Neural Networks and Neural
Language Models

Reference:
- D. Jurafsky and J. Martin, “Speech and Language Processing”

Introduction

* Neural networks are a fundamental computational
tool for language processing, and a very old one.

* They are called neural because their origins lie in the
McCulloch Pitts neuron, a simplified model of the
human neuron as a kind of computing element that
could be described in terms of propositional logic.

 But the modern use in language processing no
longer draws on these early biological inspirations.

Introduction

e |nstead, a modern neural network is a network of small
computing units, each of which takes a vector of input
values and produces a single output value.

 We introduce the neural net applied to classification.
The architecture we introduce is called a feed-forward
network because the computation proceeds iteratively
from one layer of units to the next.

* The use of modern neural nets is often called deep
learning, because modern networks are often deep
(have many layers).

Introduction

e Neural networks share much of the same mathematics
as logistic regression.

* But neural networks are a more powerful classifier
than logistic regression.

* Indeed a minimal neural network (technically one
with a single ‘hidden layer’) can be shown to learn
any function.

* When working with neural networks, it is more
common to avoid most uses of rich hand-derived
features, instead building neural networks that take
raw words as inputs and learn to induce features as
part of the process of learning to classify.

Introduction

* Nets that are very deep are particularly good at
representation learning

 Deep neural nets are the right tool for large scale
problems that offer sufficient data to learn
features automatically.

 We will introduce feedforward networks as
classifiers, and apply them to the simple task of

language modeling: assigning probabilities to word
sequences and predicting upcoming words.

Units

* The building block of a neural network is a single
computational unit. A unit takes a set of real valued
numbers as input, performs some computation on
them, and produces an output.

e At its heart, a neural unit is taking a weighted sum of
its inputs, with one additional term in the sum called
a bias term.

Units

Below is a final schematic of a basic neural unit. In this example
the unit takes 3 input values x4,x,, and x3, and computes a
weighted sum, multiplying each value by a weight (w4, w,, and
w3, respectively), adds them to a bias term b, and then passes
the resulting sum through a sigmoid function to result in a
number between 0 and 1.

* A neural unit, taking 3 inputs x4, x5,
and x5 (and a bias b that we represent as
a weight for an input clamped at +1) and
producing an outputy.

 Some convenient intermediate variables:
the output of the summation, z, and the
output of the sigmoid, a.

* In this case the output of the unit y is
the same as a, but in deeper networks
we’ll reserve y to mean the final output
of the entire network, leaving a as the
activation of an individual node.

Units

* Given a set of inputs x4 ... x,;, a unit has a set of
corresponding weights w; ... w,, and a bias b, so the
weighted sum z can be represented as:

Z=b+ZWiXi
[

e Often it’s more convenient to express this weighted
sum using vector notation.

 Thus we’ll talk about z in terms of a weight vector w,
a scalar bias b, and an input vector x, and we’ll
replace the sum with the convenient dot product:

Z=w-+x+Db
Z is just a real valued number.

Units

Finally, instead of using z, a linear function of x, as
the output, neural units apply a non-linear function f
to z.

We will refer to the output of this function as the
activation value for the unit, a.

Since we are just modeling a single unit, the
activation for the node is in fact the final output of
the network, which we’ll generally call y. So the value
y is defined as:

y=a=f(2)

Units

 We'll discuss three popular non-linear functions
f O below (the sigmoid, the tanh, and the rectified
linear ReLU) but it’s pedagogically convenient to start

with the sigmoid function :
1

14+e7%

* The sigmoid has a number of advantages; it maps the
output into the range [0,1], which is useful in
squashing outliers toward 0 or 1. And it’s
differentiable, which will be handy for learning.

y=o0(z) =

e Substituting the sigmoid equation gives us the output

of a neural unit:
1

1+ exp(—(w:-x+ b))

y=ow-x+b) =

Units

The sigmoid function takes a real value and maps it to the
range [0, 1]. It is nearly linear around O but outlier values
get squashed toward O or 1.

11

Units

Suppose we have a unit with the following weight vector
and bias:

w = [0.2,0.3,0.9]
b = 0.5
What would this unit do with the following input vector:
x = [0.5,0.6,0.1]

The resulting output y would be:
1

1+e —(w-x+Db)

y=ow-x+b)=
1

T 1 + o—(5*2+.6%3+.1x.9+.5)
=——— =70

"~ 14e—0.87

Units

In practice, the sigmoid is not commonly used as an
activation function.

A function that is very similar but almost always better is
the tanh function, which is a variant of the sigmoid that

ranges from -1 to +1:

et —e 2

e t+e =

The simplest activation function, and perhaps the most
commonly used, is the rectified linear unit, also called the
RelLU. It’s just the same as z, when z is positive, and O
otherwise:

y = tanh(z) =

y = ReLU(z) = max(z, 0)

Units

1.0 10
0.5 5
Q 5
<)
S 0.0 2 0
i) =
I 0
> =
-0.5 -5
-1.05 -5 0 5 10 ~10% =5 0 5 10
(a) (b)

The tanh and RelLU activation functions are shown above.

* The tanh function has the nice properties of being smoothly differentiable and
mapping outlier values toward the mean.

* The rectifier function has nice properties that result from it being very close to linear.

* Inthe sigmoid or tanh functions, very high values of z result in values of y that are
saturated, i.e., extremely close to 1, and have derivatives very close to 0, which cause
problems for learning because, as we’ll see later,

* we’ll train networks by propagating an error signal backwards, multiplying
gradients (partial derivatives) from each layer of the network; gradients that are
almost 0 cause the error signal to get smaller and smaller until it is too small to
be used for training, a problem called the vanishing gradient problem.

e Rectifiers don’t have this problem, since the derivative of ReLU for high values of z is
1 rather than very close to O.

The XOR Problems

* Asingle neural unit cannot compute some very simple
functions of its input.

