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Relevance Feedback

s Relevance feedback: user feedback on relevance
of docs in initial set of results

= User issues a (short, simple) query

s | he user marks some results as relevant or non-
relevant.

= The system computes a better representation of the
information need based on feedback.

= Relevance feedback can go through one or more
iterations.

» |dea: it may be difficult to formulate a good query
when you don’t know the collection well, so iteratg



Relevance feedback

- OO0
= We will use ad hoc retrieval to refer to regular
retrieval without relevance feedback.

= We now look at some examples of relevance
feedback.



Similar pages

GO ngle sarah brightman ;3_:_!"_::;_9—3

Web Video Music

Sarah Brightman Official \Website - Home Page
Official site of world's best-selling soprano. Join FAN AREA free to access exclusive perks

photo diaries, a global forum community and m
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Relevance Feedback: Example

= Image search engine
http://nayana.ece.ucsb.edu/imsearch/imsearch.html

(M) Mew Page 1 - Netscape O] x|

. File  Edit Wiew Go Bookmarks Tools Window  Help

B @D O @ O o http:)finayana, ece.ucsh, edu/i cf_:;a @

» ‘2% Home | % Browsing and ...

shopping related 07 000 wmages are indexed and classified in the database
Only One keyvword 15 allowed! ]

|bike] Search

Designed by Baris Sumengen and Shawn Mewsam

Fowered by JLAMEPZ000 fdavea, Linux, Apache, Myvsgl FPerl, WindowsZ000)



Results for Initial Query
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Relevance Feedback
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Results after Relevance Feedback
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Ad hoc results for query canine

ad hoc retrieval canine
|

“canine”




Ad hoc results for query canine

ad hoc retrieval canine

“canine”




User feedback: Select what is relevant

source: Fernando Diaz

relevance ‘Conine
feedback |
“canine”
relevant
. document
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Results after relevance feedback

ource: Fernando Diaz

relevance canine

feedback |
/’/ / /f . “canine”

: @ rcevan!
(\ ( &. "canine dog"
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Initial query/results

= |nitial query: New space satellite applications
+ 1.0.539, 08/13/91, NASA Hasn’t Scrapped Imaging Spectrometer
4+ 2.0.533, 07/09/91, NASA Scratches Environment Gear From Satellite Plan

3. 0.528, 04/04/90, Science Panel Backs NASA Satellite Plan, But Urges
Launches of Smaller Probes

4. 0.526, 09/09/91, A NASA Satellite Project Accomplishes Incredible Feat:
Staying Within Budget

5. 0.525, 07/24/90, Scientist Who Exposed Global Warming Proposes
Satellites for Climate Research

6. 0.524, 08/22/90, Report Provides Support for the Critics Of Using Big
Satellites to Study Climate

7.0.516, 04/13/87, Arianespace Receives Satellite Launch Pact From Telesat
Canada

+ 8. 0.509, 12/02/87, Telecommunications Tale of Two Companies

s User then marks relevant documents with “+”.
13



Expanded query after relevance feedback
- —

m 2.074 new 15.106 space

s 30.816 satellite 5.660 application
= 5.991 nasa 5.196 eos

= 4.196 launch 3.972 aster

s 3.516 Iinstrument 3.446 arianespace
= 3.004 bundespost 2.800 ss

s 2./90 rocket 2.053 scientist

s 2.003 broadcast 1.172 earth

m 0.836 all 0.646 measure
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Results for expanded query

2 1.0.513, 07/09/91, NASA Scratches Environment Gear From Satellite Plan
1 2.0.500, 08/13/91, NASA Hasn’t Scrapped Imaging Spectrometer

3. 0.493, 08/07/89, When the Pentagon Launches a Secret Satellite,
Space Sleuths Do Some Spy Work of Their Own

4.0.493, 07/31/89, NASA Uses ‘Warm’ Superconductors For Fast Circuit
8 5.0.492, 12/02/87, Telecommunications Tale of Two Companies

