Latent Semantic Models

Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Problems with Lexical Semantics

- Ambiguity and association in natural language
 - Polysemy: Words often have a multitude of meanings and different types of usage (more severe in very heterogeneous collections).
 - The basic IR models are unable to discriminate between different meanings of the same word.
 - Synonymy: Different terms may have an identical or a similar meaning (weaker: words indicating the same topic).
 - No associations between words are made in the vector space representation.

Polysemy and Context

Document similarity on single word level:

Latent Semantic Indexing (LSI)

- Perform a low-rank approximation of document-term matrix (typical rank 100-300)
- General idea
 - Map documents (and terms) to a low-dimensional representation.
 - Design a mapping such that the low-dimensional space reflects semantic associations (latent semantic space).
 - Compute document similarity based on the inner product in this latent semantic space

Goals of LSI

- Similar terms map to similar location in low dimensional space
- Noise reduction by dimension reduction

• Latent semantic space: illustrating example

courtesy of Susan Dumais

- Latent Semantic Analysis (LSA) is a particular application of Singular Value Decomposition (SVD) to a $M \times N$ term-document matrix A representing M words and their co-occurrence with N documents.
- SVD factorizes any such rectangular $M \times N$ matrix A into the product of three matrices U, Σ , and V^T .

- In the $M \times r$ matrix U, each of the u rows still represents a word.
- Each column now represents one of r dimensions in a latent space. Sometimes we call it "topic" or "concept".
- The r column vectors are orthogonal to each other.
- For two vectors such as v_1 and v_2 , they are orthogonal if $v_1 \cdot v_2 = v_1^T v_2 = 0$

- The columns are ordered by the amount of variance in the original dataset each accounts for.
- The number of such dimensions *r* is the **rank** of X (the rank of a matrix is the number of linearly independent rows).

- Σ is a diagonal $r \times r$ matrix, with **singular values** along the diagonal, expressing the importance of each dimension.
- The $r \times N$ matrix V^T still represents documents, but each row now represents one of the new latent dimensions and the r row vectors are orthogonal to each other.

- By using only the first k dimensions, of U, Σ , and V instead of all r dimensions, the product of these 3 matrices becomes a least-squares approximation to the original A.
- Since the first dimensions encode the most variance, one way to view the reconstruction is thus as modeling the most important information in the original dataset.

SVD applied to co-occurrence matrix A:

$$\begin{bmatrix} & & \\ & A & \\ & & \end{bmatrix} = \begin{bmatrix} & & & \\ & U & \\ & & \end{bmatrix} \begin{bmatrix} \sigma_1 & 0 & 0 & \cdots & 0 \\ 0 & \sigma_2 & 0 & \cdots & 0 \\ 0 & 0 & \sigma_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \sigma_r \end{bmatrix} \begin{bmatrix} & & & V^T & \\ & & & \\ & & & r \times r & \end{bmatrix}$$

$$M \times N \qquad M \times r$$

• Taking only the top $k, k \le r$ dimensions after the SVD is applied to the co-occurrence matrix A:

SVD factorizes a matrix into a product of three matrices, U, Σ , and V^T . Taking the first k dimensions gives a $M \times k$ matrix U_k that has one k-dimensioned row per word

Related Linear Algebra Background

Eigenvalues & Eigenvectors

• **Eigenvectors** (for a square $m \times m$ matrix S)

How many eigenvalues are there at most?

$$\mathbf{S}\mathbf{v} = \lambda\mathbf{v} \iff (\mathbf{S} - \lambda\mathbf{I})\,\mathbf{v} = \mathbf{0}$$
 only has a non-zero solution if $|\mathbf{S} - \lambda\mathbf{I}| = 0$
This is a m th order equation in λ which can have at most m distinct solutions (roots of the characteristic polynomial) - $\underline{\mathrm{can}}$ be complex even though \mathbf{S} is real.

Matrix-vector multiplication

$$S = \begin{bmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

 $S = \begin{vmatrix} 30 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 1 \end{vmatrix}$ has eigenvalues 30, 20, 1 with corresponding eigenvectors

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

On each eigenvector, S acts as a multiple of the identity matrix: but as a (usually) different multiple on each.

Any vector (say $x = {2 \choose 4 \choose 6}$) can be viewed as a combination of the eigenvectors: $x = 2v_1 + 4v_2 + 6v_3$

Matrix vector multiplication

 Thus a matrix-vector multiplication such as Sx (S, x as in the previous slide) can be rewritten in terms of the eigenvalues/vectors:

$$Sx = S(2v_1 + 4v_2 + 6v_3)$$

$$Sx = 2Sv_1 + 4Sv_2 + 6Sv_3 = 2\lambda_1v_1 + 4\lambda_2v_2 + 6\lambda_3v_3$$

$$Sx = 60v_1 + 80v_2 + 6v_3$$

 Even though x is an arbitrary vector, the action of S on x is determined by the eigenvalues/vectors.