* Consider the task of computing elementary logical
functions of two inputs, like AND, OR, and XOR. As a
reminder, here are the truth tables for those functions:

AND OR XOR
x1 X2 Yy x1 x2 Yy x1 x2 Yy
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

The XOR Problems

* This example was first shown for the perceptron, which
is a very simple neural unit that has a binary output and
does not have a non-linear activation function.

* The output y of a perceptronis 0 or 1, and is computed
as follows:

10, ifw-x+b <0
Y= 1, ifw-x+b>0

The XOR Problems

* It’s very easy to build a perceptron that can compute
the logical AND and OR functions of its binary inputs.

 The weights w and bias b for perceptrons for computing
logical functions are shown below. The inputs are
shown as x;and x, and the bias as a special node with
value +1 which is multiplied with the bias weight b.

(a) logical AND, 1\1 Xl\l (b) logical OR, showing
showing x,—1 EC x,—1 }:(j weightsw; = landw, = 1
weights w;=1 and bias weight b = 0.

and w,= 1 and +1/

bias weight (a) (b)

b=-1 These weights/biases are just one from an infinite number of

possible sets of weights and biases that would implement the
functions.

The XOR Problems

However, it’s not possible to build a perceptron to compute
logical XOR!

The intuition behind this important result relies on
understanding that a perceptron is a linear classifier.

For a two-dimensional input x; and x,, the perception
equation, wyx; + wyx, + b = 0 is the equation of a line
This line acts as a decision boundary in two-dimensional
space in which the output O is assigned to all inputs lying on

one side of the line, and the output 1 to all input points lying
on the other side of the line.

If we had more than 2 inputs, the decision boundary
becomes a hyperplane instead of a line, but the idea is the
same, separating the space into two categories.

The XOR Problems

Shown below are the possible logical inputs (00,01, 10,and 11) and the line
drawn by one possible set of parameters for an AND and an OR classifier.
Notice that there is simply no way to draw a line that separates the positive
cases of XOR (01 and 10) from the negative cases (00 and 11) . We say that
XOR is not a linearly separable function.
* Of course we could draw a boundary with a curve, or some other
function, but not a single line.

X2, *2, *2,
1 o"x\ o 1 @ O 1 @ O
\\\ \\\ ?
a) x| AND x, b) x; OR x5 ¢) x; XOR x,

The functions AND, OR, and XOR, represented with input x; on the x-axis and
input x, on the y axis. Filled circles represent perceptron outputs of 1, and white
circles perceptron outputs of 0. There is no way to draw a line that correctly
separates the two categories for XOR.

The XOR Problems

The solution: neural networks

X1
X

2

While the XOR function cannot be calculated by a single perceptron,
it can be calculated by a layered network of perceptron units.

Let’s see how to compute XOR using two layers of ReLU-based units
instead. Shown below is the input being processed by two layers of
neural units. The middle layer (called h) has two units, and the
output layer (called y) has one unit. A set of weights and biases are
shown for each RelLU that correctly computes the XOR function.

| %@\ There are three RelLU units, in two layers;
\1/ 1 we’ve called them h{, h, (h for “hidden
@ layer”) and y;. As before, the numbers on
/1 \CD/Q/ the arrows represent the weights w for
1 ~(h, each unit, and we represent the bias b as a
" weight on a unit clamped to +1, with the
bias weights/units in gray.

20

The XOR Problems

The solution: neural networks

Let’s walk through what happens with the input x =

10, 0] . If we multiply each input value by the appropriate
weight, sum, and then add the bias b, we get the vector
|0, —1], and we then apply the rectified linear
transformation to give the output of the h layer as [0, 0] .

Now we once again multiply by the weights, sum, and add
the bias (0 in this case) resulting in the value 0.

The reader should work through the computation of the
remaining 3 possible input pairs to see that the resulting y
values correctly are 1 for the inputs [0,1] and [1,0] and O
for [0,0]and [1,1].

The XOR Problems

The solution: neural networks

* Inthe previous slide, the h vector for the inputs x = [0, 0] was [0, O].
Shown in (b) below are the values of the h layer for all 4 inputs.

le h2‘
1 @ O 1 O~
0 O o— 0 O @ -
1 e h
0 1 0 _ 1 2 1
a) The original x space b) The new (linearly separable) 4 space

The hidden layer forming a new representation of the input. (b) is the
representation of the hidden layer h, compared to the original input
representation x in (a). Notice that the input point [0, 1] has been
collapsed with the input point [1, 0], making it possible to linearly
separate the positive and negative cases of XOR. 22

The XOR Problems

The solution: neural networks

Notice that hidden representations of the two input
points x = [0,1]andx = [1,0] (the two cases with
XOR output = 1) are merged to the single point h=[1,0] .
The merger makes it easy to linearly separate the positive
and negative cases of XOR.

In other words, we can view the hidden layer of the
network is forming a representation for the input.

23

The XOR Problems

The solution: neural networks

* |n the previous example, we just set the weights. For
real situations, the weights are learned automatically
using the error backpropagation algorithm.

* That means the hidden layers will learn to form useful
representations.

* This intuition, that neural networks can automatically
learn useful representations of the input, is one of their
key advantages, and one that we will return to again
and again later.

24

Feed-Forward Neural Networks

* A feed-forward network is a multilayer network in which
the units are connected with no cycles.

* The outputs from units in each layer are passed to units
in the next higher layer, and no outputs are passed back
to lower layers.

* For historical reasons multilayer networks, especially
feed-forward networks, are sometimes called multi-layer
perceptron (or MLPs); this is a technical misnomer, since
the units in modern multilayer networks aren’t
perceptrons (perceptrons are purely linear, but modern
networks are made up of units with non-linearities like
sigmoids), but at some point the name stuck.

Feed-Forward Neural Networks

* Simple feed-forward networks have three kinds of nodes:
input units, hidden units, and output units.

* The input layer x is a vector of simple scalar values.

* The core of the neural network is the hidden layer h formed
of hidden units h;, each of which is a neural unit taking a
weighted sum of its inputs and then applying a non-linearity.

