This is page 417
Printer: Opaque this

12

Support Vector Machines and
Flexible Discriminants

12.1 Introduction

In this chapter we describe generalizations of linear decision boundaries
for classification. Optimal separating hyperplanes are introduced in Chap-
ter 4 for the case when two classes are linearly separable. Here we cover
extensions to the nonseparable case, where the classes overlap. These tech-
niques are then generalized to what is known as the support vector machine,
which produces nonlinear boundaries by constructing a linear boundary in
a large, transformed version of the feature space. The second set of methods
generalize Fisher’s linear discriminant analysis (LDA). The generalizations
include flexible discriminant analysis which facilitates construction of non-
linear boundaries in a manner very similar to the support vector machines,
penalized discriminant analysis for problems such as signal and image clas-
sification where the large number of features are highly correlated, and
mixture discriminant analysis for irregularly shaped classes.

12.2 The Support Vector Classifier

In Chapter 4 we discussed a technique for constructing an optimal separat-
ing hyperplane between two perfectly separated classes. We review this and
generalize to the nonseparable case, where the classes may not be separable
by a linear boundary.

418 12. Flexible Discriminants

margin

1
. M = 17

FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
mazimal margin of width 2M = 2/||8]|. The right panel shows the nonseparable
(overlap) case. The points labeled £ are on the wrong side of their margin by
an amount §; = ME;; points on the correct side have £ = 0. The margin is
mazimized subject to a total budget Y& < constant. Hence) & is the total
distance of points on the wrong side of their margin.

Our training data consists of N pairs (z1,y1), (€2,y2),- .-, (N, yn), with
x; € RP and y; € {—1,1}. Define a hyperplane by

{z: fla) =2"B+ B =0}, (12.1)

where § is a unit vector: ||3]] = 1. A classification rule induced by f(z) is

G(x) = sign[z” B + Bo]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(z) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = 2734 By = 0. Since the classes are separable, we can find a function
f(x) = 278 + By with y;f(x;) > 0 Vi. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and —1 (see Figure 12.1). The optimization problem

max M
B,Bo.lIBlI=1 (12.3)
subject to y; (X B+ Fo) > M, i=1,...,N,

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.
We showed that this problem can be more conveniently rephrased as

min || 3|
subject to y; (2] B4 Bo) >1,i=1,...,N,

12.2 The Support Vector Classifier 419

where we have dropped the norm constraint on 8. Note that M = 1/||8]|.
Expression (12.4) is the usual way of writing the support vector criterion
for separated data. This is a convex optimization problem (quadratic cri-
terion, linear inequality constraints), and the solution is characterized in
Section 4.5.2.

Suppose now that the classes overlap in feature space. One way to deal
with the overlap is to still maximize M, but allow for some points to be on
the wrong side of the margin. Define the slack variables & = (&1, &a,...,&N).
There are two natural ways to modify the constraint in (12.3):

yi(x] B+ Bo) > M—&, (12.5)
or
yi(zl B+ o) > M(1-¢), (12.6)

The first choice seems more natural, since it measures overlap in actual
distance from the margin; the second choice measures the overlap in relative
distance, which changes with the width of the margin M. However, the first
choice results in a nonconvex optimization problem, while the second is
convex; thus (12.6) leads to the “standard” support vector classifier, which
we use from here on.

Here is the idea of the formulation. The value &; in the constraint y; (7 S+
Bo) > M(1 — &) is the proportional amount by which the prediction
f(z;) = 2T B+ By is on the wrong side of its margin. Hence by bounding the
sum Y &;, we bound the total proportional amount by which predictions
fall on the wrong side of their margin. Misclassifications occur when & > 1,
so bounding Y ¢; at a value K say, bounds the total number of training
misclassifications at K.

As in (4.48) in Section 4.5.2, we can drop the norm constraint on g,
define M = 1/||5||, and write (12.4) in the equivalent form

Vi, & >0, Zfil & < constant. The two choices lead to different solutions.

yi(zl B+ Bo) > 1—& Vi,

12.7
& >0, > & < constant. (12.7)

min ||B]] subject to {

This is the usual way the support vector classifier is defined for the non-
separable case. However we find confusing the presence of the fixed scale
“1” in the constraint y;(z] B+ By) > 1 —&;, and prefer to start with (12.6).
The right panel of Figure 12.1 illustrates this overlapping case.

By the nature of the criterion (12.7), we see that points well inside their
class boundary do not play a big role in shaping the boundary. This seems
like an attractive property, and one that differentiates it from linear dis-
criminant analysis (Section 4.3). In LDA, the decision boundary is deter-
mined by the covariance of the class distributions and the positions of the
class centroids. We will see in Section 12.3.3 that logistic regression is more
similar to the support vector classifier in this regard.

