Sequence Processing with Recurrent
Networks and Transformers

Reference:
- D. Jurafsky and J. Martin, “Speech and Language Processing”

Motivation

* We have seen feedforward neural networks along with
their applications to neural language models.

* These models operate by accepting fixed-sized windows
of tokens as input.

* Sequences longer than the window are processed by
sliding windows over the input making predications as
they go, with the end result being a sequence of
predictions spanning the input.

Simple Recurrent Networks

Fig. 1

p(ant|...) p(doe|..) p(fish]|...)

p(zebra|...)

i ke AR [CT) CT) (5 CTDJ

~— u

hidden layer h [h

embedding layer e

>
2
g

.| and |[thanks for all the ? 4
Wi-3 Wi2 Wi-1 Wi
t AR -

Simplified sketch of a feedforward neural language model moving through a text. At each time

step t the network converts N context words, each to a d-dimensional embedding, and

concatenates the N embeddings together to get the 1 X Nd unit input vector x for the network.

The output of the network is a probability distribution over the vocabulary representing the

model’s belief with respect to each word being the next possible word.

3

Motivation

* Feedforward sliding-window shares the weakness of n-
gram approaches: limited context.

* Anything outside the context window has no impact
on the decision being made.

* Many language tasks require access to information
that can be arbitrarily distant from the current word.

* The use of windows makes it difficult for networks to
learn systematic patterns arising from phenomena like
constituency and compositionality: the way the meaning
of words in phrases combine together.

* For example, the phrase “all the” appears in one
window in the second and third positions, and in the
next window in the first and second positions, forcing
the network to learn two separate patterns for what
should be the same item.

Simple Recurrent Neural Networks

A recurrent neural network (RNN) is any network that
contains a cycle within its network connections.

Any network where the value of a unit is directly, or
indirectly, dependent on earlier outputs as an input.

In general, such networks are difficult to reason about,
and to train.

However, within the general class of recurrent networks,
there are constrained architectures that have proven to
be extremely useful when applied to language problems.

We’'ll introduce a class of recurrent networks referred to
as Simple Recurrent Networks (SRNs) or EIman Networks.

* These networks are useful in their own right and serve as the
basis for more complex approaches to be discussed later.

Simple Recurrent Neural Networks

* The right figure abstractly illustrates the recurrent structure of a
simple RNN.

* As with ordinary feedforward networks, an input vector
representing the current input element, x;, is multiplied by a
weight matrix and then passed through a non-linear activation
to compute the values for a layer of hidden units.

£y Ty
Fig. 2

Simple Recurrent Neural Networks

* This hidden layer is then used to calculate a corresponding
output, y;.

* Sequences are processed by presenting one item at a time to the
network.

* The key difference from a feed-forward network lies in the
recurrent link shown in the figure with the dashed line.

* This link augments the input to the computation at the hidden
layer with the activation value of the hidden layer from the
preceding point in time. Vo Y

Simple Recurrent Neural Networks

* The hidden layer from the previous time step provides a
form of memory, or context, that encodes earlier
processing and informs the decisions to be made at
later points in time.

* Importantly, the architecture does not impose a fixed-
length limit on this prior context

 The context embodied in the previous hidden layer

includes information extending back to the beginning of
the sequence.

Simple Recurrent Neural Networks

e @Given an input vector and the values for the hidden layer from the
previous time step, we’re still performing the standard feed-
forward calculation.

* To see this, consider the following figure (Fig. 3) which clarifies the
nature of the recurrence and how it factors into the computation at
the hidden layer.

Fig. 3 (Vs)
o
(hy)

—
-
__,—o-""-'-'-
e
"
-_,-o—""_'_F
e
_— W
-
e
o

(o= Y z)
9

Simple Recurrent Neural Networks

 The most significant change lies in the new set of weights,
U, that connect the hidden layer from the previous time
step to the current hidden layer.

 These weights determine how the network should make
use of past context in calculating the output for the
current input.

* As with the other weights in the !
network, these connections will be \ v
trained via backpropagation. (- ;
1
=\
(hy_1) (Xt)

Simple Recurrent Neural Networks

* Forward inference (mapping a sequence of inputs to a
sequence of outputs) in an RNN is nearly identical to what
we’ve already seen with feedforward networks.

* To compute an output y; for an input x; , we need the
activation value for the hidden layer h; .

