Semantics with Dense Vectors

Reference:
- D. Jurafsky and J. Martin, “Speech and Language Processing”

Semantics with Dense Vectors

We saw how to represent a word as a sparse
vector with dimensions corresponding to the
words in the vocabulary, and whose values were
some function of the count of the word co-
occurring with each neighboring word.

Each word is represented with a vector that is
both long (length |V|, with vocabularies of
20,000 to 50,000) and sparse, with most
elements of the vector for each word equal to
Zero.

Semantics with Dense Vectors

e Now we turn to an alternative family of methods of
representing a word.

 We use the vectors that are short (of length perhaps
50 — 1000) and dense (most values are non-zero).

e Short vectors have a number of potential
advantages.

e First, they are easier to include as features in
machine learning systemes.

Semantics with Dense Vectors

 For example, if we use 100-dimensional word
embeddings as features:

e A classifier can just learn 100 weights to represent a
function of word meaning, instead of having to learn
tens of thousands of weights for each of the sparse
dimensions.

 Because they contain fewer parameters than sparse
vectors of explicit counts, dense vectors may
generalize better and help avoid overfitting.

Semantics with Dense Vectors

 Dense vectors may do a better job of capturing
synonymy than sparse vectors.

 For example, car and automobile are synonyms.

* |n atypical sparse vectors representation, the car
dimension and the automobile dimension are distinct
dimensions.

e Because the relationship between these two
dimensions is not modeled, sparse vectors may fail to
capture the similarity between a word with car as a
neighbor and a word with automobile as a neighbor.

Dense Vectors via SVD

 We begin with a classic method for generating dense
vectors: singular value decomposition, or SVD

e |tis first applied to the task of generating
embeddings from term-document matrices by
Deerwester et al. (1988) in a model called Latent
Semantic Indexing or Latent Semantic Analysis (LSA)

e Singular Value Decomposition (SVD) is a method for
finding the most important dimensions of a data set,
those dimensions along which data varies the most.

Dense Vectors via SVD

* |n general, dimensionality reduction methods first
rotate the axes of the original dataset into a new
space.

e The new space is chosen so that the highest order
dimension captures the most variance in the dataset.

* The next dimension captures the next most variance,
and so on.

Dense Vectors via SVD

 The following figure shows a visualization.

ol
S []
— a ®
% * ot 'o:o
E A I
il 5 ‘-n’ JTe'®
t_é L] ..' -" L]
£ s o °
=) e i
O s %0 . B¢
a ." e
[]

Original Dimension 1
(a)

° oo @ .
e % 00,
® 5° :zn.l-‘“. :o- ee ©
i o',‘.' ee @
o 0O e

PCA dimension 2

PCA dimension 1

(c)

Criginal Dimension 2

Original Dimension 1
(b)

PCA dimension 1
(d)

Dense Vectors via SVD

e A set of points (vectors) in two dimensions is rotated
so that the first new dimension captures the most
variation in the data.

* |n this new space, we can represent data with a
smaller number of dimensions (for example using
one dimension instead of two) and still capture much
of the variation in the original data.

Latent Semantic Analysis

e LSAis a particular application of SYDtoa |V| X ¢
term-document matrix X representing |V | words and
their co-occurrence with ¢ documents or contexts.

e SVD factorizes any such rectangular |V| X ¢ matrix X

into the product of three matrices W, ¥, and Y7, i.e.
wzy’

e |Inthe |V| X m matrix W, each of the w rows still
represents a word, but columns do not.

Latent Semantic Analysis

e Each column now represents one of m dimensions in
a latent space.

e The m column vectors are orthogonal to each other.

 The columns are ordered by the amount of variance
in the original dataset each accounts for.

* The number of such dimensions m is the rank of X
(the rank of a matrix is the number of linearly
independent rows).

Latent Semantic Analysis

e Y isadiagonal m X m matrix, with singular values
along the diagonal, expressing the importance of
each dimension.

e Them X ¢ matrix YT, denoted as C, still represents
documents or contexts, but each row now represents
one of the new latent dimensions and the m row
vectors are orthogonal to each other.