420 12. Flexible Discriminants

am
12.2.1 Computing the Support Vector Classifier ‘Kﬁ
The problem (12.7) is quadratic with linear inequality constraints, hence it
is a convex optimization problem. We describe a quadratic programming
solution using Lagrange multipliers. Computationally it is convenient to
re-express (12.7) in the equivalent form

1rnlnf||,6’||2 +CZ&

=1
subject to & >0, yi(z] B+ Bo) > 1 — & Vi,

(12.8)

where the “cost” parameter C' replaces the constant in (12.7); the separable
case corresponds to C' = co.
The Lagrange (primal) function is

N N
;BH%C;&ZM@& B+ Bo) — (1-&)] Zuza, (12.9)

which we minimize w.r.t 3, By and &;. Setting the respective derivatives to
zero, we get

N
B = Zaiyifﬂi, (12.10)

N

0 = Y i, (12.11)
=1

o = C—pw, Vi, (12.12)

as well as the positivity constraints «;, p;, & > 0 Vi. By substituting
(12.10)—(12.12) into (12.9), we obtain the Lagrangian (Wolfe) dual objec-
tive function

Lp = Zal — = Z Z aial/yzyﬂm Tir, (12.13)

i=11=1

which gives a lower bound on the objective function (12.8) for any feasible
point. We maximize Lp subject to 0 < a; < C and Zf\il a;y; = 0. In
addition to (12.10)—(12.12), the Karush-Kuhn-Tucker conditions include
the constraints

ailyi(z B+ o) — (1 =&)] = 0, (12.14)
wi& = 0, (12.15)
yi(z] B+ Bo)—(1—-¢&) > 0, (12.16)

for i = 1,..., N. Together these equations (12.10)—(12.16) uniquely char-
acterize the solution to the primal and dual problem.

12.2 The Support Vector Classifier 421

From (12.10) we see that the solution for 8 has the form
N
B = Z@iyixia (12.17)
i=1

with nonzero coefficients &; only for those observations i for which the
constraints in (12.16) are exactly met (due to (12.14)). These observations
are called the support vectors, since B is represented in terms of them
alone. Among these support points, some will lie on the edge of the margin
(& = 0), and hence from (12.15) and (12.12) will be characterized by
0 < &; < C; the remainder (£ > 0) have &; = C. From (12.14) we can
see that any of these margin points (0 < d;, él = 0) can be used to solve
for By, and we typically use an average of all the solutions for numerical
stability.

Maximizing the dual (12.13) is a simpler convex quadratic programming
problem than the primal (12.9), and can be solved with standard techniques
(Murray et al., 1981, for example).

Given the solutions ,5’0 and B, the decision function can be written as

G(z) = sign[f(z)]
= sign[z? B + Bo). (12.18)

The tuning parameter of this procedure is the cost parameter C.

12.2.2 Mizture Ezample (Continued)

Figure 12.2 shows the support vector boundary for the mixture example
of Figure 2.5 on page 21, with two overlapping classes, for two different
values of the cost parameter C. The classifiers are rather similar in their
performance. Points on the wrong side of the boundary are support vectors.
In addition, points on the correct side of the boundary but close to it (in
the margin), are also support vectors. The margin is larger for C' = 0.01
than it is for C' = 10,000. Hence larger values of C' focus attention more
on (correctly classified) points near the decision boundary, while smaller
values involve data further away. Either way, misclassified points are given
weight, no matter how far away. In this example the procedure is not very
sensitive to choices of C', because of the rigidity of a linear boundary.

The optimal value for C' can be estimated by cross-validation, as dis-
cussed in Chapter 7. Interestingly, the leave-one-out cross-validation error
can be bounded above by the proportion of support points in the data. The
reason is that leaving out an observation that is not a support vector will
not change the solution. Hence these observations, being classified correctly
by the original boundary, will be classified correctly in the cross-validation
process. However this bound tends to be too high, and not generally useful
for choosing C' (62% and 85%, respectively, in our examples).

422 12. Flexible Discriminants

Training Error: 0.27
Test Error: 0.288 -
Bayes Error: 0.210 °

C = 10000

Training Error: 0.26
Test Error: 0.30 :
Bayes Error: 0.21 Qi

C =0.01

FIGURE 12.2. The linear support vector boundary for the mixture data exam-
ple with two overlapping classes, for two different values of C'. The broken lines
indicate the margins, where f(x) = +1. The support points (c; > 0) are all the
points on the wrong side of their margin. The black solid dots are those support
points falling exactly on the margin (& =0, «; > 0). In the upper panel 62% of
the observations are support points, while in the lower panel 85% are. The broken
purple curve in the background is the Bayes decision boundary.