* To calculate this, we multiply the
input x; with the weight matrix W, \

and the hidden layer from the

previous time step h;_; with the
weight matrix U.

/

(.) (X

11

Simple Recurrent Neural Networks

 We add these values together and pass them through a
suitable activation function g, to arrive at the activation
value for the current hidden layer, h; .

* Once we have the values for the hidden layer, we proceed
with the usual computation to generate the output vector.

he = g(Uhe—y + W) (
Vi = f(Vhe) \
¢

Yt

Vv

hy

/

(hy.) (X4

12

Simple Recurrent Neural Networks

* Inthe commonly encountered case of soft classification,
computing y; consists of a softmax computation that
provides a normalized probability distribution over the
possible output classes.

y: = softmax(Vh;)

(
; | ,
U — e — - .ﬁ-_. _.__,___,_._

(.) (X

/h_’)\~__}j

13

Simple Recurrent Neural Networks
Inference in Simple RNNs

* The fact that the computation at time t requires the
value of the hidden layer from time t — 1 mandates an
incremental inference algorithm that proceeds from the
start of the sequence to the end as illustrated below

function FORWARDRNN(x, network) returns output sequence y

h” «0

for i+ 1 to LENGTH(x) do
hf-{—g(Uh,’_l + WXI')
yi < f(Vhy)

return y

Forward inference in a simple recurrent network. The matrices
U,V and W are shared across time, while new values for h and

y are calculated with each time step.
14

Simple Recurrent Neural Networks
Inference in Simple RNNs

 The sequential nature of simple recurrent networks can

be seen by unrolling the network in time as is shown in
Fig. 4.

* The various layers of units are copied for each time step

to illustrate that they will have differing values over
time.

 However, the various weight matrices are shared across
time.

15

Simple Recurrent Neural Networks
Inference in Simple RNNs

Fig. 4 ¢ ¥3)

|

A simple recurrent neural network shown unrolled in time. Network
layers are copied for each time step, while the weights U , V and W are

shared in common across all time steps. T

Simple Recurrent Neural Networks
Training

* As with feed-forward networks, we’ll use a training set,
a loss function, and backpropagation to obtain the
gradients needed to adjust the weights in these
recurrent networks.

* Asshown in Fig. 2, we now have 3 sets of weights to
update:

 [V:the weights from the input layer to the hidden layer

 U: the weights from the previous hidden layer to the current
hidden layer

 V: the weights from the hidden layer to the output layer.

Simple Recurrent Neural Networks
Training

Fig. 4 highlights two considerations that we didn’t have
to worry about with backpropagation in feedforward
networks.

First, to compute the loss function for the output at
time t, we need the hidden layer from time t — 1.

Second, the hidden layer at time t influences both the
output at time t and the hidden layer at time t + 1 (and
hence the output and loss at t + 1).

It follows from this that to assess the error accruing to
h; , we’ll need to know its influence on both the current
output as well as the ones that follow.

Simple Recurrent Neural Networks
Training

Consider the situation where we are examining an
input/output pair at time 2 as shown in Fig. 5.

What do we need to compute the gradients required to
update the weights U, V , and W here?

Let’s start by reviewing how we compute the gradients
required to update I/ since this computation is
unchanged from feedforward networks.

We need to compute the derivative of the loss function
L with respect to the weights I/ .

Simple Recurrent Neural Networks
Training

Fig. 5
W
(s) \—T/

e

The backpropagation of errors in a simple RNN t; vectors represent the targets
for each element of the sequence from the training data. The red arrows
illustrate the flow of backpropagated errors required to calculate the gradients
for U,V and W at time 2. The two incoming arrows converging on h, signal
that these errors need to be summed. 20

Simple Recurrent Neural Networks
Training

e A two-pass algorithm for training the weights in RNNs.

* In the first pass, we perform forward inference, computing
h:, y; , and accumulating the loss at each step in time,
saving the value of the hidden layer at each step for use at
the next time step.

* In the second phase, we process the sequence in reverse,
computing the required gradients as we go, computing
and saving the error term for use in the hidden layer for
each step backward in time.

* This general approach is commonly referred to as
Backpropagation Through Time.

Simple Recurrent Neural Networks
Training

 We used the unrolled network shown in Fig. 4 as a way to
illustrate the temporal nature of RNNs.

e Explicitly unrolling a recurrent network into a feedforward
computational graph eliminates any explicit recurrences,
allowing the network weights to be trained directly.