Matrix vector multiplication

- Suggestion: the effect of "small" eigenvalues is small.
- If we ignored the smallest eigenvalue (1), then instead of

$$\begin{pmatrix} 60 \\ 80 \\ 6 \end{pmatrix} \qquad \text{we would get} \qquad \begin{pmatrix} 60 \\ 80 \\ 0 \end{pmatrix}$$

These vectors are similar (in cosine similarity, etc.)

Left Eigenvectors

• In a similar fashion, the left eigenvectors of a square matrix *C* are *y* such that :

$$y^T C = \lambda y^T$$

 $(AB)^T = B^T A^T$

where λ is the corresponding eigenvalue:

■ Consider a square matrix S with eigenvector v. We have: $Sv = \lambda v$ Recall that

$$v^T S^T = \lambda v^T$$

■ Therefore, the eigenvalue of the right eigenvector is the same as the eigenvalue of the left eigenvector of the transposed matrix.

Eigenvalues & Eigenvectors

$$Sv_{\{1,2\}} = \lambda_{\{1,2\}}v_{\{1,2\}}$$

For a symmetric matrix *S*, eigenvectors for distinct eigenvalues are orthogonal

For
$$\lambda_1 \neq \lambda_2$$
, $v_1 \bullet v_2 = v_1^T v_2 = 0$

Eigenvalues & Eigenvectors

All eigenvalues of a real symmetric matrix are real.

for complex
$$\lambda$$
, if $|S - \lambda I| = 0$ and $S = S^T \Rightarrow \lambda \in \Re$

All eigenvalues of a positive semidefinite matrix are non-negative

$$\forall w \in \mathbb{R}^n, w^T S w \ge 0$$
, then if $S v = \lambda v \Rightarrow \lambda \ge 0$

For any matrix A, A^TA is positive semidefinite

Example

• Let
$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 Real, symmetric.

• Then
$$S - \lambda I = \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} \Rightarrow$$

$$|S - \lambda I| = (2 - \lambda)^2 - 1 = 0.$$

- $|S-\lambda I| = (2-\lambda)^2 1 = 0.$ The eigenvalues are 1 and 3 (nonnegative, real).
- The eigenvectors are orthogonal (and real):

$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Plug in these values and solve for eigenvectors.

Eigen/diagonal Decomposition

- Let $\mathbf{S} \in \mathbb{R}^{m \times m}$ be a square matrix with m linearly independent eigenvectors (a "non-defective" matrix)
- Theorem: Exists an eigen decomposition

$$\mathbf{S} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{-1}$$
 diagonal

- (cf. matrix diagonalization theorem)
- Columns of *U* are eigenvectors of *S*
- Diagonal elements of Λ are eigenvalues of S

$$\mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_m), \ \lambda_i \ge \lambda_{i+1}$$

Unique

for

distinct

eigen-

values

Diagonal decomposition: why/how

Let
$$\boldsymbol{U}$$
 have the eigenvectors as columns: $U = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix}$

Then, *SU* can be written

$$SU = S \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} = \begin{bmatrix} \lambda_1 v_1 & \dots & \lambda_n v_n \end{bmatrix} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \begin{bmatrix} \lambda_1 & \dots & \lambda_n \end{bmatrix}$$

Thus $SU=U\Lambda$, or $U^{-1}SU=\Lambda$

And $S=U\Lambda U^{-1}$.

Diagonal decomposition - example

Recall
$$S = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}; \lambda_1 = 1, \lambda_2 = 3.$$

The eigenvectors
$$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 and $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ form $U = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$

Inverting, we have
$$U^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$
 Recall UU-1 = 1.

Then,
$$S = U \Lambda U^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

Example continued

Let's divide \boldsymbol{U} (and multiply \boldsymbol{U}^{-1}) by $\sqrt{2}$

Then,
$$S = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

$$Q \qquad A \qquad (Q^{-1} = Q^{T})$$

Symmetric Eigen Decomposition

- If $\mathbf{S} \in \mathbb{R}^{m \times m}$ square symmetric matrix with m linearly independent eigenvectors:
- Theorem: There exists a (unique) eigen decomposition

$$S = Q\Lambda Q^T$$

- where Q is orthogonal:
 - $Q^{-1} = Q^T$
 - Each column v_i of Q are normalized eigenvectors
 - Columns are orthogonal (also called orthonormal basis)

$$v_i \bullet v_j = v_i^T v_j = 0 \quad \text{if} \quad i \neq j$$

$$v_i \bullet v_i = v_i^T v_i = 1$$

Connection to Singular Value Decomposition (SVD)

- Recall a $M \times N$ term-document matrix A representing M words and their co-occurrence with N documents.
- By multiplying A by its transposed version,

$$AA^{T} = U\Sigma V^{T}V\Sigma^{T}U^{T}$$
$$= U\Sigma \Sigma^{T}U^{T}$$
$$= U\Sigma^{2}U^{T}$$

- Note that the left-hand side is a squared symmetric matrix, and the right-hand side represents its symmetric diagonal decomposition.
- SVD factorizes any such rectangular $M \times N$ matrix A into the product of three matrices U, Σ , and V^T .