12.3 Support Vector Machines and Kernels 423
12.3 Support Vector Machines and Kernels

The support vector classifier described so far finds linear boundaries in the
input feature space. As with other linear methods, we can make the pro-
cedure more flexible by enlarging the feature space using basis expansions
such as polynomials or splines (Chapter 5). Generally linear boundaries
in the enlarged space achieve better training-class separation, and trans-
late to nonlinear boundaries in the original space. Once the basis functions
hm(x), m=1,..., M are selected, the procedure is the same as before. We
fit the SV classifier using input features h(z;) = (h1(z;), ha(x:), ..., har(x;)),
i =1,...,N, and produce the (nonlinear) function f(x) = h(m)TB + Bo.
The classifier is G(z) = sign(f(x)) as before.

The support vector machine classifier is an extension of this idea, where
the dimension of the enlarged space is allowed to get very large, infinite
in some cases. It might seem that the computations would become pro-
hibitive. It would also seem that with sufficient basis functions, the data
would be separable, and overfitting would occur. We first show how the
SVM technology deals with these issues. We then see that in fact the SVM
classifier is solving a function-fitting problem using a particular criterion
and form of regularization, and is part of a much bigger class of problems
that includes the smoothing splines of Chapter 5. The reader may wish
to consult Section 5.8, which provides background material and overlaps
somewhat with the next two sections.

12.3.1 Computing the SVM for Classification

We can represent the optimization problem (12.9) and its solution in a

special way that only involves the input features via inner products. We do

this directly for the transformed feature vectors h(x;). We then see that for

particular choices of h, these inner products can be computed very cheaply.
The Lagrange dual function (12.13) has the form

N N N

1

LD = E [7 5 E E QGO0 Y Y5 <h(.’L‘l), h(l’zl» (12.19)
i=1 i=14'=1

From (12.10) we see that the solution function f(x) can be written

fl@) = h@)"B8+ o

N

= Zaiy%h(w),h(wm + Bo- (12.20)

As before, given a;, By can be determined by solving y; f(x;) = 1 in (12.20)
for any (or all) z; for which 0 < o;; < C..

424 12. Flexible Discriminants

So both (12.19) and (12.20) involve h(z) only through inner products. In
fact, we need not specify the transformation h(z) at all, but require only
knowledge of the kernel function

K(z,2') = (h(x), h(2")) (12.21)

that computes inner products in the transformed space. K should be a
symmetric positive (semi-) definite function; see Section 5.8.1.
Three popular choices for K in the SVM literature are

dth-Degree polynomial: K (z,z') = (1 + (z,z'))?,
Radial basis: K (x,2') = exp(—y|lz — 2'||?), (12.22)
Neural network: K (z,z") = tanh(rq(z, z’) + ka).

Consider for example a feature space with two inputs X; and X5, and a
polynomial kernel of degree 2. Then

KX, X') = (1+(X,X"))?
=(1+ X1 X + X2 X4)?
=14+2X X +2Xo X5 + (X1 X])? + (X2 X5)? 42X, X| X X5,
(12.23)

Then M = 6, and if we choose hy(X) = 1, ha(X) = V2X, h3(X) =
V2Xo, hy(X) = X7, hs(X) = X2, and he(X) = v/2X1 X, then K(X, X') =
(h(X), h(X")). From (12.20) we see that the solution can be written

N
fl@) =" dayil (z,2:) + fo. (12.24)
=1

The role of the parameter C' is clearer in an enlarged feature space,
since perfect separation is often achievable there. A large value of C' will
discourage any positive §;, and lead to an overfit wiggly boundary in the
original feature space; a small value of C' will encourage a small value of
I8]], which in turn causes f(z) and hence the boundary to be smoother.
Figure 12.3 show two nonlinear support vector machines applied to the
mixture example of Chapter 2. The regularization parameter was chosen
in both cases to achieve good test error. The radial basis kernel produces
a boundary quite similar to the Bayes optimal boundary for this example;
compare Figure 2.5.

In the early literature on support vectors, there were claims that the
kernel property of the support vector machine is unique to it and allows
one to finesse the curse of dimensionality. Neither of these claims is true,
and we go into both of these issues in the next three subsections.

12.3 Support Vector Machines and Kernels 425

SVM - Degree-4 Polynomial in Feature Space

Training Error: 0.180
Test Error: 0.245
Bayes Error: 0.210

SVM - Radial Kernel in Feature Space

P T

Training Error: 0.160 <= -
Test Error: 0.218 =i
Bayes Error: 0.210 1

FIGURE 12.3. Two nonlinear SVMs for the mizture data. The upper plot uses
a 4th degree polynomial kernel, the lower a radial basis kernel (with v = 1). In
each case C was tuned to approximately achieve the best test error performance,
and C' = 1 worked well in both cases. The radial basis kernel performs the best

(close to Bayes optimal), as might be expected given the data arise from miztures
of Gaussians. The broken purple curve in the background is the Bayes decision

boundary.

