Relevance Feedback and Query Expansion

SEEM5680

Relevance Feedback

- Relevance feedback: user feedback on relevance of docs in initial set of results
 - User issues a (short, simple) query
 - The user marks some results as relevant or nonrelevant.
 - The system computes a better representation of the information need based on feedback.
 - Relevance feedback can go through one or more iterations.
- Idea: it may be difficult to formulate a good query when you don't know the collection well, so iterate

Relevance feedback

- We will use ad hoc retrieval to refer to regular retrieval without relevance feedback.
- We now look at some examples of relevance feedback.

Similar pages

sarah brightman

Web Video Music

Sarah Brightman Official Website - Home Page

Official site of world's best-selling soprano. Join FAN AREA free to access exclusive perks, photo diaries, a global forum community and more... www.sarah-brightman.com/ - 4k - Cached Similar pages

Advanced Search

Preferences

Search

Relevance Feedback: Example

Image search engine

http://nayana.ece.ucsb.edu/imsearch/imsearch.html

8	New Page 1 - Netscape												
🔺 E	ile	<u>E</u> dit	<u>V</u> iew	<u>G</u> o	<u>B</u> ookmarks	<u>T</u> ools <u>V</u>	<u>V</u> indow	<u>H</u> elp					
	0		Θ	6		\bigcirc	h	ittp://na	iyana.ec	e.ucsb.ea	tu/i	0	
	<u>ش</u> ا	lome	🔊 💊 В	rowsin	ig and								
	Shopping related 607,000 images are indexed and classified in the database Only One keyword is allowed!!!												
	bike Search												
	Designed by <u>Baris Sumengen</u> and <u>Shawn Newsam</u>												
	Powered by JLAMP2000 (Java, Linux, Apache, Mysql, Perl, Windows2000)												

Results for Initial Query

	N		Browse	Search Prev	Next Random
		T-J-		BIKING 2000 BIKE YEAR	
(144473, 16458)	(144457,252140)	(144456, 262857)	(144456,262863)	(144457, 252134)	(144483, 265154)
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0
(144483, 264644)	(144483, 265153)	(144518, 257752)	(144538, 525937)	(144456,249611)	(144456,250064)
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0

Relevance Feedback

			Browse	Search Prev	Next Random
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	Bracc	T		EIKING 2000 BIKE VEAR	
(144473, 16458)	(144457, 252140)	(144456, 262857)	(144456, 262863)	(144457,252134)	(144483, 265154)
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0
(144483, 264644)	(144483, 265153)	(144518, 257752)	(144538, 525937)	(144456,249611)	(144456,250064)
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0

#### Results after Relevance Feedback

			Browse	Search Prev	Next Random
Correction of the second secon					
(144538,523493) 0.54182 0.231944 0.309876	(144538,523835) 0.56319296 0.267304 0.295889	(144538,523529) 0.584279 0.280881 0.303398	(144456,253569) 0.64501 0.351395 0.293615	(144456,253568) 0.650275 0.411745 0.23853	(144538,523799) 0.66709197 0.358033 0.309059
J.		Ī	<u>in the second s</u>		Shee had 'Bag' Katikada Garkar Sarah Sarah Katikada Katikada Katikada Katikada Katikada Katikada Katikada Katikada Katikada
(144473, 16249) 0.6721 0.393922 0.278178	(144456,249634) 0.675018 0.4639 0.211118	(144456,253693) 0.676901 0.47645 0.200451	(144473, 16328) 0.700339 0.309002 0.391337	(144483,265264) 0.70170796 0.36176 0.339948	(144478,512410) 0.70297 0.469111 0.233859

## Ad hoc results for query canine



### Ad hoc results for query canine



#### User feedback: Select what is relevant



#### Results after relevance feedback



#### Initial query/results

#### Initial query: New space satellite applications

- + 1. 0.539, 08/13/91, NASA Hasn't Scrapped Imaging Spectrometer
- + 2. 0.533, 07/09/91, NASA Scratches Environment Gear From Satellite Plan
  - 3. 0.528, 04/04/90, Science Panel Backs NASA Satellite Plan, But Urges Launches of Smaller Probes
  - 4. 0.526, 09/09/91, A NASA Satellite Project Accomplishes Incredible Feat: Staying Within Budget
  - 5. 0.525, 07/24/90, Scientist Who Exposed Global Warming Proposes Satellites for Climate Research
  - 6. 0.524, 08/22/90, Report Provides Support for the Critics Of Using Big Satellites to Study Climate
  - 7. 0.516, 04/13/87, Arianespace Receives Satellite Launch Pact From Telesat Canada
- + 8. 0.509, 12/02/87, Telecommunications Tale of Two Companies
- User then marks relevant documents with "+".