Latent Semantic Analysis

* By using only the first k dimensions, of W, X, and C
instead of all m dimensions, the product of these 3
matrices becomes a least-squares approximation to
the original X.

e Since the first dimensions encode the most variance,
one way to view the reconstruction is thus as
modeling the most important information in the
original dataset.

Latent Semantic Analysis

 SVD applied to co-occurrence matrix X:

V| X c

V] xm

_0_1

0
0

0
03
0

03

m Xm

o O

. O'm_ -

m X c¢

14

Latent Semantic Analysis

* Taking only the top k, k < m dimensions after the
SVD is applied to the co-occurrence matrix X:

X 7

V| X ¢ V| Xk

oy
0
0

0

0
07
0

0

0
0
03

0

k Xk

-

O |

o

k Xc

SVD factors a matrix into a product of three matrices, W, %, and C.
Taking the first k dimensions gives a |[V| X k matrix W}, that has one k-
dimensioned row per word that can be used as an embedding.

Latent Semantic Analysis

e Using only the top k dimensions (corresponding to
the k most important singular values) leads to a
reduced |V| X k matrix W}, with one k-dimensioned
row per word.

 This row now acts as a dense k-dimensional vector
(embedding) representing that word, substituting for
the very high-dimensional rows of the original X.

 LSA embeddings generally set k=300, so these
embeddings are relatively short by comparison to
other dense embeddings.

Latent Semantic Analysis

* Instead of PPMI or tf-idf weighting on the original
term-document matrix, LSA implementations
generally use a particular weighting of each co-
occurrence cell that multiplies two weights called the
local and global weights for each cell (i, j) —term i in
document .

Latent Semantic Analysis

e The local weight of each term i is its log frequency:
log f(i,j) +1
 The global weight of term i is a version of its entropy:
2.;p(i,j) logp(i,j)
logD
 Disthe number of documents.

1+

18

SVD applied to word-context matrices

e Rather than applying SVD to the term-document
matrix, an alternative that is widely practiced is to

apply SVD to the word-word or word-context matrix.

* |n this version the context dimensions are words
rather than documents.

19

SVD applied to word-context matrices

e The mathematics is identical to what is described in
LSA.

e SVD factorizes the word-context matrix X into three
matrices W, X, and C".

 The only difference is that we are starting from a
PPMI-weighted word-word matrix, instead of a term-
document matrix.

20

SVD applied to word-context matrices

 Once again only the top k dimensions are retained
(corresponding to the k most important singular
values), leading to a reduced |V| X k matrix Wy,
with one k-dimensioned row per word.

e Just as with LSA, this row acts as a dense k-
dimensional vector (embedding) representing that
word.

e The other matrices (X and C) are simply thrown away.

21

SVD applied to word-context matrices

1) SVD Word-word
PPMI matrix
X C
X = W mXxm m X ¢
W XC wXxXm

2) Truncation:

Q

SVD applied to word-context matrices

3) Embeddings:

embedding for word i: | j

w X k

23

SVD applied to word-context matrices

* This use of just the top dimensions, whether for a
term-document matrix like LSA, or for a term-term
matrix, is called truncated SVD.

 Truncated SVD is parameterized by k, the number of
dimensions in the representation for each word,
typically ranging from 500 to 5,000.

e Thus SVD run on term-context matrices tends to use
many more dimensions than the 300-dimensional
embeddings produced by LSA.

SVD applied to word-context matrices

e This difference presumably has something to do with
the difference in granularity.

e LSA counts for words are much coarser-grained,
counting the co-occurrences in an entire document,
while word-context PPMI matrices count words in a
small window.

25

Embeddings from prediction: Skip-gram
and CBOW

A second method for generating dense embeddings
draws its inspiration from the neural network models
used for language modeling.

e The idea is: Given a word, we predict context words.

 The intuition is that words with similar meanings
often occur near each other in texts.

26

Embeddings from prediction: Skip-gram
and CBOW

e We learn an embedding by starting with a random
vector and then iteratively shifting a word'’s
embeddings to be more like the embeddings of
neighboring words, and less like the embeddings of
words that don’t occur nearby.