426 12. Flexible Discriminants

o
o] — Hinge Loss
Binomial Deviance
o | Squared Error
N —— Class Huber
o
N
7]
9 <
S
w
©
o
= I R -
T T T f T T 1
-3 -2 -1 0 1 2 3

yf

FIGURE 12.4. The support vector loss function (hinge loss), compared to the
negative log-likelihood loss (binomial deviance) for logistic regression, squared-er-
ror loss, and a “Huberized” version of the squared hinge loss. All are shown as a
function of yf rather than f, because of the symmetry between the y = +1 and
y = —1 case. The deviance and Huber have the same asymptotes as the SVM
loss, but are rounded in the interior. All are scaled to have the limiting left-tail
slope of —1.

12.8.2 The SVM as a Penalization Method
With f(z) = h(z)T B + Bo, consider the optimization problem

N
A
g;}ré;[l — i f(@))+ + S 1181 (12.25)

where the subscript “4” indicates positive part. This has the form loss +
penalty, which is a familiar paradigm in function estimation. It is easy to
show (Exercise 12.1) that the solution to (12.25), with A = 1/C, is the
same as that for (12.8).

Examination of the “hinge” loss function L(y, f) = [1 — yf]+ shows that
it is reasonable for two-class classification, when compared to other more
traditional loss functions. Figure 12.4 compares it to the log-likelihood loss
for logistic regression, as well as squared-error loss and a variant thereof.
The (negative) log-likelihood or binomial deviance has similar tails as the
SVM loss, giving zero penalty to points well inside their margin, and a

12.3 Support Vector Machines and Kernels 427

TABLE 12.1. The population minimizers for the different loss functions in Fig-
ure 12.4. Logistic regression uses the binomial log-likelihood or deviance. Linear
discriminant analysis (Exercise 4.2) uses squared-error loss. The SVM hinge loss
estimates the mode of the posterior class probabilities, whereas the others estimate
a linear transformation of these probabilities.

Loss Function Lly, f(z)] Minimizing Function
Binomial Pr(Y = +1|z)
Deviance log[1 + e ¥/ (@] f(a) =log Pr(Y = -1|z)
SVM Hinge 1—yf(x)+ f(z) =sign[Pr(Y = +1jz) — 1
Loss

Squared | [y~ f@) = [1 - yf @) F() = 2Pr(Y = +1fz) — 1
Error

“Huberised” | —dyf(x), yf(z) <-1 flx) =2Pr(Y = +1fz) — 1
Square))

Hinge Loss [1—yf(z)]: otherwise

linear penalty to points on the wrong side and far away. Squared-error, on
the other hand gives a quadratic penalty, and points well inside their own
margin have a strong influence on the model as well. The squared hinge
loss L(y, f) = [1 — yf]% is like the quadratic, except it is zero for points
inside their margin. It still rises quadratically in the left tail, and will be
less robust than hinge or deviance to misclassified observations. Recently
Rosset and Zhu (2007) proposed a “Huberized” version of the squared hinge
loss, which converts smoothly to a linear loss at yf = —1.

We can characterize these loss functions in terms of what they are es-
timating at the population level. We consider minimizing EL(Y, f(X)).
Table 12.1 summarizes the results. Whereas the hinge loss estimates the
classifier G(x) itself, all the others estimate a transformation of the class
posterior probabilities. The “Huberized” square hinge loss shares attractive
properties of logistic regression (smooth loss function, estimates probabili-
ties), as well as the SVM hinge loss (support points).

Formulation (12.25) casts the SVM as a regularized function estimation
problem, where the coefficients of the linear expansion f(z) = By + h(z)T
are shrunk toward zero (excluding the constant). If h(z) represents a hierar-
chical basis having some ordered structure (such as ordered in roughness),

428 12. Flexible Discriminants

then the uniform shrinkage makes more sense if the rougher elements h; in
the vector h have smaller norm.

All the loss-functions in Table 12.1 except squared-error are so called
“margin maximizing loss-functions” (Rosset et al., 2004b). This means that
if the data are separable, then the limit of 8y in (12.25) as A — 0 defines
the optimal separating hyperplane!.

12.3.3 Function Estimation and Reproducing Kernels g
Here we describe SVMs in terms of function estimation in reproducing
kernel Hilbert spaces, where the kernel property abounds. This material is
discussed in some detail in Section 5.8. This provides another view of the
support vector classifier, and helps to clarify how it works.

Suppose the basis h arises from the (possibly finite) eigen-expansion of
a positive definite kernel K,

K(@,a') =Y ¢m()dm(z)om (12.26)

m=1

and hpy, () = VOm¢m(x). Then with 60, = /0,0, we can write (12.25)

as
N

, > A = 62,
IBI;H; 1- yi(/BO + Z omd)m(xi)) + 5 Z (57 (1227)
T m=1 + m=1 "

Now (12.27) is identical in form to (5.49) on page 169 in Section 5.8, and
the theory of reproducing kernel Hilbert spaces described there guarantees
a finite-dimensional solution of the form

N
fl@)=Bo+) aK(x, ;). (12.28)
1=1

In particular we see there an equivalent version of the optimization crite-
rion (12.19) [Equation (5.67) in Section 5.8.2; see also Wahba et al. (2000)],

N
A
i 1 —y,; f; ZaTK 12.29
g;{gi§:1(yif(@i))+ + 50 Ko, (12.29)

where K is the N x N matrix of kernel evaluations for all pairs of training
features (Exercise 12.2).

