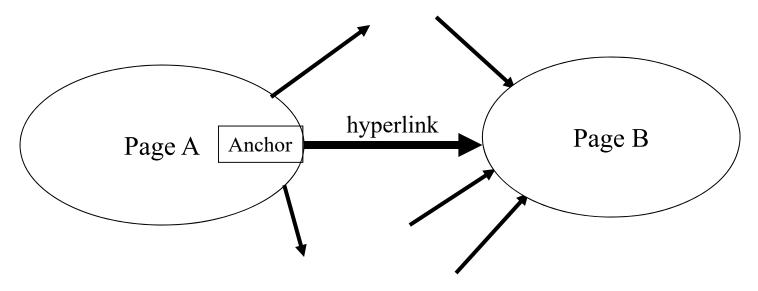
Link Analysis

Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

The Web as a Directed Graph

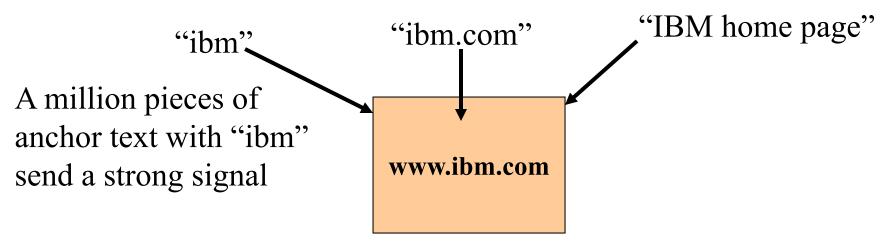


Assumption 1: A hyperlink between pages denotes a conferral of authority (quality signal)

Assumption 2: The text in the anchor of the hyperlink describes the target page (textual context)

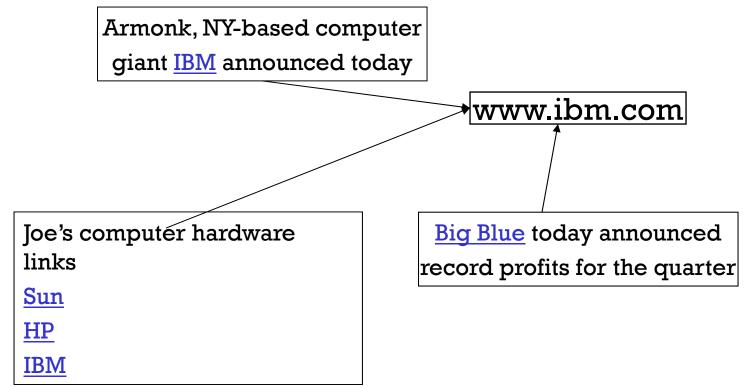
Anchor Text

- For *ibm* how to distinguish between:
 - IBM's home page (mostly graphical)
 - IBM's copyright page (high term freq. for 'ibm')
 - Rival's spam page (arbitrarily high term freq.)



Indexing anchor text

• When indexing a document *D*, include (with some weight) anchor text from links pointing to *D*.



Indexing anchor text

- Can sometimes have unexpected side effects e.g., evil empire.
- Can score anchor text with weight depending on the authority of the anchor page's website
 - E.g., if we were to assume that content from cnn.com or yahoo.com is authoritative, then trust the anchor text from them

PageRank

Ranking derived from the link structure

The Internet: How Search Works

https://www.youtube.com/watch?v=LVV 93mBfSU

2'35"

PageRank

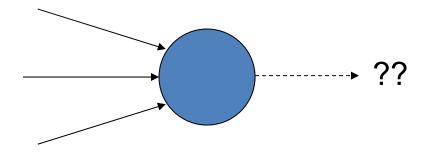
- Ranking derived from the link structure
- Assign web page a numerical score, known as PageRank
- Given a query, search engine computes a composite score that combines a set of features, together with the PageRank score
- This composite score is used to provide a ranked list of web pages for the query

Pagerank scoring

- Imagine a browser doing a random walk on web pages:
 - Start at a random page
 - At each step, go out of the current page along one of the links on that page, equiprobably
- "In the steady state" each page has a longterm visit rate - use this as the page's score.

Not quite enough

- The web is full of dead-ends.
 - Random walk can get stuck in dead-ends.
 - Makes no sense to talk about long-term visit rates.



At a dead end, jump to a random web page.

Teleporting

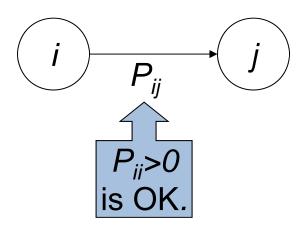
- At any non-dead end, with probability 10%, jump to a random web page.
 - With remaining probability (90%), go out on a random link.
 - -10% a parameter.

Result of teleporting

- Now cannot get stuck locally.
- There is a long-term rate at which any page is visited
- How do we compute this visit rate?
- Use the theory of Markov chain to claim that when the surfer follows this combined process for long time, the score of a page is called the PageRank score.