27

Embeddings from prediction: Skip-gram
and CBOW

* The most popular family of methods is referred to as
word2vec, after the software package that
implements two methods for generating dense

embeddings: skip-gram and CBOW (continuous bag
of words).

28

Embeddings from prediction: Skip-gram
and CBOW

e The word2vec models learn embeddings by training
a network to predict neighboring words.

 The prediction task is not the main goal.

 Words that are semantically similar often occur near
each other in text, and so embeddings that are good
at predicting neighboring words are also good at
representing similarity.

 The advantage of the word2vec methods is that they
are fast, efficient to train, and easily available online
with code and pretrained embeddings.

29

Embeddings from prediction: Skip-gram

 We'll begin with the skip-gram model.

e Like the SVD model, the skip-gram model actually
learns two separate embeddings for each word w:
the word embedding v and the context embedding
C.

e These embeddings are encoded in two matrices, the
word matrix W and the context matrix C.

30

Embeddings from prediction: Skip-gram

e We
see

e Eac
em

e Fac

"Il discuss how W and C are learned, but let’s first
how they are used.

n row i of the word matrix Wis the 1 X d vector
nedding v; for word i in the vocabulary.

n column i of the context matrix Cisad X 1

vector embedding c¢; for word i in the vocabulary.

In principle, the word matrix and the context matrix

could use different vocabularies V;,, and /...

— We’ll simplify by assuming the two matrices share
the same vocabulary, which we’ll just call V.

Embeddings from prediction: Skip-gram

 The following figure shows the intuition that the
similarity function requires selecting out a target
vector v; from W, and a context vector ¢, from C.

W C
target target embeddings

embedding 1. . d context embeddings
forword j___ 120 Ko, \4

/. '\. 1 P

Similarity(j, k) , 1 z

A (e0e0e00) - o

\ d ®

\) ®

-

-
~

>

_/context embedding
S PP S for word k 32

Embeddings from prediction: Skip-gram

e Let’s consider the prediction task.

 We are walking through a corpus of length T and
currently pointing at the t th word w(®, whose index
in the vocabulary is j, so we'll call it w; (1 < j < [V]).

 The skip-gram model predicts each neighboring word
in a context window of 2L words from the current

word.

33

Embeddings from prediction: Skip-gram

e So for a context window L = 2 the context is
[wt=2 wt=1 wt+l ,t+2] 3nd we are predicting each
of these from word w;.

e But let’s simplify for a moment and imagine just
predicting one of the 2L context words, for example
w1 whose index in the vocabulary is k (1 < k <

VD).

* Hence our task is to compute P(wy|wj).

34

Embeddings from prediction: Skip-gram

 The heart of the skip-gram computation of the
probability p(wy|w;) is computing the dot product
between the vectors for w; and wy, namely, the

target vector for w; and the context vector for wy,
e For simplicity, we’ll represent this dot product as
Ck * Uj (precisely it is CZUJ-).

where ¢y, is the context vector of word k and v is
the target vector for word j.

35

Embeddings from prediction: Skip-gram

 The following figure shows the intuition that the
similarity function requires selecting out a target
vector v; from W, and a context vector ¢, from C.

W C
target target embeddings

embedding 1. . d context embeddings
forword j___ 120 Ko, \4

/. '\. 1 P

Similarity(j, k) , 1 z

A (e0e0e00) - o

\ d ®

\) ®

-

-
~

>

_/context embedding
S PP S for word k 36

Embeddings from prediction: Skip-gram

 The higher the dot product between two vectors, the
more similar they are.

 That was the intuition of using the cosine as a

similarity metric, since cosine is just a normalized dot
product.

37

Embeddings from prediction: Skip-gram

* Of course, the dot product ¢ - v; is not a probability,
it’s just a number ranging from —oo to .

 We can use the softmax function to normalize the
dot product into probabilities.

e Computing this denominator requires computing the
dot product between each other word w in the
vocabulary with the target word w;:

exp(ck - vj)
iclv| €Xp(c; * v))

P(Wk|Wj) = >

38

Embeddings from prediction: Skip-gram

* |n summary, the skip-gram computes the probability
p(wi|w;) by taking the dot product between the

word vector for j (v;) and the context vector for k
(ck), and turning this dot product v; - ¢ into a
probability by passing it through a softmax function.