* |n the standard architecture, each layer is fully-connected,
meaning that each unit in each layer takes as input the
outputs from all the units in the previous layer, and there is a
link between every pair of units from two adjacent layers.
Thus each hidden unit sums over all the input units.

Feed-Forward Neural Networks

input layer hidden layer output layer

A simple 2-layer feed-forward network, with one hidden
layer, one output layer, and one input layer (the input layer

is usually not counted when enumerating layers). .

Feed-Forward Neural Networks

* Recall that a single hidden unit has a weight vector
and a bias as parameters.

 We represent the parameters for the entire hidden
layer by combining the weight vector and bias for each
unit i into a single weight matrix W and a single bias
vector b for the whole layer (see the previous figure).

* Each element W}; of the weight matrix W represents
the weight of the connection from the ith input unit x;
to the jth hidden unit h;.

Feed-Forward Neural Networks

* The advantage of using a single matrix W for the
weights of the entire layer is that now the hidden
layer computation for a feedforward network can
be done very efficiently with simple matrix
operations.

* In fact, the computation only has three steps:

* multiplying the weight matrix by the input
vector Xx,

e adding the bias vector b,

* applying the activation function g (such as the
sigmoid, tanh, or ReLU activation function
defined above).

Feed-Forward Neural Networks

* The output of the hidden layer, the vector h, is thus the

following, using the sigmoid function o
h=oc(Wx+b)

* Notice that we're applying the o function here to a

vector.
* We're thus allowing o(+) , and indeed any activation

function g(-) , to apply to a vector element-wise, so
glz1,22,z3] = [g(z1), 9(z2), g(23)]

30

Feed-Forward Neural Networks

Let’s introduce some constants to represent the
dimensionalities of these vectors and matrices.

We'll refer to the input layer as layer O of the network,
and have n, represent the number of inputs, so x is a
vector of real numbers of dimension ny, or more
formally x € R™0, a column vector of dimensionality
Ing, 1].

Let’s call the hidden layer layer 1 and the output layer
layer 2. The hidden layer has dimensionality n4, so h €
R™ and also b € R™

The weight matrix W has dimensionality W € R"1*"o
i.e. [nq,ngl.

Feed-Forward Neural Networks

* The resulting value h (for hidden but also for hypothesis)
forms a representation of the input.

* The role of the output layer is to take this new
representation h and compute a final output.

* This output could be a real-valued number, but in many
cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case
of classification.

32

Feed-Forward Neural Networks

* If we are doing a binary task like sentiment classification,
we might have a single output node, and its value y is
the probability of positive versus negative sentiment.

* If we are doing multinomial classification, such as
assigning a part-of-speech tag, we might have one
output node for each potential part-of-speech, whose
output value is the probability of that part-of-speech,
and the values of all the output nodes must sum to one.

* The output layer is thus a vector y that gives a
probability distribution across the output nodes.

Feed-Forward Neural Networks

* Like the hidden layer, the output layer has a weight
matrix U , but some models don’t include a bias vector b
in the output layer, so we’ll simplify by eliminating the
bias vector in this example.

* The weight matrix is multiplied by its input vector (h) to
produce the intermediate output z.

z=Uh

* There are n, output nodes, so z € R"2, weight matrix U
has dimensionality U € R"2*™, and element U;; is the
weight from unit j in the hidden layer to unit i in the
output layer.

Feed-Forward Neural Networks

* However, z can’t be the output of the classifier, since it’s a
vector of real-valued numbers, while what we need for
classification is a vector of probabilities.

* There is a convenient function for normalizing a vector of
real values, by which we mean converting it to a vector
that encodes a probability distribution (all the numbers lie
between 0 and 1 and sum to 1).

* For avector z of dimensionality d, the softmax is defined
as:

exp(z;)

_iexp(z)’

* Thus for example given a vector
z =1[0.6, 1.1, —1.5, 1.2, 3.2, —1.1],
softmax(z) is [0.055, 0.090, 0.0067, 0.10, 0.74, 0.010].

<i<d

softmax(z;) =

Feed-Forward Neural Networks

* Softmax was exactly what is used to create a probability
distribution from a vector of real-valued numbers in the
multinomial version of logistic regression.

* A neural network classifier with one hidden layer as building a
vector h which is a hidden layer representation of the input, and
then running standard multinomial logistic regression on the
features that the network develops in h.

* By contrast, in multinomial logistic regression, the features
were mainly designed by hand via feature templates.

* A neural network is like multinomial logistic regression, but

e (a) with many layers, since a deep neural network is like layer
after layer of logistic regression classifiers,

* (b) with those intermediate layers having many possible
activation functions (tanh, ReLU, sigmoid) instead of just
sigmoid (although we’ll continue to use o for convenience to
mean any activation function)

* (c) rather than forming the features by feature templates, the
prior layers of the network induce the feature representations
themselves.

Feed-Forward Neural Networks

* Here are the final equations for a feed-forward network
with a single hidden layer, which takes an input vector x,
outputs a probability distribution y, and is parameterized
by weight matrices W and U and a bias vector b:

h = o(Wx + b)
z = Uh
y = softmax(z)

e x ER™,heR™,peR™M, W e R" Mo, [J e R"2*M
 We'll call this network a 2-layer network (we traditionally
don’t count the input layer when numbering layers,

* but do count the output layer). So by this terminology
logistic regression is a 1-layer network.

Feed-Forward Neural Networks

* For the deeper networks of depth more than 2, we’ll use
superscripts in square brackets to mean layer numbers,
starting at O for the input layer.

 So W will mean the weight matrix for the (first) hidden
layer, and b!Y) will mean the bias vector for the (first)
hidden layer. n; will mean the number of units at layer j.

* We'll use g(-) to stand for the activation function, which
will tend to be ReLU or tanh for intermediate layers and
softmax for output layers.

Feed-Forward Neural Networks

« We'll use al'!l to mean the output from layer i, and z!!l to
mean the combination of weights and biases
wlilgli=11 4 plil

* The Oth layer is for inputs, so we’ll refer to the inputs x
more generally as al?l.

