Evaluation of IR Models

Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Evaluating an IR system

- Note: the information need is translated into a query
- Relevance is assessed relative to the information need not the query
- E.g., Information need: I'm looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine.
- Query: wine red white heart attack effective
- You evaluate whether the doc addresses the information need, not whether it has these words

Data Supporting Evaluation

- Relevant measurement requires 3 elements:
 - 1. A benchmark document collection
 - 2. A benchmark suite of queries
 - 3. A usually binary assessment of either <u>Relevant</u> or <u>Nonrelevant</u> for each query and each document
 - Some work on more-than-binary

Standard relevance benchmarks

- TREC National Institute of Standards and Technology (NIST) has run a large IR test bed for many years
- Some other benchmark doc collections have been used
- "Retrieval tasks" specified
 - sometimes as queries
- Human experts mark, for each query and for each doc, <u>Relevant</u> or <u>Nonrelevant</u>
 - or at least for subset of docs that some system returned for that query

Should we instead use the accuracy measure for evaluation?

- Given a query, an engine classifies each doc as "Relevant" or "Nonrelevant"
- Equivalently, it returns a set of "Relevant" doc as the output result.
- The accuracy of an engine: the fraction of these classifications that are correct
- Accuracy is a commonly used evaluation measure in machine learning classification work
- Why is this not a very useful evaluation measure in IR?

Unranked Retrieval Evaluation

	Relevant	Nonrelevant	
Retrieved	tp	fp	
Not Retrieved	fn	tn	

• Accuracy = (tp + tn) / (tp + fp + tn + fn)

A Sample Scenario

- In an IR system that handles 1,000 documents in a document collection.
- Suppose that given a particular query, the number of true relevant documents is 10.
- Consider a poor retrieval method that only returns 1 document and this document is relevant.

	Relevant	Nonrelevant
Retrieved	1	0
Not Retrieved	9	990

- The accuracy is (1+990)/1,000 = 0.991
- It is quite easy for a poor retrieval system to get high accuracy if it just returns an extremely small number of documents.

Metric - Recall

 To address the above problem, we may define a metric known as recall defined as:

recall = fraction of gold standard relevant docs that can be retrieved

An Extreme Example

 What is the recall score of the following retrieval system?

- The recall score is 1.
- Intuitively, such retrieval system is not desirable.

Precision and Recall

- Precision: fraction of retrieved docs that are relevant
- Recall: fraction of relevant docs that are retrieved

	Relevant	Nonrelevant
Retrieved	tp	fp
Not Retrieved	fn	tn

- Precision P = tp/(tp + fp)
- Recall R = tp/(tp + fn)

Precision and Recall

	Relevant Nonrelevant	
Retrieved	tp	fp
Not Retrieved	fn	tn

Precision P = tp/(tp + fp)

Recall R = tp/(tp + fn)

Precision/Recall

- You can get high recall (but low precision) by retrieving all docs for all queries!
- Recall is a non-decreasing function of the number of docs retrieved
- In a good system, precision decreases as either the number of docs retrieved or recall increases
 - This is not a theorem, but it is just a general trend and it has been observed with strong empirical confirmation

A combined measure: F

 Combined measure that assesses precision/recall tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- People usually use balanced F₁ measure
 - i.e., with $\beta = 1$ or $\alpha = \frac{1}{2}$
- Harmonic mean is a conservative average
 - See CJ van Rijsbergen, Information Retrieval

Rank-Based Measures

Evaluating ranked results

- Suppose that all the results are ranked:
 - The system can return any number of results
 - By taking various numbers of the top returned documents (levels of recall), the evaluator can produce a precision-recall curve

An example
Suppose that
there are 20
relevant
documents
in the collection

ranked results		precision	recall	
d14	Relevant	1.0	0.05	
d3	Relevant	1.0	0.1	
d26	Nonrelevant	0.67	0.1	
d2	Relevant 0.75		0.15	
d12	Nonrelevant	0.6	0.15	
:	:	:	:	

A precision-recall curve

Averaging over queries

- A precision-recall graph for one query isn't a very sensible thing to look at
- You need to average performance over a whole bunch of queries.
- But there's a technical issue:
 - Precision-recall calculations place some points on the graph
 - How do you determine a value (interpolate) between the points?

Interpolated precision

 Idea: If locally precision increases with increasing recall, then you should get to count that...

11-point Interpolated Average Precision

- Graphs are good, but people want summary measures!
- The standard measure in the early TREC competitions: you take the precision at 11 levels of recall varying from 0 to 1 by tenths of the documents, using interpolation (the value for 0 is always interpolated!), and average them
- Evaluates performance at all recall levels

Typical (good) 11 point precisions

An example

Variance

- For a test collection, it is usual that a system may perform poorly on some information needs (e.g., F = 0.1) and excellently on others (e.g., F = 0.7)
- Indeed, it is usually the case that the variance in performance of the same system across queries is much greater than the variance of different systems on the same query.
- That is, there are easy information needs and hard ones!