#### Expanded query after relevance feedback

- 2.074 new
- 30.816 satellite
- 5.991 nasa
- 4.196 launch
- 3.516 instrument
- 3.004 bundespost
- 2.790 rocket
- 2.003 broadcast
- 0.836 oil

- 15.106 space
  5.660 application
  5.196 eos
  3.972 aster
  3.446 arianespace
  2.806 ss
  2.053 scientist
  1.172 earth
  - 0.646 measure

#### Results for expanded query

- 2 1. 0.513, 07/09/91, NASA Scratches Environment Gear From Satellite Plan
- 1 2. 0.500, 08/13/91, NASA Hasn't Scrapped Imaging Spectrometer
  - 3. 0.493, 08/07/89, When the Pentagon Launches a Secret Satellite, Space Sleuths Do Some Spy Work of Their Own
  - 4. 0.493, 07/31/89, NASA Uses 'Warm' Superconductors For Fast Circuit
- 8 5. 0.492, 12/02/87, Telecommunications Tale of Two Companies
  - 6. 0.491, 07/09/91, Soviets May Adapt Parts of SS-20 Missile For Commercial Use
  - 7. 0.490, 07/12/88, Gaping Gap: Pentagon Lags in Race To Match the Soviets In Rocket Launchers
  - 8. 0.490, 06/14/90, Rescue of Satellite By Space Agency To Cost \$90 Million

#### Key concept: Centroid

- The <u>centroid</u> is the center of mass of a set of points
- Recall that we represent documents as points in a high-dimensional space
- Definition: Centroid

$$\vec{\mu}(C) = \frac{1}{|C|} \sum_{d \in C} \vec{d}$$

where C is a set of documents.

#### Rocchio Algorithm

- The Rocchio algorithm uses the vector space model to pick a relevance feed-back query
- Rocchio seeks the query  $\vec{q}_{opt}$  that maximizes

 $\vec{q}_{opt} = \arg\max_{\vec{q}} \left[\cos(\vec{q}, \vec{\mu}(C_r)) - \cos(\vec{q}, \vec{\mu}(C_{nr}))\right]$ 

Tries to separate docs marked relevant and non-relevant
 1 ____ → 1 ___ →

$$\vec{q}_{opt} = \frac{1}{|C_r|} \sum_{\vec{d}_j \in C_r} \vec{d}_j - \frac{1}{|C_{nr}|} \sum_{\vec{d}_j \notin C_r} \vec{d}_j$$

Problem: we don't know the truly relevant docs

#### The Theoretically Best Query



#### Rocchio Algorithm (SMART)

Used in practice:

$$\vec{q}_m = \alpha \vec{q}_0 + \beta \frac{1}{|D_r|} \sum_{\vec{d}_j \in D_r} \vec{d}_j - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_j \in D_{nr}} \vec{d}_j$$

- D_r = set of <u>known</u> relevant doc vectors
- D_{nr} = set of <u>known</u> irrelevant doc vectors
  - Different from  $C_r$  and  $C_{nr}$  !
- $q_m$  = modified query vector;  $q_0$  = original query vector;  $\alpha, \beta, \gamma$ : weights (hand-chosen or set empirically)
- New query moves toward relevant documents and away from irrelevant documents

#### Subtleties to note

- Tradeoff α vs. β/γ : If we have a lot of judged documents, we want a higher β/γ.
- Some weights in query vector can go negative
  - Negative term weights are ignored (set to 0)

#### Relevance feedback on initial query



#### Relevance Feedback in vector spaces

- We can modify the query based on relevance feedback and apply standard vector space model.
- Use only the docs that were marked.
- Relevance feedback can improve recall and precision
- Relevance feedback is most useful for increasing recall in situations where recall is important
  - Users can be expected to review results and to take time to iterate

#### Positive vs Negative Feedback

- Positive feedback is more valuable than negative feedback (so, set γ < β; e.g. γ = 0.25, β = 0.75).</p>
- Many systems only allow positive feedback ( $\gamma$ =0).

#### **Relevance Feedback: Assumptions**

- A1: User has sufficient knowledge for initial query.
- A2: Relevance prototypes are "well-behaved".
  - Term distribution in relevant documents will be similar
  - Term distribution in non-relevant documents will be different from those in relevant documents
    - Either: All relevant documents are tightly clustered around a single prototype.
    - Or: There are different prototypes, but they have significant vocabulary overlap.
    - Similarities between relevant and irrelevant documents are small

# Evaluation of relevance feedback strategies

- Use  $q_0$  and compute precision-recall graph
- Use q_m and compute precision-recall graph
- Assess on all documents in the collection not a good method
  - Spectacular improvements, but ... it's cheating!
  - Partly due to known relevant documents ranked higher
  - Must evaluate with respect to documents not seen by user
- Use documents in residual collection (set of documents minus those assessed relevant)
  - Measures usually then lower than for original query
  - But a more realistic evaluation
  - Relative performance can be validly compared for different relevance feedback algorithms

#### Evaluation of relevance feedback

- Most satisfactory use two collections each with their own relevance assessments
  - $q_0$  and user feedback from first collection
  - $q_m$  run on second collection and measured
- Empirically, one round of relevance feedback is often very useful. Two rounds is sometimes marginally useful.