These models are quite general, and include, for example, the entire fam-
ily of smoothing splines, additive and interaction spline models discussed

IFor logistic regression with separable data, ﬂﬂx diverges, but ,éA/HﬁA/\ converges to
the optimal separating direction.

12.3 Support Vector Machines and Kernels 429

in Chapters 5 and 9, and in more detail in Wahba (1990) and Hastie and
Tibshirani (1990). They can be expressed more generally as

N
min Zu — yif (@)]4+ + A (f), (12.30)

where H is the structured space of functions, and J(f) an appropriate reg-
ularizer on that space. For example, suppose H is the space of additive
functions f(x) = 1;:1 fi(zj), and J(f) = >, J{f";(x;)}?dx;. Then the
solution to (12.30) is an additive cubic spline, and has a kernel representa-
tion (12.28) with K(z,z') = Z§=1 Kj(zj,2}). Each of the K is the kernel
appropriate for the univariate smoothing spline in a; (Wahba, 1990).

Conversely this discussion also shows that, for example, any of the kernels
described in (12.22) above can be used with any convex loss function, and
will also lead to a finite-dimensional representation of the form (12.28).
Figure 12.5 uses the same kernel functions as in Figure 12.3, except using
the binomial log-likelihood as a loss function?. The fitted function is hence
an estimate of the log-odds,

A Pr(Y = +1|x
f) = tog o =4
Pr(Y = —1|z)
X N
= Bo+ Y wK(w,w), (12.31)
i=1
or conversely we get an estimate of the class probabilities
5 1
Pr(Y = +1|z) = (12.32)

14+ e—Bo— N, &K (wa)

The fitted models are quite similar in shape and performance. Examples
and more details are given in Section 5.8.

It does happen that for SVMs, a sizable fraction of the NV values of «a;
can be zero (the nonsupport points). In the two examples in Figure 12.3,
these fractions are 42% and 45%, respectively. This is a consequence of the
piecewise linear nature of the first part of the criterion (12.25). The lower
the class overlap (on the training data), the greater this fraction will be.
Reducing A will generally reduce the overlap (allowing a more flexible f).
A small number of support points means that f (z) can be evaluated more
quickly, which is important at lookup time. Of course, reducing the overlap
too much can lead to poor generalization.

2Ji Zhu assisted in the preparation of these examples.

430 12. Flexible Discriminants

LR - Degree-4 Polynomial in Feature Space

Test Error: \
Bayes Eror: 0210 N g

LR - Radial Kernel in Feature Space

o

QB
Qoge

Training Error: 0.150 <
Test Error: 0.221 -
Bayes Error: 0.210 - -

FIGURE 12.5. The logistic regression versions of the SVM models in Fig-
ure 12.8, using the identical kernels and hence penalties, but the log-likelihood
loss instead of the SVM loss function. The two broken contours correspond to
posterior probabilities of 0.75 and 0.25 for the +1 class (or vice versa). The bro-
ken purple curve in the background is the Bayes decision boundary.

12.3 Support Vector Machines and Kernels 431

TABLE 12.2. Skin of the orange: Shown are mean (standard error of the mean,)
of the test error over 50 simulations. BRUTO fits an additive spline model adap-
tively, while MARS fits a low-order interaction model adaptively.

Test Error (SE)
Method No Noise Features Six Noise Features
1 SV Classifier 0.450 (0.003) 0.472 (0.003)
2 SVM/poly 2 0.078 (0.003) 0.152 (0.004)
3 SVM/poly 5 0.180 (0.004) 0.370 (0.004)
4 SVM/poly 10 0.230 (0.003) 0.434 (0.002)
5 BRUTO 0.084 (0.003) 0.090 (0.003)
6 MARS 0.156 (0.004) 0.173 (0.005)
Bayes 0.029 0.029

12.3.4 SVMs and the Curse of Dimensionality

In this section, we address the question of whether SVMs have some edge
on the curse of dimensionality. Notice that in expression (12.23) we are not
allowed a fully general inner product in the space of powers and products.
For example, all terms of the form 2X;X ; are given equal weight, and the
kernel cannot adapt itself to concentrate on subspaces. If the number of
features p were large, but the class separation occurred only in the linear
subspace spanned by say X7 and X5, this kernel would not easily find the
structure and would suffer from having many dimensions to search over.
One would have to build knowledge about the subspace into the kernel;
that is, tell it to ignore all but the first two inputs. If such knowledge were
available a priori, much of statistical learning would be made much easier.
A major goal of adaptive methods is to discover such structure.