Markov chains

- A Markov chain consists of n states, plus an $n \times n$ transition probability matrix **P**.
- At each step, we are in exactly one of the states.
- For $1 \le i,j \le n$, the transition probability matrix entry P_{ij} tells us the probability of j being the next state, given we are currently in state i.

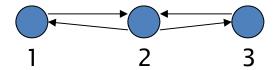


Markov chains

- Clearly, for all i, $\sum_{j=1}^n P_{ij} = 1$. Markov chains are abstractions of random
- walks.

Adjacency Matrix

 Given three web pages with a web graph of three nodes 1, 2 and 3.



The adjacency matrix A is defined as: if there is a hyperlink from page i to page j, then A_{ij} =1, otherwise, A_{ij} = 0

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Constructing Transition Probability Matrix

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

The steps for producing the transition probability matrix P:

- 1. If a row of A has no 1's, then replace each element by 1/N where N is the number of nodes
- 2. For all other rows:

Divide each 1 by the number of 1's in its row

Let G be the matrix after the above two operations.

$$G = \begin{pmatrix} 0 & 1 & 0 \\ 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{pmatrix}$$

Suppose that the teleport probability is G

$$G = \begin{bmatrix} 1/2 & 0 & 1/2 \\ 0 & 1 & 0 \end{bmatrix}$$

Suppose that the teleport probability is α

3. $P = (1-\alpha)G + \alpha E$ where E is a matrix with all entries 1/N

For example, If
$$\alpha = 0.5$$

$$P = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}$$

Probability vectors

- A probability (row) vector $\mathbf{x} = (x_1, ..., x_n)$ tells us where the walk is at any point.
- E.g., (0 0 0...1...0 0 0) means we're in state *i*.

More generally, the vector $\mathbf{x} = (x_1, ... x_n)$ means the walk is in state i with probability x_i .

$$\sum_{i=1}^{n} x_i = 1.$$

Change in probability vector

- If the probability vector is $\mathbf{x} = (x_1, ... x_n)$ at this step, what is it at the next step?
- Recall that row i of the transition prob. Matrix
 P tells us where we go next from state i.
- So from x, our next state is distributed as xP
 - The one after that is xP^2 , then xP^3 , etc.
 - (Where) Does the process converge?

Ergodic Markov chains

- For any (ergodic) Markov chain, there is a unique long-term visit rate for each state.
 - -Steady-state probability distribution.
- Over a long time-period, we visit each state in proportion to this rate.
- It doesn't matter where we start.

Power Iteration for Random Walk

 Given the initial distribution x₀, and the transition probability matrix P, the distribution after one step is:

$$x_1 = x_0 P$$

• Suppose $x_0 = (1 \ 0 \ 0)$

$$\vec{x_0}P = (1/6 \ 2/3 \ 1/6) = \vec{x_1}$$

After two steps, it is:

$$\vec{x_1}P = \begin{pmatrix} 1/6 & 2/3 & 1/6 \\ 5/12 & 1/6 & 5/12 \\ 1/6 & 2/3 & 1/6 \end{pmatrix}$$

$$= (1/3 1/3 1/3) = \vec{x_2}.$$

Power Iteration for Random Walk

 Continuing in this fashion gives a sequence of probability vectors.

$\vec{x_0}$	1	0	0
$\vec{x_1}$	1/6	2/3	1/6
$\vec{x_2}$	1/3	1/3	1/3
$\vec{x_3}$	1/4	1/2	1/4
$\vec{x_4}$	7/24	5/12	7/24
\vec{x}	5/18	4/9	5/18

- We can see that the distribution converges to the steady state.
- The steady state probability is the PageRank value.

Another Method

- Let $\mathbf{a} = (a_1, \dots a_n)$ denote the row vector of steady-state probabilities.
- If our current position is described by **a**, then the next step is distributed as **aP**.
- But a is the steady state, so a=aP.
- Solving this matrix equation gives us a.
 - So a is the (left) eigenvector for P.
 - Corresponds to the "principal" eigenvector of P with the largest eigenvalue.
 - Transition probability matrices always have largest eigenvalue 1.

Pagerank Application

- Pagerank values are independent of user queries
- Pagerank is used in Google and other engines, but is hardly the full story of ranking
 - Many sophisticated features are used
 - Some address specific query classes
 - Machine learned ranking heavily used
- Pagerank still very useful for things like crawle policy