 Atemplate is used that specifies the basic structure of the
network, including all the necessary parameters for the
input, output, and hidden layers, the weight matrices, as
well as the activation and output functions to be used.

 Then, when presented with a specific input sequence, we
can generate an unrolled feedforward network specific to
that input, and use that graph to perform forward
inference or training via ordinary backpropagation.

Simple Recurrent Neural Networks
Training

For applications that involve much longer input
sequences, such as speech recognition, character-level
processing, or streaming of continuous inputs, unrolling an
entire input sequence may not be feasible.

In these cases, we can unroll the input into manageable
fixed-length segments and treat each segment as a distinct
training item.

Recurrent Neural Language Models

Recurrent neural language models process the input
sequence one word at a time, attempting to predict the
next word from the current word and the previous hidden
state.

RNNs don’t have the limited context problem that n-gram
models have, since the hidden state can in principle
represent information about all of the preceding words all
the way back to the beginning of the sequence.

Recurrent Neural Language Models

* At each step, the model uses the word embedding matrix
E to retrieve the embedding for the current word, and
then combines it with the hidden layer from the previous
step to compute a new hidden layer.

* This hidden layer is then used to generate an output layer
which is passed through a softmax layer to generate a
probability distribution over the entire vocabulary.

et — Ext
he = g(Uhe—q + Wey)

y; = softmax(V h;)

* The vector resulting from IVh can be thought of as a set of
scores over the vocabulary given the evidence provided in
h. Passing these scores through the softmax normalizes
the scores into a probability distribution.

Recurrent Neural Language Models

 The probability that a particular word i in the vocabulary is
the next word is represented by y;|i], the ith component

Of yt:
P(Weyq = tlwy, oo, we) = ye[1]
* The probability of an entire sequence is just the product of
the probabilities of each item in the sequence.

p(Wyp) = HP(Wi|W1:i—1)
=1

= f[}’i [w]

Recurrent Neural Language Models

 We use a corpus to train an RNN as a language model. We
train the model to minimize the error in predicting the true
next word in the training sequence, using cross-entropy as
the loss function.

* Recall that the cross-entropy loss measures the difference
between a predicted probability distribution and the correct
distribution.

Leg = — Z yelwllogy[w]
wev
 The cross-entropy loss for language modeling is determined
by the probability the model assigns to the correct next
word. So at time t the CE loss is the negative log probability
the model assigns to the next word in the training sequence.

Lee (Ve ye) = —logye[Wesn]

Recurrent Neural Language Models

* This idea that we always give the model the correct history
sequence to predict the next word (rather than feeding
the model its best case from the previous time step) is
called teacher forcing.

 The weights in the network are adjusted to minimize the
average CE loss over the training sequence via gradient
descent.

Recurrent Neural Language Models Fig. 6
Next waord long and thanlka for all
Loss [ZTOE Yiomg] TORWend] [Clowwem] —I0B%er] —I0ETa 7 tes
” -
i h
6 @ B 6 0
Vh
g
RNN . . — - .
.] 3] _J
Input] @ @]
Ermbeddings 5
So long and thanlks for

Training RNN as language models

29

Applications of RNNs
Sequence Labeling

In sequence labeling, the network’s task is to assign a label
chosen from a small fixed set of labels to each element of
a sequence, like the part-of-speech tagging and named
entity recognition tasks

In an RNN approach to sequence labeling, inputs are word
embeddings and the outputs are tag probabilities
generated by a softmax layer over the given tagset, as
illustrated in Fig. 7.

Applications of RNNs

Sequence Labeling Fig. 7
Argmax NNP MD VB DT NN
y
sonmeconr [T Moo | alo | . I)
w1] |
RNN , . , .
Layer(s) . A ; 7 5 5 y
Embeddings e é
Words Janet will back trxe bill

Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability

distribution over the part-of-speech tags as output at each time step. 31

Applications of RNNs
Sequence Labeling

* The inputs at each time step are pre-trained word
embeddings corresponding to the input tokens.

* The RNN block is an abstraction that represents an
unrolled simple recurrent network consisting of an input
layer, hidden layer, and output layer at each time step, as
well as the shared U, V and W weight matrices that
comprise the network.

* The outputs of the network at each time step represent
the distribution over the POS tagset generated by a
softmax layer.

