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Motivation

Encoder-decoder networks, or sequence-to-sequence
models, are models capable of generating contextually
appropriate, arbitrary length, output sequences.

Have been applied to machine translation,
summarization, question answering, dialogue.

The key idea underlying these networks is the use of an
encoder network that takes an input sequence.

Creates a contextualized representation of it, often called
the context.

This representation is then passed to a decoder which
generates a task specific output sequence.
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Basic architecture for an abstract encoder-decoder network.
The context is a function of the vector of contextualized input
representations and may be used by the decoder in a variety

of ways.




Motivation

Encoder-decoder networks consist of three components:

1. An encoder that accepts an input sequence, x1', and
generates a corresponding sequence of contextualized
representations, hi. LSTMs, convolutional networks, and
Transformers can all be employed as encoders.

2. A context vector, ¢, which is a function of h”', and
conveys the essence of the input to the decoder.

3. A decoder, which accepts c as input and generates an
arbitrary length sequence of hidden states , h{*, from
which a corresponding sequence of output states, y;"
can be obtained. Just as with encoders, decoders can be
realized by any kind of sequence architecture.



Neural Language Models and Generation Revisited

Let’s begin by describing an encoder-decoder network based
on a pair of RNNs.

Recall the conditional RNN language model for computing
p(y), the probability of a sequence y. Like any language
model, we can break down the probability as follows:

p(y) = py)rly)psly y2) - 2l o Ym-1)
At a particular time t, we pass the prefix of t — 1 tokens
through the language model, using forward inference to
produce a sequence of hidden states, ending with the hidden
state corresponding to the last word of the prefix.

We then use the final hidden state of the prefix as our starting
point to generate the next token.



Neural Language Models and Generation Revisited

More formally, if g is an activation function like tanh or
RelLU, a function of the input at time t and the hidden state
attime t — 1 and f is a softmax over the set of possible
vocabulary items, then at time t the output y; and hidden

state h; are computed as:
hy = g(he—q, x¢)
ye = f(he)



Neural Language Models and Generation Revisited

* We only have to make one slight change to turn this language
model with autoregressive generation into a translation model
that can translate from a source text target in one language to
a target text:

* Add a sentence separation marker at the end of the source
text, and then simply concatenate the target text.

* If we call the source text x and the target text y, we are
computing the probability p(yjx) as follows:

p(y|x)
= p1 ) 21y1, D V3ly1, Y2, X) . 0O V1s s Vi1, %)
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Basic RNN version of encoder-decoder approach to machine translation. Source
and target sentences are concatenated with a separator token in between, and the
decoder uses context information from the encoder’s last hidden state.
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* To translate a source text, we run it through the network
performing forward inference to generate hidden states until
we get to the end of the source.

 Then we begin autoregressive generation, asking for a word in
the context of the hidden layer from the end of the source
input as well as the end-of-sentence marker.

e Subsequent words are conditioned on the previous hidden
state and the embedding for the last word generated.
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A more formal version of translating a sentence at inference time in
the basic RNN-based encoder-decoder architecture. The final hidden
state of the encoder RNN, h{, serves as the context for the decoder in
its role as h§ in the decoder RNN.
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Neural Language Models and Generation Revisited

* Let’s formalize and generalize this model a bit as shown in the
previous diagram (To help keep things straight, we’ll use the
superscripts e and d where needed to distinguish the hidden
states of the encoder and the decoder.)

 The elements of the network on the left process the input
sequence x and comprise the encoder.

* While our simplified figure shows only a single network
layer for the encoder, stacked architectures are the norm,
where the output states from the top layer of the stack are
taken as the final representation.

* A widely used encoder design makes use of stacked
biLSTMs where the hidden states from top layers from the
forward and backward passes are concatenated to provide
the contextualized representations for each time step.
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The entire purpose of the encoder is to generate a
contextualized representation of the input. This representation
is embodied in the final hidden state of the encoder, h?.

This representation, also called c for context, is then passed to
the decoder.

The decoder network on the right takes this state and uses it to
initialize the first hidden state of the decoder. That is, the first
decoder RNN cell uses c as its prior hidden state h§.

The decoder autoregressively generates a sequence of outputs,
an element at a time, until an end-of-sequence marker is
generated.

Each hidden state is conditioned on the previous hidden state
and the output generated in the previous state.
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Decoder

One weakness of this approach is that the influence of the
context vector ¢, will wane as the output sequence is
generated.

