Latent Semantic Models

Reference: Introduction to Information Retrieval
by C. Manning, P. Raghavan, H. Schutze



Problems with Lexical Semantics

 Ambiguity and association in natural language

— Polysemy: Words often have a multitude of
meanings and different types of usage (more
severe in very heterogeneous collections).

— The basic IR models are unable to discriminate
between different meanings of the same word.

— Synonymy: Different terms may have an identical
or a similar meaning (weaker: words indicating
the same topic).

— No associations between words are made in the
vector space representation.



Polysemy and Context

* Document similarity on single word level:
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Latent Semantic Indexing (LSI)

* Perform a low-rank approximation of
document-term matrix (typical rank 100-300)
* General idea

— Map documents (and terms) to a low-dimensional
representation.

— Design a mapping such that the low-dimensional
space reflects semantic associations (latent
semantic space).

— Compute document similarity based on the inner
product in this latent semantic space



Goals of LS|

e Similar terms map to similar location in low
dimensional space

* Noise reduction by dimension reduction



Latent Semantic Analysis
* Latent semantic space: illustrating example
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Latent Semantic Analysis

e Latent Semantic Analysis (LSA) is a particular
application of Singular Value Decomposition (SVD) to
a M X N term-document matrix A representing M
words and their co-occurrence with N documents.

e SVD factorizes any such rectangular M X N matrix A
into the product of three matrices U, X, and V.



Latent Semantic Analysis

In the M X r matrix U, each of the u rows still
represents a word.

Each column now represents one of r dimensions in a
latent space. Sometimes we call it “topic” or
“concept”.

The r column vectors are orthogonal to each other.

For two vectors such as v{ and v,, they are
orthogonal if v; v, = viv, =0



Latent Semantic Analysis

 The columns are ordered by the amount of variance
in the original dataset each accounts for.

e The number of such dimensions r is the rank of X

(the rank of a matrix is the number of linearly
independent rows).



Latent Semantic Analysis

e Y isadiagonal r X r matrix, with singular values
along the diagonal, expressing the importance of
each dimension.

e The r X N matrix VT still represents documents, but
each row now represents one of the new latent

dimensions and the r row vectors are orthogonal to
each other.



Latent Semantic Analysis

* By using only the first kK dimensions, of U, X, and V
instead of all r dimensions, the product of these 3
matrices becomes a least-squares approximation to
the original A.

* Since the first dimensions encode the most variance,
one way to view the reconstruction is thus as
modeling the most important information in the
original dataset.



Latent Semantic Analysis

e SVD applied to co-occurrence matrix A:
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Latent Semantic Analysis

* Taking only the top k, k < r dimensions after the SVD is
applied to the co-occurrence matrix A:

g, 0 0 - 0-
0 o, 0 - 0 ;
A _ Uy 0 0 o3 - O [ |74 ]
0 0 0 - o k XN
k Xk

M x N _ _Mxk_

SVD factorizes a matrix into a product of three matrices, U, £, and V. Taking
the first k dimensions gives a M X k matrix U}, that has one k-dimensioned
row per word
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Related Linear Algebra
Background



Eigenvalues & Eigenvectors

* Eigenvectors (for a square mxm matrix S)

Sy = Av Example
A T

(right) eigenvector eigenvalue 4 0 BACYARRAY

2
veR™#0 AER
* How many eigenvalues are there at most?
Sv=\v <= (S—-A)v=0
only has a non-zero solution if |[S — A\I| =0

This is a mth order equation in A which can have at

most m distinct solutions (roots of the characteristic
polynomial) - can be complex even though S is real.
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Matrix-vector multiplication

30 0 0
S={0 20 0
0 0 1

V, =
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On each eigenvector, S acts as a multiple of t
matrix: but as a (usually) different multiple on each.

