decoder Networks

e Abstracting away from these choices, we can say that
encoder-decoder networks consist of three components:

* An encoder that accepts an input sequence, x1', and
generates a corresponding sequence of contextualized
representations, h.

* A context vector, ¢, which is a function of A}, and
conveys the essence of the input to the decoder.

* And a decoder, which accepts ¢ as input and generates
an arbitrary length sequence of hidden states h{*, from
which a corresponding sequence of output states y;",
can be obtained.

* Fig. 4 illustrates this abstracted architecture. We will explore
some of the possibilities for each of the components.

Encoder-Decoder Networks

Fig. 4
G o - O
X A i
Decoder
/(M)
Encoder
A A
Cx) Cx)

Basic architecture for an abstract encoder-decoder network. The context is a function
of the vector of contextualized input representations and may be used by the decoder
in a variety of ways.

17

Encoder-Decoder Networks
Encoder

 Simple RNNs, LSTMs, GRUs, convolutional networks, as well
as transformer networks, can all be been employed as
encoders.

* For simplicity, our figures show only a single network layer
for the encoder, however, stacked architectures are the
norm, where the output states from the top layer of the
stack are taken as the final representation.

A widely used encoder design makes use of stacked Bi-
LSTMs where the hidden states from top layers from the
forward and backward passes are concatenated to provide
the contextualized representations for each time step.

Encoder-Decoder Networks
Decoder

* For the decoder, autoregressive generation is used to
produce an output sequence, an element at a time, until an
end-of-sequence marker is generated.

* This incremental process is guided by the context provided
by the encoder as well as any items generated for earlier
states by the decoder.

* Atypical approach is to use an LSTM or GRU-based RNN
where the context consists of the final hidden state of the
encoder, and is used to initialize the first hidden state of
the decoder.

* To help keep things straight, we’ll use the superscripts e and
d where needed to distinguish the hidden states of the encoder
and the decoder.

Encoder-Decoder Networks
Decoder

* Generation proceeds as described earlier where each hidden
state is conditioned on the previous hidden state and output
generated in the previous state.

c = h
h¢ =

hi = gPe-1, h?—1)
z; = f(h{)
Yy = softmax(z;)
* g isastand-in for some flavor of RNN and J;_4 is the embedding
for the output sampled from the softmax at the previous step.

* A weakness of this approach is that the context vector, ¢, is only
directly available at the beginning of the process and its influence
will wane as the output sequence is generated.

Encoder-Decoder Networks
Decoder

A solution is to make the context vector c available at each
step in the decoding process by adding it as a parameter to
the computation of the current hidden state.

hi = g(Pe-1, hi-1,0)
A common approach to the calculation of the output layer
y is to base it solely on this newly computed hidden state.

While this cleanly separates the underlying recurrence
from the output generation task, it makes it difficult to
keep track of what has already been generated and what
hasn’t.

Encoder-Decoder Networks
Decoder

* A alternative approach is to condition the output on both
the newly generated hidden state, the output generated at
the previous state, and the encoder context.

Ve = softmax(Ye—1, 2, C)

* Finally, as shown earlier, the output y at each time consists
of a softmax computation over the set of possible outputs
(the vocabulary in the case of language models).

 What one does with this distribution is task-dependent,
but it is critical since the recurrence depends on choosing a
particular output, y, from the softmax to condition the
next step in decoding.

Encoder-Decoder Networks
Decoder

For neural generation, where we are trying to generate
novel outputs, we can simply sample from the softmax
distribution.

However, for applications like MT where we’re looking for a
specific output sequence, random sampling isn’t
appropriate and would likely lead to some strange output.

An alternative is to choose the most likely output at each
time step by taking the argmax over the softmax output:

y = argmaxP (y;|y<;)
Independently choosing the argmax over a sequence is not
a reliable way of arriving at a good output since it doesn’t
guarantee that the individual choices being made make
sense together and combine into a coherent whole.

Encoder-Decoder Networks
Beam Search

* Aviable alternative is to view the decoding problem as a
heuristic state-space search and systematically explore the
space of possible outputs.