* Thus we’ll re-represent our 2-layer net as follows:

S[11 = il glo] 4 pl1]

Uzl
[2]—W[] [1]_|_b[]
al?l = g (Z D

39

Feed-Forward Neural Networks

* Note that with this notation, the equations for the
computation done at each layer are the same.

* The algorithm for computing the forward step in an n-
layer feedforward network, given the input vector al® is
thus simply:

foriinl..n
7t = wlilgli-11 4 plil
altl = g[i](z[i])

9y = qal®

* The activation functions g(-) are generally different at the
final layer. Thus g[z] might be softmax for multinomial
classification or sigmoid for binary classification

* RelLU or tanh might be the activation function g(-) at the
internal layers.

Feed-Forward Neural Networks

* One of the reasons we use nonlinear activation functions for
each layer in a neural network is that if we did not, the resulting
network is exactly equivalent to a single-layer network.

* |magine the first two layers of such a network of purely linear
layers:

71 = Wil 4 plil
7121 = wi2l,l1] 4 pl2]
 We can rewrite the function that the network is computing as:
7121 = w2l 1] 4 pl2]
— W[Z](W[l]x 4+ b[l]) + pl2l
— wllwily + wizlpli]l 4 pl2]
=W'x+ b’

* This generalizes to any number of layers. So without non-linear
activation functions, a multilayer network is just a notational
variant of a single layer network with a different set of weights,
and we lose all the representational power of multilayer
networks.

Feed-Forward Neural Networks

In describing networks, we will often use a slightly
simplified notation. Instead, we add a dummy node a,

to each layer whose value will always be 1. Thus layer 0O,
[0] _

the input layer, will have a dummy node a,” = 1, layer
1 will have ac[)l] = 1, and so on.

Instead of an equation like h = a(Wx + b), we’ll use:

h=ocWx)

Instead of x having ngy values: x = x4, -) Xn,, it will

have ny + 1 values, with a new 0" dummy value x, = 1:

X = Xg,*, Xn,
n

Instead of computing h; as h; = U(Zi

31 VVjixi + b]), we
will have h; = 0'(2?20 Wjixl-) where W, replaces what

had been bj

Feed-Forward Neural Networks

Replacing the bias node (shown in a) with x, (b).

43

Feedforward networks for NLP: Classification

Let’s see how to apply feedforward networks to NLP tasks!
We'll first look at classification tasks like sentiment
analysis.

Let’s begin with a simple 2-layer sentiment classifier.
Imagine taking our logistic regression classifier, which
corresponds to a 1-layer network, and just adding a hidden
layer.

The input element x; could be scalar features, e.g., x; =
count(words € doc), x, = count(positive lexicon words €
doc), x3 = 1if “no” € doc, and so on.

And the output layer ¥ could have two nodes (one each for
positive and negative), or 3 nodes (positive, negative,
neutral), in which case y; would be the estimated
probability of positive sentiment, y, the probability of
negative and y5 the probability of neutral.

Feedforward networks for NLP: Classification

* The resulting equations would be just what we saw above
for a 2-layer network (we’ll continue to use the o to stand
for any non-linearity, whether sigmoid, ReLU or other).

X = |xq1,%5, .. XyN]
h = o(Wx + b)
z = Uh

y = softmax(z)
(each x; is a hand-designed feature)

* A sketch of this architecture is shown in next slide.

* As mentioned earlier, adding this hidden layer to our
logistic regression classifier allows the network to
represent the non-linear interactions between features.

This alone might give us a better sentiment classifier.

Feedforward networks for NLP: Classification

dessert wordcount x |
=3
positive lexicon x
was } words = 1 2
great countzoit]" no” x4
Input words X W U
h y

[nx1] [dyXn] [3Xdy,] [3x1]

[d, x1]

Input layer Hidden layer Output layer
n=3 features softmax

Feedforward network sentiment analysis using traditional
hand-built features of the input text.

46

Feedforward networks for NLP: Classification

However, most neural NLP applications do something
different.

Instead of using hand-built human-engineered features as
the input to our classifier, we draw on deep learning’s
ability to learn features from the data by representing
words as embeddings, like the word2vec or GloVe
embeddings.

There are various ways to represent an input for
classification.

One simple baseline is to apply some sort of pooling
function to the embeddings of all the words in the input.

Feedforward networks for NLP: Classification

embedding for (@
dessert— “dessert” r’s
embedding for @

was — “was” _.':
embedding for @

great— “great” _.g

Input words

[dx1] [dyXxd]

[dy x1]

Input layer Hidden layer Output layer
pooled softmax
embedding

Feedforward sentiment analysis using a pooled embedding of the input words.

48

Feedforward networks for NLP: Classification

For example, for a text with n input words/tokens wy, ..., w,,, we
can turn the n embeddings e(w;), ..., e(wy,,) (each of
dimensionality d) into a single embedding also of dimensionality

d by just summing the embeddings, or by taking their mean:
n

1
Xmean — E z e(Wi)

i=1
There are many other options, like taking the element-wise max.
Here are the equations for this classifier assuming mean pooling:

x = mean(e(wq),e(w,),...,e(w;,))
h = c(Wx+b)

z = Uh

y = softmax(z)

Feedforward networks for NLP: Classification

 We want to efficiently classify an entire test set of m
examples.

 We do this by vectoring the process; instead of using for-
loops to go through each example, we’ll use matrix
multiplication to do the entire computation of an entire
test set at once.

* First, we pack all the input feature vectors for each input x
into a single input matrix X, with each row i a row vector
consisting of the pooled embedding for input example x .
If the dimensionality of our pooled input embedding is d,
X will be a matrix of shape [m X d].