Applications of RNNs
Sequence Labeling

* To generate a tag sequence for a given input, we can
run forward inference over the input sequence and
select the most likely tag from the softmax at each
step.

» Since we’re using a softmax layer to generate the
probability distribution over the output tagset at each

time step, we will again employ the cross-entropy loss
during training.

Applications of RNNs
RNNs for Sequence Classification

* Another use of RNNs is to classify entire sequences
rather than the tokens within them.

* Other sequence classification tasks for mapping
sequences of text to one from a small set of categories
include document-level topic classification, spam
detection, or message routing for customer service
applications.

* In all of these applications, sequences of text are
classified as belonging to one of a small number of
categories.

Applications of RNNs
RNNs for Sequence Classification

* To apply RNNs in this setting, we pass the text to be
classified through the RNN a word at a time generating
a new hidden layer at each time step.

* The hidden layer for the final element of the text, h,,, is

taken to constitute a compressed representation of the
entire sequence.

* We can pass this representation h,, to a feedforward
network that chooses a class via a softmax over the
possible classes. Fig.8 illustrates this approach.

Applications of RNNs
RNNs for Sequence Classification

H

n
A

e e
:

Sequence classification using a simple RNN combined

with a feedforward network. The final hidden state from

the RNN is used as the input to a feedforward network

that performs the classification. e

Applications of RNNs
RNNs for Sequence Classification

* There are no intermediate outputs for the words in the
sequence preceding the last element, and therefore
there are no loss terms associated with those elements.

* The loss function used to train the network weights is
based entirely on the final text classification task. The
output from the softmax output from the feedforward
classifier together with a cross-entropy loss drives the
training.

Applications of RNNs
RNNs for Sequence Classification

* The error signal from the classification is
backpropagated all the way through the weights in the
feedforward classifier through to its input, and then
through to the three sets of weights in the RNN.

* The training regimen that uses the loss from a
downstream application to adjust the weights all the
way through the network is referred to as end-to-end
training.

Applications of RNNs
Generation with Neural Language Models

 RNN-based language models can also be used to generate
text.

 Sample a word in the output from the softmax
distribution that results from using the beginning of
sentence marker, <s>, as the first input.

* Use the word embedding for that first word as the
input to the network at the next time step, and then
sample the next word in the same fashion.

* Continue generating until the end of sentence marker,
</s>, is sampled or a fixed length limit is reached.

Applications of RNNs
Generation with Neural Language Models

* This approach of using a language model to incrementally
generate words by repeatedly sampling the next word
conditioned on our previous choices is called
autoregressive generation.

* Fig.9 illustrates this approach. In this figure, the details of
the RNN’s hidden layers and recurrent connections are
hidden within the blue block.

40

Applications of RNNs
Generation with Neural Language Models

Fig. 9

- - -
-~

long

~

Sampled Word SOZ

|

|

|

|

|

Softmax :
|

Embedding

e
&

Input Word <S> : /‘SO :)I‘ong : /gnd	
L. L. L.

Autoregressive generation with an RNN-based neural language model.

41

Applications of RNNs
Generation with Neural Language Models

* This simple architecture underlies state-of-the-art
approaches to applications such as machine translation,
summarization, and question answering.

* The key to these approaches is to prime the generation
component with an appropriate context.

* Thatis, instead of simply using <s> to get things started we
can provide a richer task-appropriate context.

42

Deep Networks: Stacked and Bidirectional RNNs

* As suggested by the sequence classification architecture,
recurrent networks are quite flexible.

* By combining the feedforward nature of un-rolled
computational graphs with vectors as common inputs and
outputs, complex networks can be treated as modules
that can be combined in creative ways.

* We will introduce two of the more common network
architectures used in language processing with RNNs.

Deep Networks: Stacked and Bidirectional RNNs
Stacked RNNs

In our examples thus far, the inputs to our RNNs have
consisted of sequences of word or character embeddings
(vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels.

However, nothing prevents us from using the entire
sequence of outputs from one RNN as an input sequence
to another one.

Stacked RNNs consist of multiple networks where the
output of one layer serves as the input to a subsequent
layer, as shown in Fig. 10.