A solution is to make the context vector c¢ available at each
step in the decoding process by adding it as a parameter to
the computation of the current hidden state.

hi = 9 (Ve-1, hg—p c)
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Decoder

* Recall that g is a stand-in for some flavor of RNN and y;_; is the
embedding for the output sampled from the softmax at the
previous step:

c = h
h¢ =
hi = 9JVe-1, htcrl—p c)

z; = f(h{)
y; = softmax(z;)

* We compute the most likely output at each time step by taking
the argmax over the softmax output:

y¢ = argmax,,ey P(W|x, y1, -, ¥¢—1)



Encoder-Decoder Networks
Training

Encoder-decoder architectures are trained end-to-end, just
as with the RNN language models.

Each training example is a tuple of paired strings, a source
and a target.

Concatenated with a separator token, these source-target
pairs can now serve as training data.

* For machine translation, the training data typically
consists of sets of sentences and their translations.

Once we have a training set, the training itself proceeds as
with any RNN-based language model.

The network is given the source text and then starting with
the separator token is trained autoregressively to predict
the next word, as shown in the next diagram.
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Training the basic RNN encoder-decoder approach to machine translation. Note that in the
decoder we usually don’t propagate the model’s softmax outputs y;, but use teacher forcing
to force each input to the correct gold value for training. We compute the softmax output

distribution over J in the decoder in order to compute the loss at each token, which can then
be averaged to compute a loss for the sentence.
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Training

* Note the differences between training and inference with
respect to the outputs at each time step.

 The decoder during inference uses its own estimated
output y; as the input for the next time step x;,1. Thus the
decoder will tend to deviate more and more from the gold
target sentence as it keeps generating teacher forcing more
tokens.

* In the decoder, teacher forcing means that we force the
system to use the gold target token from training as the
next input x;, ¢, rather than allowing it to rely on the
(possibly erroneous) decoder output y;.



Attention

* The simplicity of the encoder-decoder model is its clean
separation of the encoder — which builds a representation
of the source text — from the decoder, which uses this
context to generate a target text.

* This context vector is h,,, the hidden state of the last (nth)
time step of the source text.

* This final hidden state is thus acting as a bottleneck:

* |t must represent absolutely everything about the
meaning of the source text, since the only thing the
decoder knows about the source text is what’s in this
context vector.

* Information at the beginning of the sentence, especially for
long sentences, may not be equally well represented in the
context vector.



Attention Fig. 6
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Requiring the context ¢ to be only the encoder’s final hidden state forces all
the information from the entire source sentence to pass through this
representational bottleneck.

* The attention mechanism is a way of mechanism allowing
the decoder to get information from all the hidden states of
the encoder, not just the last hidden state.

* |n the attention mechanism, as in the vanilla encoder-
decoder model, the context vector c is a single vector that is
a function of the hidden states of the encoder,

¢ = f(hS, ..., hS)
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Attention

* Because the number of hidden states varies with the size of
the input, we can’t use the entire tensor of encoder hidden
state vectors directly as the context for the decoder.

* The idea of attention is instead to create the single fixed-
length vector c by taking a weighted sum of all the encoder
hidden states.

 The weights focus on (‘attend to’) a particular part of the
source text that is relevant for the token the decoder is
currently producing.

e Attention thus replaces the static context vector with one
that is dynamically derived from the encoder hidden states,
different for each token in decoding.



Attention

* This context vector, ¢;, is generated anew with each

decoding step i and takes all of the encoder hidden states
into account in its derivation.

* We then make this context available during decoding by
conditioning the computation of the current decoder
hidden state on it (along with the prior hidden state and the
previous output generated by the decoder).

hi = g(Fi-1, hiZy, @)
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Attention

The first step in computing c¢; is to compute how much to
focus on each encoder state, how relevant each encoder

state is to the decoder state captured in h% ;.

We capture relevance by computing — at each i during
decoding —a score(hld_l, hje) for each encoder state j.

The score dot product attention implements relevance as
similarity: measuring how similar the decoder hidden state
is to an encoder hidden state by computing the dot product:

score(h{ ;, h{) = hi ; - hf

The result of the dot product is a scalar that reflects the
degree of similarity between the two vectors.

The vector of these scores across over all the encoder
hidden states gives us the relevance of each encoder state
to the current step of the decoder.



Attention

To make use of these scores, we’ll normalize them with a
softmax to create a vector of weights, A, that tells us the

proportional relevance of each encoder hidden state j to
the current decoder state hf ;.

;= softmax(score(h{ |, h]e) Vj € e)

exp(score(hf hi))
- Xy exp(score( e, hf))




Attention

Finally, given the distribution in a, we can compute a fixed-
length context vector for the current decoder state by taking
a weighted average over all the encoder hidden states.