We support these statements with an illustrative example. We generated
100 observations in each of two classes. The first class has four standard
normal independent features X1, X5, X3, X4. The second class also has four
standard normal independent features, but conditioned on 9 < > X JQ < 16.
This is a relatively easy problem. As a second harder problem, we aug-
mented the features with an additional six standard Gaussian noise fea-
tures. Hence the second class almost completely surrounds the first, like the
skin surrounding the orange, in a four-dimensional subspace. The Bayes er-
ror rate for this problem is 0.029 (irrespective of dimension). We generated
1000 test observations to compare different procedures. The average test
errors over 50 simulations, with and without noise features, are shown in
Table 12.2.

Line 1 uses the support vector classifier in the original feature space.
Lines 2—4 refer to the support vector machine with a 2-, 5- and 10-dimension-
al polynomial kernel. For all support vector procedures, we chose the cost
parameter C' to minimize the test error, to be as fair as possible to the

432 12. Flexible Discriminants

Test Error Curves — SVM with Radial Kernel

v=5 y=1 v=0.5 v=0.1

Test Error

1e-01 1e+01 1e+03 1e-01 1e+01 1e+03 1e-01 1e+01 1e+03 1e-01 1e+01 1e+03

C

FIGURE 12.6. Test-error curves as a function of the cost parameter C' for the
radial-kernel SVM classifier on the mizture data. At the top of each plot is the
scale parameter vy for the radial kernel: K., (x,y) = exp —v||z — y||>. The optimal
value for C' depends quite strongly on the scale of the kernel. The Bayes error
rate is indicated by the broken horizontal lines.

method. Line 5 fits an additive spline model to the (—1,+1) response by
least squares, using the BRUTO algorithm for additive models, described
in Hastie and Tibshirani (1990). Line 6 uses MARS (multivariate adaptive
regression splines) allowing interaction of all orders, as described in Chap-
ter 9; as such it is comparable with the SVM /poly 10. Both BRUTO and
MARS have the ability to ignore redundant variables. Test error was not
used to choose the smoothing parameters in either of lines 5 or 6.

In the original feature space, a hyperplane cannot separate the classes,
and the support vector classifier (line 1) does poorly. The polynomial sup-
port vector machine makes a substantial improvement in test error rate,
but is adversely affected by the six noise features. It is also very sensitive to
the choice of kernel: the second degree polynomial kernel (line 2) does best,
since the true decision boundary is a second-degree polynomial. However,
higher-degree polynomial kernels (lines 3 and 4) do much worse. BRUTO
performs well, since the boundary is additive. BRUTO and MARS adapt
well: their performance does not deteriorate much in the presence of noise.

=
12.3.5 A Path Algorithm for the SVM Classifier ‘Kﬁf
The regularization parameter for the SVM classifier is the cost parameter
C, or its inverse A in (12.25). Common usage is to set C high, leading often
to somewhat overfit classifiers.
Figure 12.6 shows the test error on the mixture data as a function of
C, using different radial-kernel parameters v. When v = 5 (narrow peaked
kernels), the heaviest regularization (small C) is called for. With v = 1

12.3 Support Vector Machines and Kernels 433

10
1

15

1.0

11 . 8 f(m),:VJrl
L i@=0 P /1181
m <
o f(z) =1
2 .
= 6 ~

-1.0

° 4,

e

t T T T T t
-0.5 0.0 05 1.0 15 20 00 02 04 06 08 10

FIGURE 12.7. A simple example illustrates the SVM path algorithm. (left
panel:) This plot illustrates the state of the model at X = 0.5. The “ + 17
points are orange, the “—17 blue. A = 1/2, and the width of the soft margin
is 2/]|8]| = 2 x 0.587. Two blue points {3,5} are misclassified, while the two or-
ange points {10,12} are correctly classified, but on the wrong side of their margin
f(z) = +1; each of these has y; f(x;) < 1. The three square shaped points {2, 6,7}
are exactly on their margins. (right panel:) This plot shows the piecewise linear
profiles a;(N\). The horizontal broken line at X\ = 1/2 indicates the state of the o
for the model in the left plot.

(the value used in Figure 12.3), an intermediate value of C' is required.
Clearly in situations such as these, we need to determine a good choice
for C', perhaps by cross-validation. Here we describe a path algorithm (in
the spirit of Section 3.8) for efficiently fitting the entire sequence of SVM
models obtained by varying C'.

It is convenient to use the loss+penalty formulation (12.25), along with
Figure 12.4. This leads to a solution for § at a given value of \:

N
1
Br=75 ; YT (12.33)

The «; are again Lagrange multipliers, but in this case they all lie in [0, 1].