Deep Networks: Stacked and Bidirectional RNNs
Stacked RNNs

Fig. 10
A A Iy 'y
& N
RNN 3
(. [} [} vy
(i N\
RNN 2
' ' A)
. ™\
> RNN 1
5 [} L [N A 7
}(|1 K2 K[.S){ln

Stacked recurrent networks. The output of a lower level
serves as the input to higher levels with the output of the

last network serving as the final output.
45

Deep Networks: Stacked and Bidirectional RNNs
Stacked RNNs

Stacked RNNs generally outperform single-layer networks.

One reason for this success has to do with the network’s
ability to induce representations at differing levels of
abstraction across layers.

Just as the early stages of the human visual system detects
edges that are then used for finding larger regions and shapes,
the initial layers of stacked networks can induce
representations that serve as useful abstractions for further
layers — representations that might prove difficult to induce in
a single RNN.

The optimal number of stacked RNNs is specific to each
application and to each training set. However, as the number
of stacks is increased the training costs rise quickly.

Deep Networks: Stacked and Bidirectional RNNs
Bidirectional RNNs

In the left-to-right RNNs we’ve discussed so far, the hidden
state at a given time t represents everything the network
knows about the sequence up to that point.

* The state is a function of the inputs x4,..., x; and represents
the context of the network to the left of the current time.

h{ — RNNforward(xl: ---:xt)

* This new notation h{ simply corresponds to the normal
hidden state at time t, representing everything the network
has gleaned from the sequence so far.

47

Deep Networks: Stacked and Bidirectional RNNs
Bidirectional RNNs

* To take advantage of context to the right of the current
input, we can train an RNN on a reversed input sequence.

* With this approach, the hidden state at time t now
represents information about the sequence to the right of
the current input.

h? = RNNpgckward (xt» xn)

* Here, the hidden state h? represents all the information
we have discerned about the sequence from t to the end
of the sequence.

48

Deep Networks: Stacked and Bidirectional RNNs
Bidirectional RNNs

Combining the forward and backward networks results in
a bidirectional RNN.

A Bi-RNN consists of two independent RNNs, one where
the input is processed from the start to the end, and the
other from the end to the start.

We then concatenate the two representations computed
by the networks into a single vector that captures both the
left and right contexts of an input at each point in time.

he = [h]; h?]

=h! @ h?

49

Deep Networks: Stacked and Bidirectional RNNs
Bidirectional RNNs

* Fig. 11 illustrates such a bidirectional network that
concatenates the outputs of the forward and backward

pass.

e Other simple ways to combine the forward and backward
contexts include element-wise addition or multiplication.

* The output at each step in time thus captures information
to the left and to the right of the current input.

* Insequence labeling applications, these concatenated
outputs can serve as the basis for a local labeling decision.

Deep Networks: Stacked and Bidirectional RNNs
Bidirectional RNNs

Y4 Yo Yq Yn
_ []*W concatenated
Fig.11 ,_..U outputs
[B B B RNN 2]
> - RNN 1 -
1 22 X3 Kn

A bidirectional RNN. Separate models are trained in the forward
and backward directions, with the output of each model at each
time point concatenated to represent the bidirectional state at
that time point.

51

Deep Networks: Stacked and Bidirectional RNNs
Bidirectional RNNs

Bidirectional RNNs have also proven to be quite effective
for sequence classification.

Recall from Fig. 8, that for sequence classification we used
the final hidden state of the RNN as the input to a
subsequent feedforward classifier.

A difficulty with this approach is that the final state
naturally reflects more information about the end of the
sentence than its beginning.

52

Deep Networks: Stacked and Bidirectional RNNs
Bidirectional RNNs

Bidirectional RNNs provide a simple solution to this
problem, as shown in Fig. 12, we simply combine the final
hidden states from the forward and backward passes and
use that as input for follow-on processing.

Concatenation is a common approach to combining the
two outputs but element-wise summation, multiplication
or averaging are also used.

53

Deep Networks: Stacked and Bidirectional RNNs

Bidirectional RNNs (‘Softmax)
_ A /
Fig. 12 (FFN»
L
C X T J
— —
h, J h,
".,_1- - - RNN 2
[- - RNN 1 N]
=

A bidirectional RNN for sequence classification. The final hidden units

from the forward and backward passes are combined to represent the
entire sequence. This combined representation serves as input to the

subsequent classifier.

54

Managing Context in RNNs: LSTM

In practice, it is quite difficult to train simple RNNs for
tasks that require a network to make use of information
distant from the current point of processing.

Despite having access to the entire preceding sequence,
the information encoded in hidden states tends to be
fairly local, more relevant to the most recent parts of the
input sequence and recent decisions.