Ci = z C(Uh]e
J
With this, we finally have a fixed-length context vector that
takes into account information from the entire encoder state
that is dynamically update to reflect the needs of the decoder

at each step of decoding.
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A sketch of the encoder-decoder network with attention, focusing on the
computation of ¢;. The context value c; is one of the inputs to the computation of

hld. It is computed by taking the weighted sum of all the encoder hidden states,

each weighted by their dot product with the prior decoder hidden state hld—l'
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Attention

* Instead of simple dot product attention, we can get a more
powerful function that computes the relevance of each
encoder hidden state to the decoder hidden state by
parameterizing the score with its own set of weights, W.

score(hf ,, hi) = hld—lvah]e'

* The weights W;, which are then trained during the normal
end-to-end training, give the network the ability to learn
which aspects of similarity between the decoder and
encoder states are important to the current application.

 This bilinear model also allows the encoder and decoder to
use different dimensional vectors.
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Beam Search

* Choosing the single most probable token to generate at each
step is called greedy decoding; resulting in local optimal

* Consider a graphical representation of the choices the
decoder makes in searching for the best output, in which we
view the decoding problem as a heuristic state-space search
and systematically explore the space of possible outputs.

* |n such a search tree, the branches are the actions, in this
case the action of generating a token, and the nodes are the
states, in this case the state of having generated a particular
prefix.

* Fig. 4 demonstrates the problem, using a made-up example.



Encoder-Decoder Networks

Beam Search Fig. 4
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A search tree for generating the target string T = t{, t,, ... from
the vocabulary V = {yes, ok, <s>}, given the source string,

showing the probability of generating each token from that state.
Greedy search would choose yes at the first time step followed

by yes, instead of the globally most probable sequence ok ok.
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Encoder-Decoder Networks
Beam Search

Decoding in sequence generation problems (e.g. machine
translation) generally uses a method called beam search.

In beam search, instead of choosing the best token to
generate at each timestep, we keep k possible tokens at
each step.

This fixed-size memory footprint k is called the beam
width, on the metaphor of a flashlight beam that can be
parameterized to be wider or narrower.



Encoder-Decoder Networks
Beam Search

* At the first step of decoding, we compute a softmax over the
entire vocabulary, assigning a probability to each word.

 We then select the k-best options from this softmax output.

* These initial k outputs are the search frontier and these k
initial words are called hypotheses.

* A hypothesis is an output sequence, a translation-so-far,
together with its probability.
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Beam Search

* At subsequent steps, each of the k best hypotheses is
extended incrementally by being passed to distinct
decoders, which each generate a softmax over the entire

vocabulary to extend the hypothesis to every possible next
token.

* Each of these kxV hypotheses is scored by P(y;|x, y<;): the
product of the probability of current word choice
multiplied by the probability of the path that led to it.

 We then prune the k*V hypotheses down to the k best
hypotheses, so there are never more than k hypotheses at
the frontier of the search, and never more than k decoders.
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Beam Search

This process continues until a <\s> is generated indicating
that a complete candidate output has been found.

At this point, the completed hypothesis is removed from
the frontier and the size of the beam is reduced by one.

The search continues until the beam has been reduced to
0. The result will be k hypotheses.

Fig. 5 illustrates this process with a beam width of 2.
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Beam Search
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Encoder-Decoder Networks
Beam Search

* At each time step, we choose the k best hypotheses,
compute the V possible extensions of each hypothesis,
score the resulting k * V possible hypotheses and choose
the best k to continue.

 Attime 1, the frontier is filled with the best 2 options from
the initial state of the decoder: arrived and the.

 We then extend each of those, compute the probability of
all the hypotheses so far (arrived the, arrived aardvark, the
green, the witch) and compute the best 2 (in this case the
green and the witch) to be the search frontier to extend on
the next step

* On the arcs we show the decoders that we run to score the
extension words (although for simplicity we haven’t shown
the context value c¢; that is input at each step).
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Beam Search
* Let’s see how the scoring works in detail, scoring each node
by its log probability.
» Recall that we can use the chain rule of probability to break
down p(y|x) into the product of the probability of each
word given its prior context, which we can turn into a sum
of logs (for an output string of length t):
score(y) = logP(y|x)
= log(P(yllx)P(yz|y1,x)P(y3|y1,y2,x) Py, ---»)’t—1:x))

t
= z log P(y;ly1, o) Yie1, %)
=1
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Beam Search

e At each step, to compute the probability of a partial
translation, we simply add the log probability of the prefix
translation so far to the log probability of generating the
next token.