Figure 12.7 illustrates the setup. It can be shown that the KKT optimal-
ity conditions imply that the labeled points (x;,y;) fall into three distinct
groups:

434 12. Flexible Discriminants

e Observations correctly classified and outside their margins. They have
yif(x;) > 1, and Lagrange multipliers «; = 0. Examples are the
orange points 8, 9 and 11, and the blue points 1 and 4.

e Observations sitting on their margins with y; f(z;) = 1, with Lagrange
multipliers «; € [0, 1]. Examples are the orange 7 and the blue 2 and
8.

e Observations inside their margins have y; f(z;) < 1, with «; = 1.
Examples are the blue 3 and 5, and the orange 10 and 12.

The idea for the path algorithm is as follows. Initially A is large, the
margin 1/||8,|| is wide, and all points are inside their margin and have
a; = 1. As X decreases, 1/]|8)|| decreases, and the margin gets narrower.
Some points will move from inside their margins to outside their margins,
and their o; will change from 1 to 0. By continuity of the a; (), these points
will linger on the margin during this transition. From (12.33) we see that
the points with «; = 1 make fixed contributions to S(\), and those with
«; = 0 make no contribution. So all that changes as A decreases are the
a; € [0,1] of those (small number) of points on the margin. Since all these
points have y; f(x;) = 1, this results in a small set of linear equations that
prescribe how «;(\) and hence) changes during these transitions. This
results in piecewise linear paths for each of the «;(\). The breaks occur
when points cross the margin. Figure 12.7 (right panel) shows the «a;(\)
profiles for the small example in the left panel.

Although we have described this for linear SVMs, exactly the same idea
works for nonlinear models, in which (12.33) is replaced by

N
Iaz) = % > K (@,). (12.34)
i=1

Details can be found in Hastie et al. (2004). An R package svmpath is
available on CRAN for fitting these models.

12.3.6 Support Vector Machines for Regression

In this section we show how SVMs can be adapted for regression with a
quantitative response, in ways that inherit some of the properties of the
SVM classifier. We first discuss the linear regression model

f(a) =28+ Bo, (12.35)

and then handle nonlinear generalizations. To estimate 3, we consider min-
imization of

N

H(B.A) = 3 Vi — F()) + 21812 (12.36)

i=1

12.3 Support Vector Machines and Kernels 435

<+ 4 : "-E 10 : /
| o |\ | Y
| = |
™ A | \ X /
1 o 1
— I - |
&~ N o ! ~ !
\\; | ©o A |
X | N :
- 7 1 < 1 1
1 1
O F-o-—--=--2] N "
1 1
1 o e S e R |
T —€ | € —=C ; <
-4 -2 0 2 4 -4 -2 0 2 4
r r

FIGURE 12.8. The left panel shows the e-insensitive error function used by the
support vector regression machine. The right panel shows the error function used
in Huber’s robust regression (blue curve). Beyond |c|, the function changes from
quadratic to linear.

where

Vo) = {0 if 7] < e, (12.37)

|r| — €, otherwise.

This is an “e-insensitive” error measure, ignoring errors of size less than
€ (left panel of Figure 12.8). There is a rough analogy with the support
vector classification setup, where points on the correct side of the deci-
sion boundary and far away from it, are ignored in the optimization. In
regression, these “low error” points are the ones with small residuals.

It is interesting to contrast this with error measures used in robust re-
gression in statistics. The most popular, due to Huber (1964), has the form

r?/2 if [r] <c¢
\% = -7 12.38
() {cr| N (12.38)

shown in the right panel of Figure 12.8. This function reduces from quadratic
to linear the contributions of observations with absolute residual greater
than a prechosen constant c¢. This makes the fitting less sensitive to out-
liers. The support vector error measure (12.37) also has linear tails (beyond
€), but in addition it flattens the contributions of those cases with small
residuals.

If B, BO are the minimizers of H, the solution function can be shown to
have the form

R N

g = Z(d;‘—di)mi, (12.39)
A Z;l
flx) = Z(@;*&i)<zyfpi>+ﬂ07 (12.40)

436 12. Flexible Discriminants

where &;, & are positive and solve the quadratic programming problem

N 1 N
min € E T+) E yila; —a;) + = E (af — i) — ayr)(wg, 2ir)
a“a 2

i=1 i,i/=1

subject to the constraints

N
> (of —a;) =0, (12.41)

a;a; = 0.

Due to the nature of these constraints, typically only a subset of the solution
values (& — &;) are nonzero, and the associated data values are called the
support vectors. As was the case in the classification setting, the solution
depends on the input values only through the inner products (x;, z;/). Thus
we can generalize the methods to richer spaces by defining an appropriate
inner product, for example, one of those defined in (12.22).

Note that there are parameters, € and A, associated with the criterion
(12.36). These seem to play different roles. € is a parameter of the loss
function Vi, just like c is for V. Note that both V, and Vi depend on the
scale of y and hence r. If we scale our response (and hence use Vi (r/c) and
V.(r/o) instead), then we might consider using preset values for ¢ and € (the
value ¢ = 1.345 achieves 95% efficiency for the Gaussian). The quantity A
is a more traditional regularization parameter, and can be estimated for
example by cross-validation.