2

has eigenvalues 30, 20, 1 with
corresponding eigenvectors

ne identity

Any vector (say x= |*|) can be viewed as a combination of

the eigenvectors:

X=2v;+4v,+ 6V,
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Matrix vector multiplication

Thus a matrix-vector multiplication such as Sx (S,
x as in the previous slide) can be rewritten in
terms of the eigenvalues/vectors:

SX =S(2v, +4v, +6V,)
SX =23V, +45V, + 63V, =24V, +4AV, +64,V,
SX =60v, + 80V, + 6V,

Even though x is an arbitrary vector, the action of
S on x is determined by the eigenvalues/vectors.
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Matrix vector multiplication

e Suggestion: the effect of “smal

small.

|”

eigenvalues is

* If we ignored the smallest eigenvalue (1), then
instead of

/60\
80

\ 0 )

we would get

/60\
80
0

* These vectors are similar (in cosine similarity,

etc.)



Left Eigenvectors

* |n a similar fashion, the left eigenvectors of a
square matrix C are y such that :

y1C=ay"

where A is the corresponding eigenvalue:

= Consider a square matrix S with eigenvector v. We
have: Sy = Jv Recall that
(AB)T = BTAT
vist =av'
= Therefore, the eigenvalue of the right eigenvector is

the same as the eigenvalue of the left eigenvector of
the transposed matrix.
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Eigenvalues & Eigenvectors

V12 = 41,23V

For a symmetric matrix S, eigenvectors for
distinct eigenvalues are orthogonal

T



Eigenvalues & Eigenvectors

All eigenvalues of a real symmetric matrix are real.
for complex A,if |[S—Al|=0andS=S" = 1R

All eigenvalues of a¢positive semidefi@matrix
are non-negative

Ywe R W Sw>0, thenif Sv=Av=1>0

For any matrix A, ATA is positive semidefinite
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Let

Then S _

Example

2-A
1

Real, symmetric.

1
2-1

—

1S—Al|=(2-1)*-1=0.

The eigenvalues are 1 and

(nonnegative, real).

The eigenvectors are orthogonal (and real):

|

1
—1

)

Plug in these values
and solve for
eigenvectors.




Eigen/diagonal Decomposition

e Let S ¢ R™*™ be a square matrix with m linearly
independent eigenvectors (a “non-defective”

matrix)
* Theorem: Exists an eigen decomposition
l diagonal Unique
S =UAU"! for
distinct
eigen-
— (cf. matrix diagonalization theorem) values

 Columns of U are eigenvectors of S
* Diagonal elements of A are eigenvalues of S

A =diag(A1,..., A\m), A > A1
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Diagonal decomposition: why/how

Let U have the eigenvectors as columns:U=|v, .. v

Then, SU can be written

SU=Slv, ... v |=|A4Y, ... AV, [=|V, .. V

Thus SU=UA, or U 'SU=A

And S=UAU"'.




Diagonal decomposition - example

S =

Recall

The eigenvectors(

Inverting, we have U ™

Then, S=UAUT =
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Example continued

Let’s divide U (and multiply U-T) by~/2

Then, S=

/42 1421

—1/42 142
Q

A

01/v2 —-1/42

/N2 142
(Q'=Q7)



Symmetric Eigen Decomposition

If S ¢ R™X™ square symmetric matrix with m linearly independent
eigenvectors:

Theorem: There exists a (unique) eigen decomposition

S=QAQ’
where Q is orthogonal:
« Q'=Q7
» Each column v; of Q are normalized eigenvectors
= Columns are orthogonal (also called orthonormal basis)

T P .
Vievi=ViVv;=0 1f 1# ]

Vi eV =V v =1
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Connection to Singular Value
Decomposition (SVD)

Recall a M X N term-document matrix A representing M words
and their co-occurrence with N documents.

By multiplying A by its transposed version,
AAT =UzVTvETU!
=Uzz'u’
—UzU'

Note that the left-hand side is a squared symmetric matrix,

and the right-hand side represents its symmetric diagonal
decomposition.

SVD factorizes any such rectangular M X N matrix 4 into the
product of three matrices U, X, and V7.



Singular Value
Decomposition (SVD)



Singular Value Decomposition

For an M x N matrix A ofrank r there exists a
factorization (Singular Value Decomposition = SVD)
as follows: A—USVT

A BN
MxM| | MxN Vis NxN

The columns of U are normalized orthogonal eigenvectors of AAT.