39

Embeddings from prediction: Skip-gram

e This version of the algorithm, however, has a

problem: the time it takes to compute the
denominator.

e For each word wt, the denominator requires
computing the dot product with all other words.

* |n practice, we generally solve this by using an
approximation of the denominator.

40

Embeddings from prediction: CBOW

e The CBOW (continuous bag of words) model is
roughly the mirror image of the skip-gram model.

e Like skip-grams, it is based on a predictive model, but
this time predicting the current word w; from the
context window of 2L words around it.

e.g. for L = 2 the context is [We—2) We—1, W41, W42]

41

Embeddings from prediction: CBOW

* While CBOW and skip-gram are similar algorithms
and produce similar embeddings, they do have
slightly different behavior.

e Often one of them will turn out to be the better
choice for a particular task.

42

Learning word and context embeddings

 We already mentioned the intuition for learning the
word embedding matrix W and the context
embedding matrix C:

e |teratively make the embeddings for a word more

like the embeddings of its neighbors and less like the
embedding of other words.

43

Learning word and context embeddings

* In this version of the prediction algorithm, the
probability of a word is computed by normalizing the
dot-product between a word and each context word
by the dot products for all words.

* This probability is optimized when a word’s vector is
closest to the words that occur near it (the
numerator), and further from every other word (the
denominator).

e Such a version of the algorithm is very expensive.

 We need to compute a whole lot of dot products to
make the denominator.

Learning word and context embeddings

e |Instead, the most commonly used version of skip-
gram, skip-gram with negative sampling,
approximates this full denominator.

e We will describe a brief sketch of how this works.

45

Learning word and context embeddings

* |n the training phase, the algorithm walks through
the corpus.

e At each target word choosing the surrounding
context words as positive examples.

e For each positive example also choosing k noise
samples or negative samples: non-neighbor words.

 The goal will be to move the embeddings toward the
neighbor words and away from the noise words.

Learning word and context embeddings

 For example, in walking through the example text
below we come to the word apricot, and let L = 2 so
we have 4 context words c1 through c4:

[tablespoon of apricot preserves or] .
jam
cl c2 w c3 c4

e The goalis to learn an embedding whose dot product
with each context word is high.

lemon, a

47

Learning word and context embeddings

* |n practice skip-gram uses a sigmoid function o of the

dot product, where
1

1+e™*

* For the above example, we want
o(cl-w)+o(c2-w)+a(c3-w)+ao(cd-w)to
be high.

o(x) =

48

Learning word and context embeddings

* |n addition, for each context word the algorithm
choose k random noise words according to their
unigram frequency.

e |fweletk = 2, for each target/context pair, we'll
have 2 noise words for each of the 4 context words:

cement metaphysical dear coaxial
nl n2 n3 n4

apricot attendant whence forever puddle
n5 neé n7 n8

49

Learning word and context embeddings

e We'd like these noise words n to have a low dot-
product with our target embedding w.

* In other words we wanto(nl-w)+on2-w) +
-« + 0(n8 - w) to be low.

50

Learning word and context embeddings

 More formally, the learning objective for one word/context
pair (w,c) is

k
loga(c-w) + Z Ey,~pw)llogo(—w; - w)]
i=1

e We want to maximize the dot product of the word with the
actual context words, and minimize the dot products of the
word with the k negative sampled non-neighbor words.

* The noise words w; are sampled from the vocabulary V
according to their weighted unigram probability.

e In practice rather than p(w) it is common to use the

3
weighting p+(w).

51

Learning word and context embeddings

 The learning algorithm starts with randomly
initialized W and C matrices.

 Then, the learning algorithm walks through the
training corpus moving W and C so as to maximize
the objective just previously mentioned.

 An algorithm like stochastic gradient descent is used
to iteratively shift each value so as to maximize the
objective, using error backpropagation to propagate
the gradient back through the network.

Learning word and context embeddings

* |n summary, the above learning objective is not the
same as the p(wy|w;).