12.3.7 Regression and Kernels

As discussed in Section 12.3.3, this kernel property is not unique to sup-
port vector machines. Suppose we consider approximation of the regression
function in terms of a set of basis functions {h,,(z)},m =1,2,..., M:

Zﬁm m () + Bo. (12.42)

To estimate 8 and By we minimize

H(B, o) = Zv @)+ 538 (12.43)

for some general error measure V(r). For any choice of V (r), the solution
f(it) = Zﬂmhm@?) + [30 has the form

N
z) = Z a; K (2, x;) (12.44)

12.3 Support Vector Machines and Kernels 437

with K(z,y) = Zn]\f{:l hom(2)hm (y). Notice that this has the same form
as both the radial basis function expansion and a regularization estimate,
discussed in Chapters 5 and 6.

For concreteness, let’s work out the case V(1) = r2. Let H be the N x M
basis matrix with ¢mth element h,,(x;), and suppose that M > N is large.
For simplicity we assume that 5y = 0, or that the constant is absorbed in
h; see Exercise 12.3 for an alternative.

We estimate 8 by minimizing the penalized least squares criterion

H(B) = (y —HB)"(y — HB) + A 8||* (12.45)
The solution is
y =Hpj (12.46)
with /3 determined by
~H”(y —HB)+ A3 =0. (12.47)

From this it appears that we need to evaluate the M x M matrix of inner
products in the transformed space. However, we can premultiply by H to
give

HS = (HH” + \I)"'HH y. (12.48)

The N x N matrix HH” consists of inner products between pairs of obser-
vations 4,4’; that is, the evaluation of an inner product kernel {HH}, ; =
K (x;,x). It is easy to show (12.44) directly in this case, that the predicted
values at an arbitrary x satisfy

fl@) = h(=)"p

N
=) @K(z,x), (12.49)
=1

where @ = (HH” +\I)~'y. As in the support vector machine, we need not
specify or evaluate the large set of functions hy(x), ha(z), ..., ha(x). Only
the inner product kernel K (x;,z;/) need be evaluated, at the N training
points for each 7,7’ and at points x for predictions there. Careful choice
of h,, (such as the eigenfunctions of particular, easy-to-evaluate kernels
K) means, for example, that HH” can be computed at a cost of N2/2
evaluations of K, rather than the direct cost N2M.

Note, however, that this property depends on the choice of squared norm
|8]]? in the penalty. It does not hold, for example, for the L; norm |3,
which may lead to a superior model.

438 12. Flexible Discriminants

12.8.8 Discussion

The support vector machine can be extended to multiclass problems, es-
sentially by solving many two-class problems. A classifier is built for each
pair of classes, and the final classifier is the one that dominates the most
(Kressel, 1999; Friedman, 1996; Hastie and Tibshirani, 1998). Alternatively,
one could use the multinomial loss function along with a suitable kernel,
as in Section 12.3.3. SVMs have applications in many other supervised
and unsupervised learning problems. At the time of this writing, empirical
evidence suggests that it performs well in many real learning problems.

Finally, we mention the connection of the support vector machine and
structural risk minimization (7.9). Suppose the training points (or their
basis expansion) are contained in a sphere of radius R, and let G(x) =
sign[f ()] = sign[8Tz + Bo] as in (12.2). Then one can show that the class
of functions {G(z), ||3]] < A} has VC-dimension h satisfying

h < R*A% (12.50)

If f(x) separates the training data, optimally for [|3|] < A, then with
probability at least 1 — 7 over training sets (Vapnik, 1996, page 139):
hllog (2N/h) + 1] —log (n/4)

Error et < 4 N . (12.51)

The support vector classifier was one of the first practical learning pro-
cedures for which useful bounds on the VC dimension could be obtained,
and hence the SRM program could be carried out. However in the deriva-
tion, balls are put around the data points—a process that depends on the
observed values of the features. Hence in a strict sense, the VC complexity
of the class is not fixed a priori, before seeing the features.

The regularization parameter C' controls an upper bound on the VC
dimension of the classifier. Following the SRM paradigm, we could choose C'
by minimizing the upper bound on the test error, given in (12.51). However,
it is not clear that this has any advantage over the use of cross-validation
for choice of C.

12.4 Generalizing Linear Discriminant Analysis

In Section 4.3 we discussed linear discriminant analysis (LDA), a funda-
mental tool for classification. For the remainder of this chapter we discuss
a class of techniques that produce better classifiers than LDA by directly
generalizing LDA.

Some of the virtues of LDA are as follows:

e It is a simple prototype classifier. A new observation is classified to the
class with closest centroid. A slight twist is that distance is measured
in the Mahalanobis metric, using a pooled covariance estimate.