Feedforward networks for NLP: Classification
We will then need to slightly modify the equations.
X is of shape [m X d] and W is of shape [d}, X d], so we'll
have to reorder how we multiply X and W and transpose W so
they correctly multiply to yield a matrix H of shape [m X d].
The bias vector b of shape [1 X dj] will now have to be
replicated into a matrix of shape [m X d;].
We'll need to similarly reorder the next step and transpose U.
Finally, our output matrix ¥ will be of shape [m X 3] (or more
generally [m X d,], where d,, is the number of output
classes), with each row i of our output matrix Y consisting of
the output vector $.
Here are the final equations for computing the output class
distribution for an entire test set:
H =ocXWT +b)
= HUT

Z
Y = softmax(2)

Feedforward networks for NLP: Classification

 The idea of using word2vec or GloVe embeddings as our
input representation—and more generally the idea of
relying on another algorithm to have already learned an
embedding representation for our input words—is called
pretraining.

* Using pretrained embedding representations, whether
simple static word embeddings like word2vec or some
other much more powerful contextual embeddings, is one
of the central ideas of deep learning.

* It’s also possible to train the word embeddings as part of
an NLP task; we’ll talk about how to do this in a later
section in the context of the neural language modeling
task.

Feedforward Neural Language Modeling

As our second application of feedforward networks, let’s
consider language modeling: predicting upcoming words
from prior word context.

Neural language modeling is an important NLP task in
itself, and it plays a role in many important algorithms for
tasks like machine translation, summarization, speech
recognition, grammar correction, and dialogue.

We'll describe simple feedforward neural language models,
first introduced by Bengio et al. (2003).

While modern neural language models use more powerful
architectures like the recurrent nets or transformer
networks, the feedforward language model introduces
many of the important concepts of neural language
modeling.

Feedforward Neural Language Modeling

Neural language models have many advantages over the n-
gram language models. Compared to n-gram models, neural
language models

e can handle much longer histories

e can generalize better over contexts of similar words

e are more accurate at word-prediction
On the other hand, neural net language models

e are much more complex

* are slower and need more energy to train

e are less interpretable than n-gram models
So for many (especially smaller) tasks an n-gram language
model is still the right tool.

Feedforward Neural Language Modeling

A feedforward neural LM is a feedforward network that takes
as input at time t a representation of some number of
previous words (w;_1, Ws_», etc) and outputs a probability
distribution over possible next words.

* Thus—Ilike the n-gram LM —the feedforward neural LM
approximates the probability of a word given the entire prior
context P(w;|wq..—1) by approximating based onthe N — 1
previous words:

P(Welwy, -, wi—q) = PWe|wpyy1, -, We—1)

* In the following examples we’ll use a 4-gram example, so

we’ll show a net to estimate the probability
P(We = i|lwg_q Wy_p Wy_3)

Feedforward Neural Language Modeling

Neural language models represent words in this prior

context by their embeddings, rather than just by their word

identity as used in n-gram language models.

Using embeddings allows neural language models to

generalize better to unseen data.

For example, suppose we’ve seen this sentence in training:
| have to make sure that the cat gets fed.

but we’ve never seen the word “gets fed” after the words

“dog”.

Our test set has the prefix “l forgot to make sure that the

dog gets”. What's the next word?

Feedforward Neural Language Modeling

 An n-gram language model will predict “fed” after “that
the cat gets”, but not after “that the dog gets”.

* But a neural LM knowing that “cat” and “dog” have
similar embeddings, will be able to generalize from the
“cat” context to assign a high enough probability to “fed”
even after seeing “dog”.

57

Feedforward Neural Language Modeling
Forward inference in the neural language model

Let’s walk through forward inference or decoding for neural
language models.

Forward inference is the task, given an input, of running a
forward pass on the network to produce a probability
distribution over possible outputs, in this case next
words.

We first represent each of the N previous words as a one-
hot vector of length one-hot vector |V|, i.e., with one
dimension for each word in the vocabulary.

A one-hot vector is a vector that has one element equal
to 1—in the dimension corresponding to that word’s
index in the vocabulary— while all the other elements
are set to zero.

58

Feedforward Neural Language Modeling
Forward inference in the neural language model

 Thusin a one-hot representation for the word “toothpaste”,
supposing it is Vs, i.e., index 5 in the vocabulary, xc = 1,
and x; = 0 Vi # 5, as shown here:

© 0o 0 0 1 0 O .. 0 O O O
1 2 3 4 5 6 7 i |V

59

Feedforward Neural Language Modeling
Forward inference in the neural language model

* The feedforward neural language model (see the sketch in next
slide) has a moving window that can see N words into the past.

* The embedding weight matrix E has a column for each word,
each a column vector of d dimensions, and hence has
dimensionality d X |V].

 Multiplying by a one-hot vector that has only one non-zero
element x; = 1 simply selects out the relevant column vector for
word i, resulting in the embedding for word i, as shown below.

V| 1 1

d E X 5 = dH
3 V]|

€5

Selecting the embedding vector for word /s by multiplying the embedding

matrix E with a one-hot vector with a 1 in index 5.
60

Feedforward Neural Language Modeling
Forward inference in the neural language model

Forward inference in
a feedforward neural
language model. At
each timestep

t the network
computes a d-
dimensional
embedding for each
context word (by

multiplying a one-hot ¥

vector by the
embedding matrix E),
and concatenates the
3 resulting
embeddings to get
the embedding layer
e

for

all

the

VX3

E

dx|V|

input layer

one-hot
vectors

Cen

b4

@I
€

3dx1

embedding
layer

W h

dhx3d dhxl
hidden
layer

U

VIxdy,

©© 0 ©

— p(aardvark]|...)

— p(do|...)

" p(fish|...)

y

[V[x1

— p(zebra|...)

output layer

softmax

The embedding vector e is multiplied by a weight matrix W and then an activation

function is applied element-wise to produce the hidden layer h, which is then
multiplied by another weight matrix U. Finally, a softmax output layer predicts at

each node i the probability that the next word w; will be vocabulary word V;.

61

Feedforward Neural Language Modeling
Forward inference in the neural language model

 The 3 resulting embedding vectors are concatenated to
produce e, the embedding layer. This is followed by a
hidden layer and an output layer whose softmax
produces a probability distribution over words.