Yet distant information is critical to many language
applications.

Managing Context in RNNs: LSTM

Consider the following example in the context of language
modeling.

The flights the airline was cancelling were full.
Assigning a high probability to was following airline is
straightforward since airline provides a strong local context for
the singular agreement.

However, assigning an appropriate probability to were is quite
difficult, not only because the plural flights is quite distant, but
also because the intervening context involves singular
constituents.

|deally, a network should be able to retain the distant
information about plural flights until it is needed, while still
processing the intermediate parts of the sequence correctly.

Managing Context in RNNs: LSTM

* One reason for the inability of RNNs to carry forward critical
information is that the hidden layers, and by extension, the
weights that determine the values in the hidden layer, are
being asked to perform two tasks simultaneously:

* provide information useful for the current decision

e update and carry forward information required for future
decisions

* A second difficulty with training RNNs arises from the need to
backpropagate the error signal back through time.

Managing Context in RNNs: LSTM

 The hidden layer at time t contributes to the loss at the next
time step since it takes part in that calculation.

e As aresult, during the backward pass of training, the hidden
layers are subject to repeated multiplications, as determined
by the length of the sequence.

* A frequent result of this process is that the gradients are

eventually driven to zero — the so-called vanishing gradients
problem.

* To address these issues, more complex network architectures
have been designed to explicitly manage the task of
maintaining relevant context over time.

* The network needs to learn to forget information that is no
longer needed and to remember information required for
decisions still to come.

Managing Context in RNNs: LSTM

Long short-term memory (LSTM) networks, divide the
context management problem into two sub-problems:

* removing information no longer needed from the
context

e adding information likely to be needed for later
decision making.

LSTMs accomplish this by adding an explicit context layer
to the architecture and through the use of specialized
neural units that make use of gates to control the flow of
information into and out of the units

These gates are implemented through the use of
additional weights that operate sequentially on the input,
and previous hidden layer, and previous context layers.

Managing Context in RNNs: LSTM

* The gates in an LSTM share a common design pattern; each
consists of a feedforward layer, followed by a sigmoid
activation function, followed by a pointwise multiplication
with the layer being gated.

* The choice of the sigmoid as the activation function arises
from its tendency to push its outputs to either O or 1.

* Combining this with a pointwise multiplication has an
effect similar to that of a binary mask.

* Values in the layer being gated that align with values near 1
in the mask are passed through nearly unchanged; values
corresponding to lower values are essentially erased.

Managing Context in RNNs: LSTM

* The first gate we’ll consider is the forget gate, whose
purpose is to delete information from the context that is
no longer needed.

 The forget gate computes a weighted sum of the previous
state’s hidden layer and the current input and passes that
through a sigmoid.

* This mask is then multiplied by the context vector to
remove the information from context that is no longer
required.

ft — O-(Ufht_]_ + fot)
ke =c1 O ft

Managing Context in RNNs: LSTM

* The next task is compute the actual information we need
to extract from the previous hidden state and current

inputs — the same basic computation we’ve been using for
all our recurrent networks.

g = tanh(Ught_l + Vl(gxt)

* Next, we generate the mask for the add gate to select the
information to add to the current context.

ir = o(Uihe_q + Wixy)
Je = 9t O i

Managing Context in RNNs: LSTM

* Next, we add this to the modified context vector to get our
new context vector.

Ce = Jr + k¢

* The final gate we’ll use is the output gate which is used to
decide what information is required for the current hidden
state.

0 = o(Ughe_1 + Wpxy)
h; = o; © tanh(c;)

Managing Context in RNNs: LSTM

Fig. 13 illustrates the complete computation for a single
LSTM unit.

Given the appropriate weights for the various gates, an
LSTM accepts as input the context layer, and hidden layer
from the previous time step, along with the current input
vector. It then generates updated context and hidden
vectors as output.

The hidden layer, h;, can be used as input to subsequent
layers in a stacked RNN, or to generate an output for the
final layer of a network.

Managing Context in RNNs: LSTMs and GRU
Long Short-Term Memory

Fig. 13
e N

Ct-1
- l:t

ht_1
AT

x_t_
LSTM

4

A single LSTM memory unit displayed as a computation graph.
The inputs to each unit consists of the current input, x, the
previous hidden state, h;_1, and the previous context, ¢;_;. The
outputs are a new hidden state, h; and an updated context, c;.