Other Rank-Based Measures

- Binary relevance
 - Precision@K (P@K)
 - Mean Average Precision (MAP)
 - Mean Reciprocal Rank (MRR)
- Multiple levels of relevance
 - Normalized Discounted Cumulative Gain (NDCG)

Precision@K

- Set a rank threshold K
- Compute % relevant in top K
- Ignores documents ranked lower than K
- Ex:
 - Prec@3 of 2/3
 - Prec@4 of 2/4
 - Prec@5 of 3/5

Mean Average Precision (MAP)

- Average of the precision value obtained for the top k documents, each time a relevant doc is retrieved
- Avoids interpolation, use of fixed recall levels
- MAP for query collection is arithmetic average.
 - Macro-averaging: each query counts equally

If the set of gold standard relevant documents for a query $q_j \in Q$ is $\left\{d_1, \cdots, d_{m_j}\right\}$ and R_{jk} is the set of ranked retrieval results from the top result until you get to document d_k , then

$$MAP(Q) = \frac{1}{|Q|} \sum_{j=1}^{|Q|} \left(\frac{1}{m_j} \sum_{k=1}^{m_j} Precision(R_{jk}) \right)$$

Mean Average Precision

- Consider rank position of each relevant doc
 - $K_1, K_2, ... K_R$
- Compute Precision@K for each K₁, K₂, ... K_R
- Average precision = average of P@K
- Ex: has AvgPrec of $\frac{1}{3} \cdot \left(\frac{1}{1} + \frac{2}{3} + \frac{3}{5}\right) \approx 0.76$
- MAP is Average Precision across multiple queries/rankings

Average Precision

Ranking #1:
$$(1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)/6 = 0.78$$

Ranking #2:
$$(0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6)/6 = 0.52$$

MAP

mean average precision = (0.62 + 0.44)/2 = 0.53

average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44

Mean average precision

- If a relevant document never gets retrieved, we assume the precision corresponding to that relevant doc to be zero
- MAP is macro-averaging: each query counts equally
- Now perhaps most commonly used measure in research papers
- Good for web search?
- MAP assumes user is interested in finding many relevant documents for each query
- MAP requires many relevance judgments in text collection

When There's only 1 Relevant Document

- Scenarios:
 - known-item search
 - navigational queries
 - looking for a fact
- Search Length = Rank of the answer
 - measures a user's effort

Mean Reciprocal Rank

Consider rank position, K, of first relevant doc

• Reciprocal Rank score =
$$\frac{1}{K}$$

MRR is the mean RR across multiple queries

Discounted Cumulative Gain

Popular measure for evaluating web search and related tasks

- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant document
 - the lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined

Discounted Cumulative Gain

- Uses graded relevance as a measure of usefulness, or gain, from examining a document
- Gain is accumulated starting at the top of the ranking and may be reduced, or discounted, at lower ranks
- Typical discount is 1/log(rank)
 - With base 2, the discount at rank 4 is 1/2, and at rank 8 it is 1/3

Summarize a Ranking: DCG

- What if relevance judgments are in a scale of [0,r]? r>2
- Cumulative Gain (CG) at rank n
 - Let the ratings of the n documents be r₁, r₂, ...r_n
 (in ranked order)
 - $-CG = r_1 + r_2 + ... r_n$
- Discounted Cumulative Gain (DCG) at rank n
 - $-DCG = r_1 + r_2/log_2 + r_3/log_2 + ... r_n/log_2 n$
 - We may use any base for the logarithm, e.g., base=b

Discounted Cumulative Gain

 DCG is the total gain accumulated at a particular rank p:

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

Alternative formulation:

$$DCG_p = \sum_{i=1}^{p} \frac{2^{rel_i} - 1}{log(1+i)}$$

- used by some web search companies
- emphasis on retrieving highly relevant documents

DCG Example

 10 ranked documents judged on 0-3 relevance scale:

```
3, 2, 3, 0, 0, 1, 2, 2, 3, 0
```

discounted gain:

```
3, 2/1, 3/1.59, 0, 0, 1/2.59, 2/2.81, 2/3, 3/3.17, 0
= 3, 2, 1.89, 0, 0, 0.39, 0.71, 0.67, 0.95, 0
```

DCG:

```
3, 5, 6.89, 6.89, 6.89, 7.28, 7.99, 8.66, 9.61, 9.61
```

Summarize a Ranking: NDCG

- Normalized Cumulative Gain (NDCG) at rank n
 - Normalize DCG at rank n by the DCG value at rank n of the ideal ranking
 - The ideal ranking would first return the documents with the highest relevance level, then the next highest relevance level, etc
 - Compute the precision (at rank) where each (new) relevant document is retrieved => p(1),...,p(k), if we have k rel. docs
- NDCG is now quite popular in evaluating Web search

NDCG - Example

4 documents: d₁, d₂, d₃, d₄

	Ground Truth		Ranking Function ₁		Ranking Function ₂	
i	Document Order	r _i	Document Order	r _i	Document Order	r _i
1	d4	2	d3	2	d3	2
2	d3	2	d4	2	d2	1
3	d2	1	d2	1	d4	2
4	d1	0	d1	0	d1	0
	NDCG _{GT} =1.00		NDCG _R	_{F1} =1.00	NDCG _{RF2}	=0.9203

$$DCG_{GT} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$

$$DCG_{RF1} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$

$$MaxDCG = DCG_{GT} = 4.6309$$

$$DCG_{RF2} = 2 + \left(\frac{1}{\log_2 2} + \frac{2}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.2619$$

 $\frac{4.2619}{4.6309} = 0.9203$

Standard relevance benchmarks: Others

GOV2

- Another TREC/NIST collection
- 25 million web pages
- Largest collection that is easily available
- But still 3 orders of magnitude smaller than what Google/Yahoo/MSN index

NTCIR

- East Asian language and cross-language information retrieval
- Cross Language Evaluation Forum (CLEF)
 - This evaluation series has concentrated on European languages and cross-language information retrieval

Evaluation at large search engines

- Search engines have test collections of queries and hand-ranked results
- Recall is difficult to measure on the web
- Search engines often use precision at top k, e.g., k = 10
- ... or measures that reward you more for getting rank 1 right than for getting rank 10 right.
 - NDCG (Normalized Cumulative Discounted Gain)
- Search engines also use non-relevance-based measures.
 - Clickthrough on first result
 - Not very reliable if you look at a single clickthrough ... but pretty reliable in the aggregate.
 - Studies of user behavior in the lab
 - A/B testing