* For example y,,, the value of output node 42, is the
probability of the next word w; being V,,, the vocabulary
word with index 42 (which is the word ‘fish’ in our
example).

62

Feedforward Neural Language Modeling
Forward inference in the neural language model

Here’s the algorithm in detail for our mini example:

1. Select three embeddings from E:

e Given the three previous words, we look up their indices,
create 3 one-hot vectors, and then multiply each by the
embedding matrix E.

* Consider w;_3. The one-hot vector for ‘for’ is (index 35) is
multiplied by the embedding matrix E, to give the first part
of the first hidden layer, the embedding layer.

e Since each column of the input matrix E is just an
embedding for a word, and the input is a one-hot column
vector x; for word V;, the embedding layer for input w will
be Ex; = e;, the embedding for word i.

 We now concatenate the three embeddings for the context
words to produce the embedding layer e.

Feedforward Neural Language Modeling
Forward inference in the neural language model

2. Multiply by W:
 We multiply by W (and add b) and pass through the RelLU
(or other) activation function to get the hidden layer h.

3. Multiply by U:
* his now multiplied by U

4. Apply softmax:

» After the softmax, each node i in the output layer
estimates the probability P(w; = 1 [Wi_1, Wi_o, We_3)

64

Feedforward Neural Language Modeling
Forward inference in the neural language model

In summary, the equations for a neural language model
with a window size of 3, given one-hot input vectors for
each input context word, are:

e = [Ex;_3; Ex¢_p; Exp 4]

h=oc(We+ b)

z=Uh

y = softmax(z)

Note that we formed the embedding layer e by
concatenating the 3 embeddings for the three context

vectors; we’ll often use semicolons to mean
concatenation of vectors.

65

Training Neural Nets

* A feedforward neural net is an instance of supervised
machine learning in which we know the correct output y
for each observation x.

* What the system produces is y, the system’s estimate of
the true y. The goal of the training procedure is to learn
parameters Wl and b4 for each layer i that make 9 for
each training observation as close as possible to the true

V.

Training Neural Nets

* First, we’ll need a loss function that models the distance
between the system output and the gold output, and it’s
common to use the loss used for logistic regression, the
cross-entropy loss.

* Second, to find the parameters that minimize this loss
function, we’ll use the gradient descent optimization

algorithm.

i1 _ ot A GG w))

v W T T

where 7 is the learning rate

Training Neural Nets

* Third, gradient descent requires knowing the gradient of
the loss function, the vector that contains the partial
derivative of the loss function with respect to each of the
parameters.

 How do we partial out the loss over all those
intermediate layers?

 The answer is the algorithm called error backpropagation
or backward differentiation.

Training Neural Nets
Loss Functions

The cross-entropy loss that is used in neural
networks is the same one for logistic regression.

If the neural network is being used as a binary
classifier, with the sigmoid at the final layer, the loss
function is:

Lee(y,y) = —logp(y|x)
= —|ylogy+ (1 —y)log(1—-y)]

If we are using the network to classify into 3 or more
classes, the loss function is exactly the same as the
loss for multinomial regression. Let’s summarize the
explanation next.

Training Neural Nets
Loss Functions

When we have more than 2 classes we’ll need to
represent both y and y as vectors.

Assume we’re doing hard classification, where only
one class is the correct one. The true label y is then a
vector with K elements, each corresponding to a class,
with y. = 1 if the correct class is ¢, with all other
elements of y being O.

A vector like this, with one value =1 and the rest O, is
called a one-hot vector. Now let y be the vector
output from the network.

And our classifier will produce an estimate vector with
K elements y, each element y;, of which represents the
estimated probability p(y, = 1|x).

Training Neural Nets
Loss Functions

* The loss function for a single example x is the negative
sum of the logs of the K output classes, each weighted
by their probability y;,:

K
Lee(@,y) = — z Vi log Vi

k=1
* We can simplify this equation further; let’s first rewrite

the equation using the function 1{} which evaluates to
1 if the condition in the brackets is true and to O
otherwise. This makes it more obvious that the terms
in the sum will be 0 except for the term corresponding
to the true class for which y;,, = 1:

K
Lee() = =) Uy = }logy
k=1

Training Neural Nets
Loss Functions

* In other words, the cross-entropy loss is simply the
negative log of the output probability corresponding to
the correct class, and we therefore also call this the
negative log likelihood loss:

Lee(@,y) = —log ¥,
where c is the correct class

 Plugging in the softmax formula y, = softmax(z,)
with K the number of classes:

exp(z.)
Z§'<= 1 €Xp (Zf)

Lecg(@,y) = —log

where c is the correct class

Training Neural Nets
Computing the Gradient

How do we compute the gradient of this loss function?
Computing the gradient requires the partial derivative
of the loss function with respect to each parameter.
For a network with one weight layer and sigmoid
output, we could simply use the derivative of the loss
used for logistic regression.

aLCE' (5;: y)

=V —y)x;
= (o(w-x+b) —y)x

73

Training Neural Nets
Computing the Gradient

e Or for a network with one hidden layer and softmax
output (=multinomial logistic regression), we could use
the derivative of the softmax loss (shown for a
particular wy, and input x;):

aLCE(yJ y)

aWk’i
= —(yk = p(yx = 1)) x;

eXp(Wk - X + bk)
= |\ Yk~ Xi

;{=1 exp(wj X + b])

= —(Yk — Vr)xi

* But these derivatives only give correct updates for one
weight layer: the last one!

74

Training Neural Nets
Computing the Gradient

For deep networks, computing the gradients for each
weight is much more complex, since we are computing
the derivative with respect to weight parameters that
appear all the way back in the very early layers of the
network, even though the loss is computed only at the
very end of the network.

The solution to computing this gradient is an algorithm
called error backpropagation or backprop.

While backprop was invented specially for neural
networks, it turns out to be the same as a more
general procedure called backward differentiation,
which depends on the notion of computation graphs.