6. 0.491, 07/09/91, Soviets May Adapt Parts of SS-20 Missile For
Commercial Use

7.0.490, 07/12/88, Gaping Gap: Pentagon Lags in Race To Match the
Soviets In Rocket Launchers

8. 0.490, 06/14/90, Rescue of Satellite By Space Agency To Cost $90
Million

15



Key concept: Centroid

s | he centroid is the center of mass of a set of
points

s Recall that we represent documents as points In
a high-dimensional space

s Definition: Centroid

H(C )_ﬁz

deC
where C is a set of documents.
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Rocchio Algorithm

= [he Rocchio algorithm uses the vector space
model to pick a relevance feed-back query

= Rocchio seeks the query g, that maximizes
Gope = al'g MaX|cos(q, #(C,)) —cos(q, #(C,,))]
q

= [ries to separate docs marked relevant and non-
relevant 1

o = = . d, ——— Y'd,
q " ‘Cr JjZE(; ‘Cnr‘ dZ

s Problem: we don’t know the truly relevant docs
17




The Theoretically Best Query

X hon-relevant documents

Optimal | ]
query o relevant documents



Rocchio Algorithm (SMART)

= Used in practice:

q _aqo_l'/B‘D‘dZd ‘D zd

nr| d. €Dn,

= D, =set of known relevant doc vectors

= D, = setof known irrelevant doc vectors
» Different from C,and C,,

= §,, = modified query vector; q, = original query vector;
a,B,y: weights (hand-chosen or set empirically)

= New query moves toward relevant documents and
away from irrelevant documents

19



Subtleties to note

= [radeoff a vs. B/y : If we have a lot of judged
documents, we want a higher (/y.

= Some weights in query vector can go
negative

= Negative term weights are ignored (set to 0)

20



Relevance feedback on initial query

Initial
query

X known non-relevant documents

Revised ‘ | ‘d :
query o known relevant documents .



Relevance Feedback in vector spaces

= We can modify the query based on relevance
feedback and apply standard vector space model.

s Use only the docs that were marked.

= Relevance feedback can improve recall and
precision

s Relevance feedback is most useful for increasing
recall in situations where recall is important

= Users can be expected to review results and to take
time to iterate

22



Positive vs Negative Feedback

= Positive feedback is more valuable than negative
feedback (so, set y < f3; e.g. v =0.25, B = 0.75).

= Many systems only allow positive feedback (y=0).

23



Relevance Feedback: Assumptions
- 000000000

= A1: User has sufficient knowledge for initial query.

= A2: Relevance prototypes are “well-behaved”.

= [erm distribution in relevant documents will be
similar

= [erm distribution in non-relevant documents will be
different from those in relevant documents

« Either: All relevant documents are tightly clustered around a
single prototype.

= Or: There are different prototypes, but they have significant
vocabulary overlap.

=« Similarities between relevant and irrelevant documents are
small 24



Evaluation of relevance feedback
strategies

= Use q,and compute precision-recall graph
= Use q,, and compute precision-recall graph

= Assess on all documents in the collection — not a good
method
= Spectacular improvements, but ... it's cheating!
« Partly due to known relevant documents ranked higher
» Must evaluate with respect to documents not seen by user

= Use documents in residual collection (set of documents
minus those assessed relevant)
= Measures usually then lower than for original query
« But a more realistic evaluation

=« Relative performance can be validly compared for different

relevance feedback algorithms
25



Evaluation of relevance feedback

= Most satisfactory — use two collections each with
their own relevance assessments

= g, and user feedback from first collection
= J,, run on second collection and measured

= Empirically, one round of relevance feedback is
often very useful. Two rounds is sometimes
marginally useful.

26



Pseudo relevance feedback

s Pseudo-relevance feedback automates the
“manual” part of true relevance feedback.

s Pseudo-relevance algorithm:
= Retrieve a ranked list of hits for the user's query
= Assume that the top k documents are relevant.
= Do relevance feedback (e.g., Rocchio)

= Works very well on average

= But can go horribly wrong for some queries.

