Parametric Search and Machine Learning Based Scoring

Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Parametric Search

Parametric search

- Most documents have, in addition to text, some "meta-data" in fields e.g.,
 - Language = French

Field Format = pdf Value – Subject = Physics etc.

- Date = Feb 2000
- A parametric search interface allows the user to combine a full-text query with selections on these field values e.g.,
 - language, date range, etc.

Parametric search example

Parametric search example

Zones

- A zone is an identified region within a doc
 - E.g., <u>Title</u>, <u>Abstract</u>, <u>Bibliography</u>, <u>Body</u>
 - Generally culled from marked-up input or document metadata (e.g., powerpoint)
- Contents of a zone are free text
 - Not a "finite" vocabulary
- Indexes for each zone allow queries like
 - sorting in <u>Title</u> AND smith in <u>Bibliography</u> AND recursion in Body

Zone indexes – simple view

Scoring and Ranking

Scoring

- Thus far, our queries have all been Boolean
 - Docs either match or not
- OK for expert users with precise understanding of their needs and the corpus
- Not good for (the majority of) users with poor Boolean formulation of their needs
- Most users don't want to wade through 1000's of results – cf. use of web search engines

Scoring

- We wish to return in order the documents most likely to be useful to the searcher
- How can we rank order the docs in the corpus with respect to a query?
- Assign a score say in [0,1] for each doc d on each query q

 First generation of scoring methods: use a linear combination of Booleans:

```
- e.g.,
```

```
Score = 0.6*<sorting in <u>Title></u> + 0.3*<sorting in <u>Abstract></u> + 0.05*<sorting in <u>Body></u> + 0.05*<sorting in Boldface>
```

Each expression such as < sorting in <u>Title</u>>
takes on a value in {0,1}.

- In fact, the expressions between <> on the last slide could be any Boolean query
- We are given a weight vector whose components sum up to 1.
 - —There is a weight for each zone/field.
- Then the overall score is in [0,1].
 - Remark: For this example, the scores can only take on a finite set of values.

- Given a Boolean query, we assign a score to each doc by adding up the weighted contributions of the zones/fields.
- The retrieval model for document d and query q is:

```
score(d,q) = w_1 s_1(d,q) + \cdots + w_m s_m(d,q) where s_i(d,q) denotes the Boolean result for zone i and \sum_i w_i = 1
```

- Most commonly, a <u>query parser</u> that takes the user's query and runs it on the indexes for each zone
- Typically users want to see the K highest-scoring docs.

Machine Learning Based Scoring

Where do these weights come from?

- Machine learned scoring
- Given
 - A test corpus
 - A suite of test queries
 - A set of relevance judgments
- Learn a set of weights such that relevance judgments matched

Simple example

- Each doc has two zones, <u>Title</u> and <u>Body</u>
- For a chosen $w \in [0,1]$, score for doc d on query q

$$score(d,q) = w \cdot s_T(d,q) + (1-w)s_B(d,q)$$

where:

 $s_T(d, q) \in \{0,1\}$ is a Boolean denoting whether q matches the <u>Title</u> and

 $s_B(d, q) \in \{0,1\}$ is a Boolean denoting whether q matches the <u>Body</u>

Learning w from training examples

Example	DocID	Query	s_T	s_B	Judgment
Φ_1	37	linux	1	1	Relevant
Φ_2	37	penguin	0	1	Non-relevant
Φ_3	238	system	0	1	Relevant
Φ_4	238	penguin	0	0	Non-relevant
$\Phi_4 \ \Phi_5$	1741	kernel	1	1	Relevant
Φ_6 Φ_7	2094	driver	0	1	Relevant
Φ_7	3191	driver	1	0	Non-relevant

We are given *training examples*, each of which is a triple:

DocID d, Query q, and Judgment Relevant/Non-relevant.

From these, we will learn the best value of w.

How?

• For each example Φ_t we can compute the score based on

$$score(d_t, q_t) = w \cdot s_T(d_t, q_t) + (1 - w)s_B(d_t, q_t)$$

- We quantify Relevant as 1 and Non-relevant as 0
 - Would like the choice of w to be such that the computed scores are as close to these 1/0 judgments as possible
 - Denote by $r(d_t, q_t)$ the judgment for Φ_t
- Then minimize total squared error

$$\sum_{\Phi_t} (r(d_t, q_t) - score(d_t, q_t))^2$$

Optimizing w

• There are 4 kinds of training examples

s_T	s_B	Score
0	0	0
0	1	1-w
1	0	w
1	1	1

Optimizing w

There are 8 possible values for errors

s_T	s_B	Score	
0	0	0	Judgment=1 ⇒ Error= <i>w</i> Judgment=0 ⇒ Error=1-ผ
0	1	1-w	
1	0	w	
1	1	1	

- Let n_{01r} be the number of training examples for which $s_T(d, q)=0$, $s_B(d, q)=1$, judgment = Relevant.
- Similarly define n_{00r} , n_{10r} , n_{11r} , n_{00i} , n_{01i} , n_{10i} , n_{11i}

Total error – then calculus

- Add up from various cases to get the total error
- The total error *E* is:

$$E = (n_{01r} + n_{10i})w^2 + (n_{10r} + n_{01i})(1 - w)^2 + n_{00r} + n_{11i}$$

- Now differentiate with respect to w to get optimal value
- Set d(E)/d(w) = 0, we get $2w(n_{01r} + n_{10i}) + (n_{10r} + n_{01i})2(1 w)(-1) = 0$

Optimal weight parameter

$$2w(n_{01r} + n_{10i}) + (n_{10r} + n_{01i})2(1 - w)(-1) = 0$$

$$w(n_{01r} + n_{10i}) + (w - 1)(n_{10r} + n_{01i}) = 0$$

$$w = \frac{n_{10r} + n_{01i}}{n_{10r} + n_{10i} + n_{01r} + n_{01i}}$$

Full text queries

- Most users more likely to type bill rights or bill of rights
 - How do we interpret these <u>full text</u> queries?
 - No Boolean connectives
 - Of several query terms, some may be missing in a doc
 - Only some query terms may occur in the title, etc.

Scoring: density-based

- Thus far: <u>position</u> and <u>overlap</u> of terms in a doc – title, author etc.
- Obvious next idea: if a document talks about a topic more, then it is a better match
- This applies even when we only have a single query term.
- Document relevant if it has many occurrences of the term(s)
- This leads to the idea of term weighting.