* The key to such an approach is controlling the exponential
growth of the search space.

* To accomplish this, we’ll use a technique called beam
search.

 Beam search operates by combining a breadth-first-search
strategy with a heuristic filter that scores each option and
prunes the search space to stay within a fixed-size memory
footprint, called the beam width.

Encoder-Decoder Networks
Beam Search

At the first step of decoding, we select the B-best options
from the softmax output y, where B is the size of the beam.

Each option is scored with its corresponding probability from
the softmax output of the decoder.

These initial outputs constitute the search frontier.

We'll refer to the sequence of partial outputs generated
along these search paths as hypotheses.

At subsequent steps, each hypothesis on the frontier is
extended incrementally by being passed to distinct decoders,
which again generate a softmax over the entire vocabulary.
To provide the necessary inputs for the decoders, each
hypothesis must include not only the words generated thus
far but also the context vector, and the hidden state from the
previous step.

Encoder-Decoder Networks
Beam Search

New hypotheses representing every possible extension to
the current ones are generated and added to the frontier.

Each of these new hypotheses is scored using P(y;|v<;),
which is the product of the probability of current word
choice multiplied by the probability of the path that led to
it.

To control the exponential growth of the frontier, it is
pruned to contain only the top B hypotheses.

Encoder-Decoder Networks
Beam Search

This process continues until a <\s> is generated indicating
that a complete candidate output has been found.

At this point, the completed hypothesis is removed from
the frontier and the size of the beam is reduced by one.

The search continues until the beam has been reduced to
0. Leaving us with B hypotheses to consider.

Fig. 5 illustrates this process with a beam width of 4.

Encoder-Decoder Networks
Beam Search

__

a

E _{i-1 Decoder
r'_-r”.’_l.q \. \ \ \ //V
\ -
> EOS Beam search with beam width = 4.
0 1 2 3 4 5 6 v

Beam decoding with a beam width of 4.

28

Encoder-Decoder Networks
Beam Search

* At the initial step, the frontier is filled with the best 4
options from the initial state of the decoder.

* |n a breadth-first fashion, each state on the frontier is
passed to a decoder which computes a softmax over the
entire vocabulary and attempts to enter each as a new
state into the frontier subject to the constraint that they
are better than the worst state already there.

* As completed sequences are discovered they are recorded
and removed from the frontier and the beam width is
reduced by 1.

Encoder-Decoder Networks
Beam Search

One final complication arises from the fact that the
completed hypotheses may have different lengths.

Unfortunately, due to the probabilistic nature of our scoring
scheme, longer hypotheses will naturally look worse than
shorter ones just based on their length.

This was not an issue during the earlier steps of decoding;
due to the breadth-first nature of beam search all the
hypotheses being compared had the same length.

The usual solution to this is to apply some form of length
normalization to each of the hypotheses.

With normalization, we have B hypotheses and can select
the best one, or we can pass all or a subset of them on to a
downstream application with their respective scores.

Encoder-Decoder Networks
Context

We've defined the context vector ¢ as a function of the
hidden states of the encoder, that is, c = f(h}).

Unfortunately, the number of hidden states varies with the
size of the input, making it difficult to just use them directly
as a context for the decode.

The basic approach described earlier avoids this issue since
c is just the final hidden state of the encoder.

This approach has the advantage of being simple and of
reducing the context to a fixed length vector.

However, this final hidden state inevitably is more focused
on the latter parts of input sequence, rather than the input
as whole.

Encoder-Decoder Networks
Context

* One solution to this problem is to use Bi-RNNs, where the
context can be a function of the end state of both the
forward and backward passes.

* As described previously, a straightforward approach is to
concatenate the final states of the forward and backward
passes.

* An alternative is to simply sum or average the encoder
hidden states to produce a context vector.

* Unfortunately, this approach loses useful information
about each of the individual encoder states that might
prove useful in decoding.