= Several iterations can cause query drift.

27



Query Expansion

= In relevance feedback, users give additional input
(relevant/non-relevant) on documents, which is
used to reweight terms in the documents

= |In query expansion, users give additional input
(good/bad search term) on words or phrases

28



Query assist

Web | Images | Video | Local | Shopping | more ~

|sarahp | Search Options - YAHOO.’

alin
alin saturday night live
olley
aulson
alin

29



How do we augment the user
query?

= Manual thesaurus

= E.g. MedLine: physician, syn: doc, doctor, MD,
medico

=« Can be query rather than just synonyms

s Global Analysis: (static; of all documents in collection)

= Automatically derived thesaurus
= (Cco-occurrence statistics)

» Refinements based on query log mining
« Common on the web

= Local Analysis: (dynamic)
= Analysis of documents in result set 30



Example of manual thesaurus

National 3
NCBI Pub.&]ed iy

Fubhded Mucleotide Frotein Genome Structure FopSet Taxanomy

Sear.:hll:’ubhded j for In::ann::er GDl Clear |
Lirmnits Previewfndex History Clipbhoard Details

About Entrez

PubMIed Query:

["neoplasms"[Mel3H Terms] OF cancer[Text Ward])

TextVersion

Entrez Pubied
Owe i e

Help | FAQ
Tutorial

I el otesaearthyy
E-Litilities

Pubked services
Journals Da )
MesH Br

Search | URL|



Thesaurus-based guery expansion

= For eachterm, t, in a query, expand the query with
synonyms and related words of t from the thesaurus

= feline — feline cat
= May weight added terms less than original query terms.
= Generally increases recall
= Widely used in many science/engineering fields

= May significantly decrease precision, particularly with
ambiguous terms.

s ‘Interest rate” — “interest rate fascinate evaluate”

= There is a high cost of manually producing a thesaurus
= And for updating it for scientific changes

32



Automatic Thesaurus Generation

= Attempt to generate a thesaurus automatically by
analyzing the collection of documents

= Fundamental notion: similarity between two words

m Definition 1: Two words are similar if they co-occur
with similar words.

m Definition 2: Two words are similar if they occur in a
given grammatical relation with the same words.

= You can harvest, peel, eat, prepare, etc. apples
and pears, so apples and pears must be similar.

33



Co-occurrence Thesaurus

= Simplest way to compute one is based on term-term
similarities in C = AAT where A is term-document matrix.

g N

M

= What does C contain if A is a term-doc incidence (0/1)
matrix?

= For each t;, pick terms with high values in C 34



Automatic Thesaurus Generation

Example

word ten nearest neighbors

absolutely | absurd whatsoever totally exactly nothing .
bottomed dip copper drops topped shde trimmed shg
captivating | shimmer stunningly superbly plucky witty
doghouse dog porch crawlng beside downstairs gazec
Makeup repellent lotion glossy sunscreen Skin gel p
mediatimg | reconcihiation negotiate cease concihation p
keeping | hoping bring wiping could some would othe
lithographs | drawimgs Picasso Dali sculptures Gauguin |
pathogens | toxins bacteria orgamsms bacterial parasite
senses grasp psyche truly clumsy naive mnate awl

35



Automatic Thesaurus Generation

Discussion
- .

= Quality of associations is usually a problem.

= [erm ambiguity may introduce irrelevant
statistically correlated terms.
= "Apple computer” — “Apple red fruit computer”
= Problems:
= False positives: Words deemed similar that are not
= False negatives: Words deemed dissimilar that are
similar
= Since terms are highly correlated anyway,
expansion may not retrieve many additional
documents. -



Query assist

= Generally done by query log mining

= Recommend frequent recent queries that contain
partial string typed by user

= A ranking problem! View each prior query as a
doc — Rank-order those matching partial string ...

Web | Images | Video | Local | Shopping | more -

sarah p Search Options ~ YAHOO.'

sarah palin
sarah palin saturday night live

sarah polley
sarah paulson
snl sarah palin
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