The columns of V are normalized orthogonal eigenvectors of ATA.

Eigenvalues %, ... A, of AAT are the eigenvalues of ATA.

o; = \/Z > =diag (glmgr )<ﬁ Singular values.

Recall that the rank of a matrix is the maximum number of linearly
independent rows or columns



Singular Value Decomposition

* [llustration of SVD dimensions and sparseness
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SVD example

1 -1
Llet A=| 0 1

_1 O _
Thus M=3, N=2. Its SVD is

2 /4/6 0 1/4/3 | /3 O]/«/E A
—1/4/6 1/A42  1/4/3 | 0 1 LI 1/«/5
1/4/6 1/A2 0 —1/4/3] 0 0 | -

Typically, the singular values arranged in decreasing order.



Low-rank Approximation

* SVD can be used to compute optimal low-rank
approximations.

* Approximation problem: Find X such that

min HA_ X HF<— Frobenius norm
X:rank( X )=k ——
|Allp = \jzz "

=1 =1

* Let the solution be denoted by A, (rank k)
* A, is the best approximation of A.
e Typically, we want k <<rr.



Low-rank Approximation

e Solution via SVD
A =U diag(o,,...,0,.0,....0)V'

set smallest r-k
singular values to zero
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Reduced SVD

= If we retain only k singular values, and set the rest
to 0, we don't need the matrix parts in red

s Then Xis kX k, Uy is Mx k, V'is kx N, and A, is
MXxN

A, = Uz VI
k = UrZi Vi
EE # o [x | & ] =
e e i ':!:' # - » . ] - - -
¥ ¥ ¥ = Hr 1 - » . L] 1 Hr Hr
¥ ¥ ¥ # - x - - b " *
~h-- -
| ok E ¥ ;4 E A -5 . x A l
A\ J - : VT
™ k
Ay Uk g

= This is referred to as the reduced SVD
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Approximation error

 How good (bad) is this approximation?

* |t's the best possible, measured by the
-robenius norm of the error:

min [A-X[. =[A-A]. =0

X:rank (X )=k

where the o, are ordered such that ¢, =2 G,,;.

Suggests why Frobenius error drops as k
increased.



SVD Low-rank approximation

* Suppose that the term-doc matrix A may have
M=50000, N=10 million (and rank close to
50000)

* We can construct an approximation A,,, with
rank 100.

— Of all rank 100 matrices, it would have the lowest
Frobenius error.




Latent Semantic
Indexing via the SVD



What it is

* From term-doc matrix A, we compute the
approximation A,

* There is a row for each term and a column for
each docin A,

* Thus docs live in a space of k<<r dimensions

—These dimensions are not the original axes



Performing the maps

* Each row and column of A gets mapped into
the k-dimensional LS| space, by the SVD.
Ak — UkaV,Z
AL =V, 2lUl
ATU, = V2T The columns of Uj, are normalized

= As aresult:

Vi = AU Z¢!
= Aquery g is also mapped into this space, by
O = qTUkZ;1

Query NOT a sparse vector



Performing the maps

* Conduct similarity calculation under the low
dimensional space (k)

e Claim —this is not only the mapping with the
best (Frobenius error) approximation to A, but
also improves retrieval.



Empirical evidence

* Experiments on TREC 1/2/3 — Dumais

* Lanczos SVD code (available on netlib) due to Berry
used in these experiments

— Running times quite long

* Dimensions — various values 250-350 reported.



Empirical evidence

e Precision at or above median TREC precision
— Top scorer on almost 20% of TREC topics
e Slightly better on average than straight vector spaces

e Effect of dimensionality:

Dimensions | Precision
250 0.367
300 0.371
346 0.374




Failure modes

* Negated phrases

— TREC topics sometimes negate certain
query/terms phrases — precludes automatic
conversion of topics to latent semantic space.

* Boolean queries

— As usual, free-text/vector space syntax of LSI
queries precludes (say) “Find any doc having to do
with the following 5 companies”