65

Managing Context in RNNs: LSTM

* The neural units used in LSTMs are obviously much more
complex than those used in basic feedforward networks.

* Fortunately, this complexity is encapsulated within the
basic processing units, allowing us to maintain modularity
and to easily experiment with different architectures.

* To see this, consider Fig. 14 which illustrates the inputs
and outputs associated with each kind of unit.

Managing Context in RNNs: LSTM
Fig.14

h hy
a a

X ht 1 X C1 M1 %
(@ (b) (©

Basic neural units used in feedforward, simple recurrent
networks (SRN), and long short-term memory (LSTM).

67

Managing Context in RNNs: LSTM

Basic feedforward unit: Contains a single set of weights
and a single activation function determine its output, and
when arranged in a layer there are no connections among
the units in the layer.

Simple recurrent network: There are two inputs and an
additional set of weights to go with it. However, there is
still a single activation function and output.

The only additional external complexity for the LSTM over
the Simple Recurrent unit is the presence of the additional
context vector as an input and output.

The GRU units have the same input and output
architecture as the simple recurrent unit.

Managing Context in RNNs: LSTM

* This modularity is key to the power and widespread
applicability of LSTM and GRU units.

 LSTM and GRU units can be substituted into any of the
network architectures.

* Besides, as with simple RNNs, multi-layered networks
making use of gated units can be unrolled into deep
feedforward networks and trained in the usual fashion
with backpropagation.

Self-Attention Networks: Transformers

Motivation

* For RNNs such as LSTMs, passing information forward
through an extended series of recurrent connections
leads to a loss of relevant information and to difficulties in
training

* Inherently sequential nature of recurrent networks
inhibits the use of parallel computational resources

* Transformers —an approach to sequence processing that
eliminates recurrent connections and returns to
architectures reminiscent of the fully connected
networks.

Self-Attention Networks: Transformers

Basic Architecture

* Map sequence of input vectors (x4, -+, x,,) to sequences
of output vectors (y4, **+, y,,) of the same length

 Made up of stacks of network layers consisting of simple
linear layers, feedforward networks, and custom
connections around them

* Use of self-attention layers — key innovation of
Transformers

» Self-attention allows a network to directly extract and use
information from arbitrarily large contexts without the
need to pass it through intermediate recurrent
connections as in RNNs

71

Self-Attention Networks: Transformers

Self-Attention Layers

* Map input sequences (x4, **, X,;) to output sequences of
the same length (y4,:*+, ¥,,), as with the overall
Transformer

 When processing each item in the input, have access to
all of the inputs up to and including the one under
consideration, but no access to information about inputs
beyond the current one

— Ensures we can use this approach to create language
models and use them for autoregressive generation

 Computation performed for each item is independent of
all the other computations

— Means that we can easily parallelize both forward
inference and training of such models

Self-Attention Networks: Transformers

Self-Attention Layers
Fig. 15

Self-Attention
Layer

Information flow in a causal (or masked) self-attention model. In
processing each element of the sequence, the model attends to all
the inputs up to, and including, the current one. Unlike RNNs, the
computations at each time step are independent of all the other

steps and therefore can be performed in parallel.
73

Self-Attention Networks: Transformers

Self-Attention is an Attention-Based Approach

* An attention-based approach —to compare an item of
interest to a collection of other items in way that reveals
their relevance in the current context

e Self-attention — the set of comparisons are to other
elements within a given sequence

* The result of these comparisons is then used to compute
an output for the current input

* Returning to Fig. 15, the computation of y; is based on a
set of comparisons between the input x5 and its
preceding elements x; and x,, and to x5 itself

74

Self-Attention Networks: Transformers

Self-Attention — the Simplest Form

* The simplest form of comparison between elements in a
self-attention layer is a dot product

» Referring to the result of these comparisons as scores
SCOT@(Xi,Xj) =X .X'j
— Ranging from —oo to oo, the larger the value the more
similar the vectors that are being compared

* The first step in computing y; would be to compute three
scores. x3 * xl, X3 * .xZ and X3 * .X3

75

Self-Attention Networks: Transformers

Self-Attention — the Simplest Form

* To make effective use of these scores, normalize them
with a softmax to create a vector of weights, X, that

indicates the proportional relevance of each input to the
input element i that is the current focus of attention

a;; = softmax (Score(xi,xj)) Vi<i

exp (Score (x;, xj))
- >, exp(score(xl-, xk))

Given the proportional scores in @, we may generate an

output value y; by taking the sum of the inputs seen so
far, weighted by their respective a value

Yi = z AijXj

j=i

Vi <i

76

Self-Attention Networks: Transformers

Self-Attention — the Simplest Form

* Steps embodied above represent the core of an attention-
based approach:

* A set of comparisons to relevant items in some
context,

* A normalization of those scores to provide a
probability distribution, followed by a weighted sum
using this distribution.