Singular Value Decomposition (SVD)

Singular Value Decomposition

For an $M \times N$ matrix \mathbf{A} of rank r there exists a factorization (Singular Value Decomposition = \mathbf{SVD}) as follows:

$$\begin{array}{c|c}
A = U \sum V^{T} \\
\hline
M \times M & M \times N
\end{array}$$
V is $N \times N$

The columns of U are normalized orthogonal eigenvectors of AA^T . The columns of V are normalized orthogonal eigenvectors of A^TA . Eigenvalues $\lambda_1 \dots \lambda_r$ of AA^T are the eigenvalues of A^TA .

$$\sigma_i = \sqrt{\lambda_i}$$
 $\Sigma = diag(\sigma_1...\sigma_r)$ Singular values.

Recall that the rank of a matrix is the maximum number of linearly independent rows or columns

Singular Value Decomposition

Illustration of SVD dimensions and sparseness

SVD example

Let
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Thus M=3, N=2. Its SVD is

$$\begin{bmatrix} 2/\sqrt{6} & 0 & 1/\sqrt{3} & \sqrt{3} & 0 \\ -1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} & 0 & 1/\sqrt{2} \\ 1/\sqrt{6} & 1/\sqrt{2} & -1/\sqrt{3} & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Typically, the singular values arranged in decreasing order.

Low-rank Approximation

- SVD can be used to compute optimal low-rank approximations.
- Approximation problem: Find X such that

$$\min_{X: rank(X)=k} \left\|A-X\right\|_{F\longleftarrow Frobenius \ norm}$$

$$\|\mathbf{A}\|_{F} \equiv \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^{2}}.$$

- Let the solution be denoted by A_k (rank k)
- A_k is the best approximation of A.
- Typically, we want k << r.

Low-rank Approximation

Solution via SVD

$$A_k = U \operatorname{diag}(\sigma_1, ..., \sigma_k, 0, ..., 0)V^T$$

$$set smallest r-k$$

$$singular values to zero$$

$$A_k = \sum_{i=1}^k \sigma_i u_i v_i^T \underbrace{\qquad \qquad column \ notation: \ sum \ of \ rank \ 1 \ matrices}$$

Reduced SVD

- If we retain only k singular values, and set the rest to 0, we don't need the matrix parts in red
- Then Σ_k is $k \times k$, U_k is $M \times k$, V_k^T is $k \times N$, and A_k is $M \times N$

$$A_k = U_k \Sigma_k V_k^T$$

This is referred to as the reduced SVD

Approximation error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error:

$$\min_{X:rank(X)=k} ||A - X||_F = ||A - A_k||_F = \sigma_{k+1}$$

where the σ_i are ordered such that $\sigma_i \geq \sigma_{i+1}$. Suggests why Frobenius error drops as k increased.

SVD Low-rank approximation

- Suppose that the term-doc matrix A may have M=50000, N=10 million (and rank close to 50000)
- We can construct an approximation A_{100} with rank 100.
 - Of all rank 100 matrices, it would have the lowest
 Frobenius error.

Latent Semantic Indexing via the SVD

What it is

- From term-doc matrix A, we compute the approximation A_k .
- There is a row for each term and a column for each doc in A_k
- Thus docs live in a space of k<<r dimensions
 - These dimensions are not the original axes

Performing the maps

 Each row and column of A gets mapped into the k-dimensional LSI space, by the SVD.

$$\begin{aligned} A_k &= U_k \Sigma_k V_k^T \\ A_k^T &= V_k \Sigma_k^T U_k^T \\ A_k^T U_k &= V_k \Sigma_k^T \end{aligned} \quad \text{The columns of } U_k \text{ are normalized}$$

- As a result: $V_k = A_k^T U_k \Sigma_k^{-1}$
- A query q is also mapped into this space, by

$$q_k = q^T U_k \Sigma_k^{-1}$$

Query NOT a sparse vector

Performing the maps

- Conduct similarity calculation under the low dimensional space (k)
- Claim this is not only the mapping with the best (Frobenius error) approximation to A, but also improves retrieval.

Empirical evidence

- Experiments on TREC 1/2/3 Dumais
- Lanczos SVD code (available on netlib) due to Berry used in these experiments
 - Running times quite long
- Dimensions various values 250-350 reported.

Empirical evidence

- Precision at or above median TREC precision
 - Top scorer on almost 20% of TREC topics
- Slightly better on average than straight vector spaces
- Effect of dimensionality:

Dimensions	Precision
250	0.367
300	0.371
346	0.374

Failure modes

- Negated phrases
 - TREC topics sometimes negate certain query/terms phrases – precludes automatic conversion of topics to latent semantic space.
- Boolean queries
 - As usual, free-text/vector space syntax of LSI queries precludes (say) "Find any doc having to do with the following 5 companies"