* Nonetheless, although negative sampling is a
different objective than the probability objective,
and so the resulting dot products will not produce
optimal predictions of upcoming words, it seems to
produce good embeddings, and that’s the goal we
care about.

53

Learning word and context embeddings
Visualizing the Network

 The following figure shows a simplified visualization

of the model.
Output layer

Input Iayer probabilities of
1-hot input vector Projection Iayer context words

X1 @ embeddingfoyT Y1
A2 : v : V2
Y g ! -
Wi Xj : Wivixa § Cax|v| : y, Wt+1
. | ® ® °
xWL 1Xd &)’|V|
1x |V] 1% |V

The skip-gram model viewed as a network. **

Learning word and context embeddings
Visualizing the Network

e Using error backpropagation requires that we
envision the selection of the two vectors from the W

and C matrices as a network that we can propagate
backwards across.
 We've simplified to predict a single context word

rather than 2L context words, and simplified to show
the softmax over the entire vocabulary rather than

just the k noise words.

55

Learning word and context embeddings

e |t’'s worth taking a moment to envision how the
network is computing the same probability as the
dot product version we described above.

* |n the above network, we begin with an input vector
x, which is a one-hot vector for the current word w;.

56

Learning word and context embeddings

A one-hot vector is just a vector that has one

element equal to 1, and all the other elements are
set to zero.

* Thusin a one hot presentation for the word w;,x; =
1,and x; = 0 Vi # j, as shown in the following:

Wo Wq W] W|V|

o o o 0o 0. 000 01 0O O O0OO0OTGOO. 00 o0 O

A one-hot vector, with the dimension corresponding to word

W;j setto 1. -

Learning word and context embeddings

e We then predict the probability of each of the 2L
output words — that means the one output word
W1 —In 3 steps.

58

Learning word and context embeddings

1. Select the embedding from W.
e Xxis multiplied by W, the input matrix, to give the
hidden or projection layer.
* Since each row of the input matrix W is just an

embedding for word w;, and the input is a one-
hot column vector for w;, the projection layer for

input x willbe h = W * w; = v;, the input
embedding for w;.

59

Learning word and context embeddings

2. Compute the dot product ¢, - v;.

e For each of the 2L context words we now
multiply the projection vector h by the context
matrix C.

 The resulting for each context word, o = Ch, is a

1 X |V| dimensional output vector giving a score
for each of the |V | vocabulary words.

* Indoing so, the element 0, was computed by
multiplying h by the output embedding for word

W0 = Ck‘h= Ck‘Uj.

Learning word and context embeddings

3. Normalize the dot products into probabilities.

 For each context word we normalize this vector
of dot product scores, turning each score
element o, into a probability by using softmax
function:

exp(Cy * v})
iclv| €xp(Ci * vj)

P(Wk‘Wj) = Vk = 5

61

Properties of embeddings

* The following table shows the words/phrases that
are most similar to some sample words using the
phrase-based version of the skip-gram algorithm.

target: Redmond Havel ninjutsu graffiti capitulate
Redmond Vaclav Havel ninja spray paint capitulation
Wash.
Redmond president martial arts graffiti capitulated
Washington Vaclav Havel
Microsoft Velvet swordsmanship taggers capitulating
Revolution

Examples of the closest tokens to some target words using a

phrase-based extension of the skip-gram algorithm.
62

Properties of embeddings

* One semantic property of various kinds of
embeddings that may play in their usefulness is their
ability to capture relational meanings.

 Mikolov et al. demonstrates that the offsets between
vector embeddings can capture some relations
between words.

Properties of embeddings

 For example, the result of the expression
vector(‘king’) - vector(‘man’) + vector(‘woman’) is a

vector close to vector(‘gueen’).

 The left panel in the following figure visualizes this by
projecting a representation down into 2 dimensions.

WOMAN
o o QUEENS
MAN /7
R KINGS \
QUEEN \ QUEEN
KING KING

64

Properties of embeddings

e Similarly, they found that the expression
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’)
results in a vector that is very close to
vector(‘Rome’).

 Levy and Goldberg show that various other kinds of
embeddings also seem to have this property.

65