Training Neural Nets
Computation Graphs

A computation graph is a representation of the process
of computing a mathematical expression, in which the
computation is broken down into separate operations,
each of which is modeled as a node in a graph.

* Consider computing the function

L(a,b,c) = c(a + 2b)

If we make each of the component addition and
multiplication operations explicit, and add names (d
and e) for the intermediate outputs, the resulting
series of computations is:

d = 2+b

e =a+d

L =c xe

Training Neural Nets
Computation Graphs

 We can now represent this as a graph, with nodes for
each operation, and directed edges showing the
outputs from each operation as the inputs to the next,
as in the following figure.

 The simplest use of computation graphs is to compute
the value of the function with some given inputs.

* Inthe following figure, we've assumed the inputs

a =3,b =1,c¢c = —2,and we've shown the result
of the forward pass to compute the result
L(3,1,—-2) = 10.

* In the forward pass of a computation graph, we
apply each operation left to right, passing the
outputs of each computation as the input to the
next node.

Training Neural Nets
Computation Graphs

forward pass

L=-10

Computation graph for the function L(a, b,c) = c(a + 2b),
with values for input nodesa = 3,b = 1,¢c = —2, showing the
forward pass computation of L.

78

Training Neural Nets
Backward differentiation on computation graphs

* The importance of the computation graph comes from
the backward pass, which is used to compute the
derivatives that we’ll need for the weight update.

* In this example our goal is to compute the derivative of

the output function L with respect to each of the input

.) JOL OL oL
variables, i.e., —, —, and —

’ aaa' ob’ oc’
. .. 0L :
* The derivative Py tells us how much a small change in

a affects L.

79

Training Neural Nets
Backward differentiation on computation graphs

* Backwards differentiation makes use of the chain rule
in calculus. Suppose we are computing the derivative
of a composite function f(x) = u(v(x)).

* The derivative of f(x) is the derivative of u(x) with
respect to v(x) times the derivative of v(x) with
respect to x:

df dudv
dx dvdx

80

Training Neural Nets
Backward differentiation on computation graphs

* The chain rule extends to more than two functions. If
computing the derivative of a composite function
f(x) = u(v(w(x))), the derivative of f(x) is:

df dudvdw

dx dvdw dx

* The intuition of backward differentiation is to pass
gradients back from the final node to all the nodes in
the graph.

81

Training Neural Nets
Backward differentiation on computation graphs

* Each node takes an upstream gradient that is passed in from its
parent node to the right, and for each of its inputs computes a
local gradient (the gradient of its output with respect to its
input), and uses the chain rule to multiply these two to compute
a downstream gradient to be passed on to the next earlier node.

d e
d e)
oL_oL oe de aL
dd ode ad od de
downstream local upstream
gradient gradient gradient

Each node (like e here) takes an upstream gradient, multiplies it by the local
gradient (the gradient of its output with respect to its input), and uses the
chain rule to compute a downstream gradient to be passed on to a prior
node. A node may have multiple local gradients if it has multiple inputs.

Training Neural Nets
Backward differentiation on computation graphs

Let’s now compute the 3 derivatives we need. Since in

the computation graph L = ce, we can directly

JdL

compute the derivative Pyt
oL
_— e
dc

For the other two, we’ll need to use the chain rule:
dL 0L de

da Oeda
0L B dL de dd

ob 0edd db

83

Training Neural Nets
Backward differentiation on computation graphs

* Thus five intermediate derivatives are required:
JOL OL O0de Oe ad . .
"%’ 32" 32" 3’ and T which are as follows (making

use of the fact that the derivative of a sum is the sum
of the derivatives):

0L OL_
=ce : ae—c,ac—e
N 66_106_1
O 54T od T
ad
d=2b: — =2

84

Training Neural Nets
Backward differentiation on computation graphs

* In the backward pass, we compute each of these partials
along each edge of the graph from right to left, using the
chain rule just as we did above.

* We begin by computing the downstream gradients from

. oL oL
node L, which are — and —.
de dc

* For node e, we then multiply this upstream gradient %
by the local gradient (the gradient of the output with

: 0
respect to the input), é to get the output we send back

oL
to node d: —

ad’
* And so on, until we have annotated the graph all the
way to all the input variables.
* The forward pass conveniently already will have computed
the values of the forward intermediate variables we need

(like d and e) to compute these derivatives.

Training Neural Nets
Backward differentiation on computation graphs

* The following diagram shows the backward pass.

________ L2 %

dL_dLad _ " dd oJe ad m

db ad db db %;2
A g
dc

Computation graph for the function L(a, b,c) = c(a + Zb))

LaL

showing the backward pass computation of — 5’ 31 d —

86

Training Neural Nets
Backward differentiation for a neural network

Of course computation graphs for real neural networks
are much more complex.

This following figure shows a sample computation
graph for a 2-layer neural network with ny = 2, n; =
2, and n, = 1, assuming binary classification and
hence using a sigmoid output unit for simplicity.

87

Training Neural Nets
Backward differentiation on computation graphs

—
B I

Sample computation graph for a simple 2-layer neural net (= 1 hidden layer)
with two input units and 2 hidden units. We’ve adjusted the notation a bit to
avoid long equations in the nodes by just mentioning the function that is

being computed, and the resulting variable name. Thus the * to the right of
node Wl[i] means that Wl[i] is to be multiplied by x4, and the node 7l = 4

means that the value of z[1 is computed by summing the three nodes that
feed into it (the two products, and the bias term bl-[l]) 88

Training Neural Nets
Backward differentiation for a neural network

The function that the computation graph is computing is:
7111 = witly 4 plil

altl = ReLU(z!')

7121 — wl2lglil 4 pl2]
al?l = g(z!2)

9 = al?