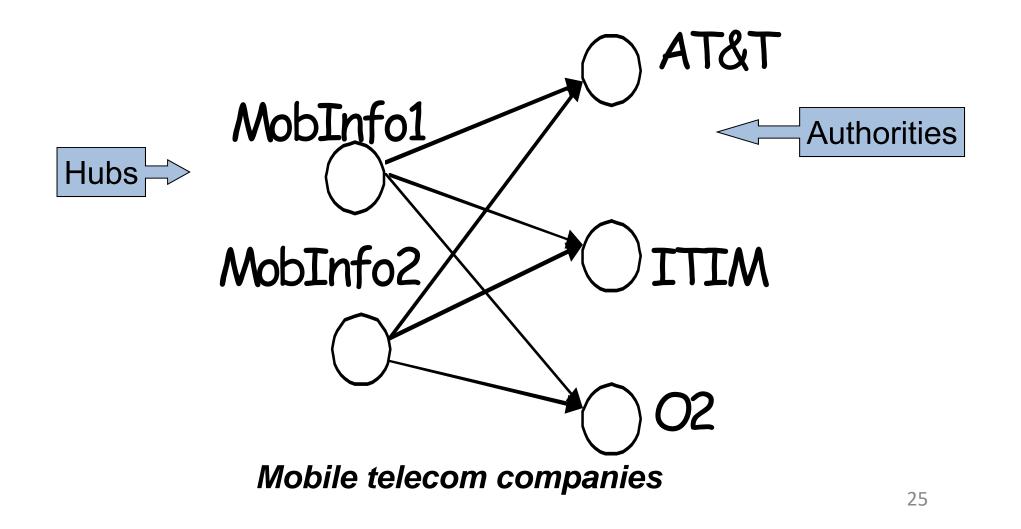
Hyperlink-Induced Topic Search (HITS)

- In response to a query, instead of an ordered list of pages each meeting the query, find <u>two</u> sets of inter-related pages:
 - Hub pages are good lists of links on a subject.
 - e.g., "Bob's list of cancer-related links."
 - Authority pages occur recurrently on good hubs for the subject.
- Best suited for "broad topic" queries rather than for page-finding queries.
- Gets at a broader slice of common opinion.

Hubs and Authorities

- Thus, a good hub page for a topic points to many authoritative pages for that topic.
- A good authority page for a topic is pointed to by many good hubs for that topic.
- Circular definition will turn this into an iterative computation.

The Basic Idea



Distilling hubs and authorities

- Compute, for each page x, a <u>hub score</u> h(x) and an <u>authority score</u> a(x).
- Initialize: for all x, $h(x) \leftarrow 1$; $a(x) \leftarrow 1$;
- Iteratively update all h(x), a(x); \leftarrow Key
- After iterations
 - output pages with highest h() scores as top hubs
 - highest a() scores as top authorities.

Iterative update

Repeat the following updates, for all x:

$$h(x) \leftarrow \sum_{x \mapsto y} a(y)$$

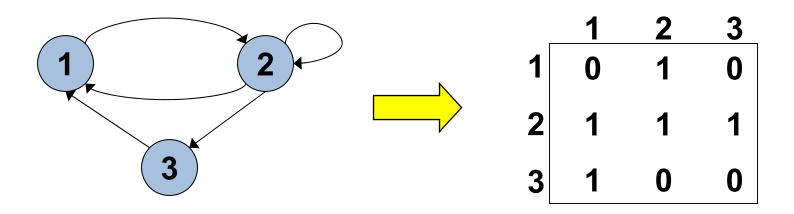
$$a(x) \leftarrow \sum_{y \mapsto x} h(y)$$

Scaling

- To prevent the h() and a() values from getting too big, can scale down after each iteration.
- Scaling factor doesn't really matter:
 - we only care about the *relative* values of the scores.

Adjacency Matrix

- n×n adjacency matrix A:
 - each of the n pages in the base set has a row and column in the matrix.
 - Entry $A_{ij} = 1$ if page *i* links to page *j*, else = 0.



Hub/authority vectors

- View the hub scores h() and the authority scores a() as vectors with n components.
- Recall the iterative updates

$$h(x) \leftarrow \sum_{x \mapsto y} a(y)$$

$$a(x) \leftarrow \sum_{y \mapsto x} h(y)$$

Rewrite in matrix form

Iterative Update Scheme:

h←Aa

• $\mathbf{a} \leftarrow \mathbf{A}^\mathsf{T} \mathbf{h}$ Recall A^T is the transpose of A.

Analytical Solution:

- Substituting these into one another:
 h←AA^Th and a←A^TAa
- As a result: $h = (1/\lambda_h)AA^Th$ $a = (1/\lambda_a)A^TAa$

where λ_h and λ_a denote the eigenvalue of AA^T and A^TA respectively.

Can be solved by power iteration method

Key Consequences

- The iterative update scheme is equivalent to the power iteration method for computing the eigenvalues of AA^T and A^TA
- Provided that the principal eigenvalue of AA^T is unique, the iterative update scheme can compute h and a by settling a steady-state values
- We can also use any method for computing the principal eigenvector of a matrix.

Eigenvector Method

- Assemble the target subset of web pages, form the graph induced by their hyperlinks and compute AA^T and A^TA
- Compute the principal eigenvectors of AA^T and A^TA to form the vector of hub scores h and authority scores a
- Output the top-scoring hubs and top-scoring authorities.