* Fig. 6 shows the scoring for the example sentence using
some simple made-up probabilities.

* Log probabilities are negative or 0, and the max of two log
probabilities is the one that is greater (closer to 0).
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Beam Search

Fig. 6
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Beam Search
* One problem arises from the fact that the completed

hypotheses may have different lengths.

* Because models generally assign lower probabilities to
longer strings, a naive algorithm would also choose shorter
strings fory.

* This was not an issue during the earlier steps of decoding;
due to the breadth-first nature of beam search all the
hypotheses being compared had the same length.

* The usual solution to this is to apply some form of length
normalization to each of the hypotheses, for example simply
dividing the negative log probability by the number of

words:
t

1
score(y) = —logP(y|x) = TZ —logP(yily1, ) Yi—1,X)

=1
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Context

Beam search decoding.

function BEAMDECODE(c, beam_width) returns best paths

vo. hg <0
Flg 6 path<—()
complete_paths <+ ()
state < (c, yo, ho, path) :initial state
frontier + (state) ;initial frontier

while frontier contains incomplete paths and beamwidth > 0
extended frontier + ()
for each srate € frontier do
v+ DECODE(state)
for each word i € Vocabulary do
successor+— NEW STATE(state, i, y;)
new_agenda<+— ADDTOBEAM(successor, extended frontier, beam_wicth)

for each srate in extended _frontier do
if state is complete do
complete_paths <— APPEND(complete_paths, state)
extended_frontier «<— REMOVE(extended_frontier, state)
beam _width < beam_width - 1
frontier + extended_frontier

return completed_paths
function NEWSTATE(state, word, word_prob) returns new state

function ADDTOBEAM(state, frontier, width) returns updated frontier

if LENGTH(frontier) < width then
frontier «+— INSERT(state, frontier)

else if SCORE(state) > SCORE(WORSTOF(frontier))
frontier «+— REMOVE(WORSTOF(fiontier))
frontier «+— INSERT(state, frontier)

return frontier
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Encoder-Decoder with Transformers

* The encoder-decoder architecture can also be implemented
using transformers (rather than RNN/LSTMs) as the
component modules.

* It consists of an encoder that takes the source language input
words X = x4, -+, Xy and maps them to an output
representation H"¢ = h4, -+, hp; usually via N = 6 stacked
encoder blocks.

 The decoder, just like the encoder-decoder RNN, is essentially
a conditional language model that attends to the encoder
representation and generates the target words one by one, at
each timestep conditioning on the source sentence and the
previously generated target language words.
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Encoder-Decoder with Transformers
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The encoder-decoder architecture using transformer components.
The encoder uses the transformer blocks, while the decoder uses a
more powerful block with an extra cross-attention layer.
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Encoder-Decoder with Transformers

In order to attend to the source language, the decoder
transformer block includes an extra layer with a special kind of
attention, cross-attention (also sometimes called encoder-
decoder attention or source attention)

Recall that the transformer block consists of a self-attention
layer that attends to the input from the previous layer,
followed by layer norm, a feed forward layer, and another
layer norm.

Cross-attention has the same form as the multi-headed self-
attention in a normal transformer block, except that while the
qgueries as usual come from the previous layer of the decoder,
the keys and values come from the output of the encoder.
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Encoder-Decoder with Transformers

* The final output of the encoder H"¢ = hq,:--, hyp is
multiplied by the cross-attention layer’s key weights WX and
value weights WV, but the output from the prior decoder
layer H%e¢li=1 js multiplied by the cross-attention layer’s
query weights W9 :

Q — WQHdeC[i—l]; K = WKHenC,' V = WV Henc

. QK"
CrossAttention(Q,K,V) = softmax V

Ja
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Encoder-Decoder with Transformers

The cross attention allows the decoder to attend to each of
the source language words as projected into the the entire
encoder final output representations. The other attention
layer in each decoder block, the self-attention layer, is the
same causal (left-to-right) self-attention that we saw in
Chapter 9. The self-attention in the encoder, however, is
allowed to look ahead at the entire source language text.

In training, just as for RNN encoder-decoders, we use teacher
forcing, and train autoregressively, at each time step
predicting the next token in the target language, using cross-
entropy loss.
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Encoder-Decoder with Transformers
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The transformer block for the encoder and the decoder. Each decoder block has
an extra cross-attention layer, which uses the output of the final encoder layer

H®"¢ = hy,---, hy to produce its key and value vectors. ,