For the backward pass we’ll also need to compute the loss
L. The loss function for binary sigmoid output is
Lee(@,y) = —lylogy + (1 —y)log(1—-9)]
Our outputy = al?! so we can rephrase this as
Leg(al?ly) = —[ylogal? + (1 — y) log(1 — al?)]
The weights that need updating (those for which we need

to know the partial derivative of the loss function) are
shown in teal. 89

Training Neural Nets
Backward differentiation for a neural network

In order to do the backward pass, we’ll need to know
the derivatives of all the functions in the graph.
The derivative of the sigmoid o

d
(;(ZZ) = 0(2)(1 - 0(2))

We’'ll also need the derivatives of each of the other

activation functions. The derivative of tanh is:

d tanh(z) ,
;- 1 — tanh“(2)

The derivative of the RelLU is

d ReLU(z) (0, forx <0
dz |1, forx=0

90

Training Neural Nets
Backward differentiation for a neural network

 WEe'll give the start of the computation, computing the
. . . . oL
derivative of the loss function L with respect to z, or >, (and

leaving the rest of the computation as an exercise for the
reader). By the chain rule:

oL oL dal?
aaz ~ dal2l 0z
e L
* Solet’s first compute ——:

Leg(al?,y) = —[yloga® + (1 — y) log(1 — al?!)]

oL dlog(a'?) . dlog(1 — a'?])
a2 = " \\V g)T A=Y

B 1 1

91

Training Neural Nets
Backward differentiation for a neural network

* Next, by the derivative of the sigmoid:
0ql?]
— ql21(1 = gl2]
5, —a (1—a?)
* Finally, we can use the chain rule:
oL 9L dal?

0z 0alZl oz

_ (Y Y=Y i L
— (a[2]+1—a[2])a (1 a)

— g2l — %
* Continuing the backward computation of the gradients

(next by passing the gradients over b{z]and the two

product nodes, and so on, back to all the teal nodes), is
left as an exercise for the reader.

Training Neural Nets
More Details on Learning

Optimization in neural networks is a non-convex
optimization problem

We need to initialize the weights with small random
numbers.

It’s also helpful to normalize the input values to have O
mean and unit variance.

Various forms of regularization are used to prevent
overfitting.

One of the most important is dropout: randomly
dropping some units and their connections from the
network during training

93

Training Neural Nets
More Details on Learning

The parameters of a neural network are the weights W
and biases b; those are learned by gradient descent.
The hyperparameters are things that are set by the
algorithm designer
* Hyperparameters include the learning rate n, the
minibatch size, the model architecture (the number
of layers, the number of hidden nodes per layer,
the choice of activation functions), how to
regularize, etc.
 Optimal values are tuned on a devset
(development set) rather than by gradient descent
learning on the training set.

Training Neural Nets
More Details on Learning

Gradient descent itself also has many architectural
variants such as Adam.

Most modern neural networks are built using
computation graph formalisms that make it easy and
natural to do gradient computation and parallelization
on vector-based GPUs (Graphic Processing Units).
PyTorch and TensorFlow are two of the most popular.

95

Training the neural language model

Now that we’ve seen how to train a generic neural net, let’s talk
about the architecture for training a neural language model,
setting the parameters@ = E,W, U, b.

For some tasks, it’s ok to freeze the embedding layer E with
initial word2vec values.

* Freezing means we use word2vec or some other pretraining
algorithm to compute the initial embedding matrix E, and
then hold it constant while we only modify W, U, and b, i.e.,
we don’t update E during language model training.

However, often we’d like to learn the embeddings simultaneously
with training the network.

This is useful when the task the network is designed for (like
sentiment classification, translation, or parsing) places strong
constraints on what makes a good representation for words.

Training the neural language model

* To train the model, i.e. to set all the parameters
6 = E,W,U,Db, we do gradient descent, using error back
propagation on the computation graph to compute the
gradient.

* Training thus not only sets the weights W and U of the
network, but also as we’re predicting upcoming words, we’re
learning the embeddings E for each words that best predict
upcoming words.

* The following figure shows the set up for a window size of N =
3 context words.

Training the neural language model

L]
]

p(aardvark]...) "‘

' and 9 P
] T e - = / L]
’ ila — f o '
» | thanks /;'? 1 '
! - 3 O By :
. Wi3 —p(do]...) '
L] f0r - -"'T r :
- ; : N
: a" ----- -UP' (7~ _._' ,'
: M2, o R p(ish)...) 4
' ’ |
. the
. i
]
l“ ‘-.‘;
" ; U ‘@-» p(zebral...)

X dx|V| 3dx1 dhX3d dhxl |V|)<dh

IVIX3 |V|><1
input layer ~ embedding hidden output layer
one-hot layer layer softmax

vectors

Learning all the way back to embeddings. Again, the embedding
matrix E is shared among the 3 context words. 08

Training the neural language model

The input x consists of 3 one-hot vectors, fully connected to the
embedding layer via 3 instantiations of the embedding matrix E.
We don’t want to learn separate weight matrices for mapping
each of the 3 previous words to the projection layer. We want
one single embedding dictionary E that’s shared among these
three.

That’s because over time, many different words will appear as
We_o Or We_1, and we’d like to just represent each word with one
vector, whichever context position it appears in.

Recall that the embedding weight matrix E has a column for each
word, each a column vector of d dimensions, and hence has
dimensionality d X |V].

Training the neural language model

Generally training proceeds by taking as input a very long text,
concatenating all the sentences, starting with random weights,
and then iteratively moving through the text predicting each
word w;
At each word wy, the cross-entropy (negative log likelihood) loss
IS:

Lcp(¥,y) =—logy; (where i is the correct class)
For language modelling, the classes are the word in the
vocabulary, so y; here means the probability that the model
assigns to the correct next word wy:

Leg = —logp(We we_q, -+, We_ny1q)
The parameter update for stochastic gradient descent for this loss
from step s to s 4+ 1 is then:
d —logp(We|we_1, oy Weny1)

00

95+1 — QS — 7

Training the neural language model

* This gradient can be computed in any standard neural
network framework which will then backpropagate
through 8 = E,W,U,b .

* Training the parameters to minimize loss will result both
in an algorithm for language modeling (a word predictor)
but also a new set of embeddings E that can be used as
word representations for other tasks.

101