Encoder-Decoder Networks

Context

Fig. 6

function BEAMDECODE(c, beam_width) returns best paths

¥o. iy 0

path <)

complete_paths + ()

state + (¢, yo. hy. path) sinitial state
frontier < (state) sinitial frontier

while frontier contains incomplete paths and beamwidth = 0
extended _frontier+ ()
for each srate € frontier do
v+ DECODE(state)
for each word i € Vocabulary do
successor < NEWSTATE(state, 1, vi)
new_agenda <+ ADDTOBEAM(successor, extended _frontier, beam_width)

for each srare in extended _frontier do
if state is complete do
complete_paths < APPEND(complete_paths, state)
extended_frontier «<— REMOVE(extended _frontier, state)
beam_width +— beam_width - 1
[frontier < extended_frontier

return completed _paths
function NEWSTATE(stare, word, word_prob) returns new state
function ADDTOBEAM(stare, frontier, width) returns updated frontier

if LENGTH(frontier) < width then
Jrontier < INSERT(stare, frontier)

else if SCORE(stare) > SCORE(WORSTOF(frontier))
frontier <+~ REMOVE(WORSTOE(frontier))
Srontier < INSERT (state, frontier)

return frontier

Beam search decoding.

33

Attention

* To overcome the deficiencies of these simple approaches
to context, we’ll need a mechanism that can take the entire
encoder context into account, that dynamically updates
during the course of decoding, and that can be embodied
in a fixed-size vector.

* Taken together, we’ll refer such an approach as an
attention mechanism.

Attention

* OQur first step is to replace the static context vector with
one that is dynamically derived from the encoder hidden
states at each point during decoding.

* This context vector, ¢;, is generated anew with each
decoding step i and takes all of the encoder hidden states
into account in its derivation.

* We then make this context available during decoding by
conditioning the computation of the current decoder state
on it, along with the prior hidden state and the previous
output generated by the decoder.

hld = 9(Vi-1, hzd—p C;)

Attention

* The first step in computing c; is to compute a vector of
scores that capture the relevance of each encoder hidden

state to the decoder state captured in A% .

 That s, at each state i during decoding we’ll compute
score(h?_l, hje) for each encoder state j.

* For now, let’s assume that this score provides us with a

measure of how similar the decoder hidden state is to each
encoder hidden state.

Attention

* To implement the similarity score, let’s begin with the
straightforward approach of using the dot product
between vectors.

score(h? ,, hi) = he - h;

 The result of the dot product is a scalar that reflects the
degree of similarity between the two vectors.

* And the vector of scores over all the encoder hidden states
gives us the relevance of each encoder state to the current
step of the decoder.

Attention

 While the simple dot product can be effective, it is a static
measure that does not facilitate adaptation during the
course of training to fit the characteristics of given
applications.

A more robust similarity score can be obtained by
parameterizing the score with its own set of weights, W.

score(h? ,, hi) = h?—lwshje'

* By introducing W to the score, we are giving the network
the ability to learn which aspects of similarity between the
decoder and encoder states are important to the current
application.

Attention

 To make use of these scores, we’ll next normalize them
with a softmax to create a vector of weights, A, that tells

us the proportional relevance of each encoder hidden state
J to the current decoder state, i.

a;j = softmax(score(h, hi)Vj € e)

exp(score(h ,, hi))
Y exp(hi 4, hy)

Attention

Finally, given the distribution in o, we can compute a fixed-
length context vector for the current decoder state by
taking a weighted average over all the encoder hidden

states.
—_ e
C;i = z Cll]h]
J

With this, we finally have a fixed-length context vector that
takes into account information from the entire encoder
state that is dynamically update to reflect the needs of the
decoder at each step of decoding.

Fig. 7 illustrates an encoder-decoder network with
attention.

Attention

- N
i) D
Fig. 7
Y N
i o
ci = Za,-jhj'. g ,/I}-'
e J

Lo 1, R
@0 =000 C....‘ 00 E"::"I.)
Cx) Cx%) C X D
N— _

~—

Encoder

Encoder-decoder network with attention. Computing the value for hi is based on the
previous hidden state, the previous word generated, and the current context vector
¢;. This context vector is derived from the attention computation based on comparing
the previous hidden state to all of the encoder hidden states. 41