#### Pseudo relevance feedback

- Pseudo-relevance feedback automates the "manual" part of true relevance feedback.
- Pseudo-relevance algorithm:
  - Retrieve a ranked list of hits for the user's query
  - Assume that the top k documents are relevant.
  - Do relevance feedback (e.g., Rocchio)
- Works very well on average
- But can go horribly wrong for some queries.
- Several iterations can cause query drift.
- Why?

#### **Query Expansion**

- In relevance feedback, users give additional input (relevant/non-relevant) on documents, which is used to reweight terms in the documents
- In query expansion, users give additional input (good/bad search term) on words or phrases

## Query assist

Web   Images   Video   Local   Shopping   n	<u>Nore</u>	Options -	YAHOO!
sarah palin sarah palin saturday night live sarah polley sarah paulson snl sarah palin	Courten		
4			
Would you expect such a fe volume at a search engine	eature to ?	increase t	he query

# How do we augment the user query?

- Manual thesaurus
  - E.g. MedLine: physician, syn: doc, doctor, MD, medico
  - Can be query rather than just synonyms
- Global Analysis: (static; of all documents in collection)
  - Automatically derived thesaurus
    - (co-occurrence statistics)
  - Refinements based on query log mining
    - Common on the web
- Local Analysis: (dynamic)
  - Analysis of documents in result set

#### Example of manual thesaurus

S NCBI		Pub	led	National Library of Medicine	NLM
PubMed N	ucleotide	Protein Genome	Structure	PopSet	Taxonomy
Search PubMed	🗾 for cancer			Go Clear	
About Entrez	Limits	Preview/Index	History	Clipboard	Details
Text Version	PubMed Que	ery: s"[MeSH Terms] OR	cancer[Text	Word])	
Entrez PubMed Overview Help   FAQ Tutorial New/Noteworthy E-Utilities					
PubMed Services Journals Database MeSH Browser Single Citation	Search U	RL			

#### Thesaurus-based query expansion

- For each term, t, in a query, expand the query with synonyms and related words of t from the thesaurus
  - feline  $\rightarrow$  feline cat
- May weight added terms less than original query terms.
- Generally increases recall
- Widely used in many science/engineering fields
- May significantly decrease precision, particularly with ambiguous terms.
  - "interest rate"  $\rightarrow$  "interest rate fascinate evaluate"
- There is a high cost of manually producing a thesaurus
  - And for updating it for scientific changes

#### **Automatic Thesaurus Generation**

- Attempt to generate a thesaurus automatically by analyzing the collection of documents
- Fundamental notion: similarity between two words
- Definition 1: Two words are similar if they co-occur with similar words.
- Definition 2: Two words are similar if they occur in a given grammatical relation with the same words.
- You can harvest, peel, eat, prepare, etc. apples and pears, so apples and pears must be similar.

#### **Co-occurrence** Thesaurus

• Simplest way to compute one is based on term-term similarities in  $C = AA^{T}$  where A is term-document matrix.



- What does C contain if A is a term-doc incidence (0/1) matrix?
- For each  $t_i$ , pick terms with high values in C

#### **Automatic Thesaurus Generation** Example

word	ten nearest neighbors
absolutely	absurd what soever totally exactly nothing $\cdot$
bottomed	dip copper drops topped slide trimmed slig
$\operatorname{captivating}$	shimmer stunningly superbly plucky witty
doghouse	dog porch crawling beside downstairs gazed
Makeup	repellent lotion glossy sunscreen Skin gel p
mediating	reconciliation negotiate cease conciliation p
keeping	hoping bring wiping could some would othe
lithographs	drawings Picasso Dali sculptures Gauguin 1
pathogens	toxins bacteria organisms bacterial parasite
senses	grasp psyche truly clumsy naive innate awl
	25

# Automatic Thesaurus Generation Discussion

- Quality of associations is usually a problem.
- Term ambiguity may introduce irrelevant statistically correlated terms.
  - "Apple computer"  $\rightarrow$  "Apple red fruit computer"
- Problems:
  - False positives: Words deemed similar that are not
  - False negatives: Words deemed dissimilar that are similar
- Since terms are highly correlated anyway, expansion may not retrieve many additional documents.

#### Query assist

- Generally done by query log mining
- Recommend frequent recent queries that contain partial string typed by user
- A ranking problem! View each prior query as a doc – Rank-order those matching partial string …