* The output y is the result of this straightforward
computation over the inputs.

* Unfortunately, this simple mechanism provides no
opportunity for learning, everything is directly based on
the original input values x.

77

Self-Attention Networks: Transformers

Self-Attention with Additional Parameters

* To allow for this kind of learning, Transformers include
additional parameters in the form of a set of weight
matrices that operate over the input embeddings.

* To motivate these new parameters, consider the three
different roles that each input embedding plays during
the course of the attention process.

— As the current attention focus when being compared
to all of the other preceding inputs — a query

— Inits role as a preceding input being compared to the
current focus of attention — a key

— And finally, used to compute the output for the
current focus of attention — a value

78

Self-Attention Networks: Transformers
Self-Attention with Additional Parameters

To capture these three different roles, transformers
introduce weight matrices W¢, WX, and WV

These weights will be used to project each input vector x;
into a representation of its role as a key, query, or value.

qi = Wx;; ki = Whx; vy = WVx,
* Given input embeddings of size d,,,, the dimensionality

of these matrices are d; X dy, dy X dpy and d, X dy
respectively

* In the original Transformer work (Vaswani et al., 2017),
d, was 1024 and 64 for dy, d,; and d,,

79

Self-Attention Networks: Transformers

Self-Attention with Additional Parameters

* Given these projections, the score between a current
focus of attention, x; and an element in the preceding
context, x; consists of a dot product between its query

vector q; and the preceding elements key vectors k;
Score(xi,xj) =q; * kj
* The ensuing softmax calculation resulting in @;; remains
the same

* The output calculation for y; is now based on a weighted
sum over the value vectors v

Yi = z aijVj

j=<i

80

Self-Attention Networks: Transformers
ntion with Additional Parameters

Self-Att

Fig. 16

Calculation of the value of y;, the third element of a sequence

Softmax
ai,j

Key/Query
Comparisons

Generate
key, query value
vectors

o0 | g
<6 <
% ’ﬁ

Output Vector

Weight and Sum
value vectors

T

4
N7

X6
-

using causal (left-to-right) self-attention.

Self-Attention Networks: Transformers

Self-Attention — Scaled Dot-Product

* The result of dot product can be an arbitrarily large
(positive or negative) value.

* In computing «;;, exponentiating such large values can
lead to numerical issues and to an effective loss of
gradients during training.

* A scaled dot-product approach divides the result of the
dot product by a factor related to the size of the
embeddings before passing them through the softmax

* Atypical approach is to divide the dot product by the
square root of the dimensionality of the query and key
vectors

q; * kj

Jax

SCOTG(Xi, X]) —

82

Self-Attention Networks: Transformers

Self-Attention — Parallelism

e By packing the input embeddings into a single matrix, the
entire process can be parallelized by taking advantage of
efficient matrix multiplication routines

Q=weX; K=wkX; Vv=w"Xx
* The entire self-attention step for an entire sequence

. QK"
Self Attention(Q, K,V) = softmax \/d_ v
K
— The calculation of the comparisons in QKT results in a
score for each query value to every key value,
including even those that follow the query

— To fix this, the elements in the upper-triangular
portion of the comparisons matrix are zeroed out (set
to —oo)

83

Self-Attention Networks: Transformers
Self-Attention — Parallelism Fig. 17

q‘l ok1 - 00 — 00 — 00 — 00

q2+k1|g2°k2| —oc0 | —00 | —o0

N q3+k1|q3+k2|q3+k3| —c0 | —o0

q4+k1|qd+k2 |q4+k3 |qa-kd| —oo

q5+k1|q5+k2 |q5°k3 | q5+k4 | g5+k5

N

The N x N QK" matrix showing the g; - k; values,
with the upper-triangle portion of the comparisons
matrix zeroed out (set to —e<, which the softmax will

turn to zero).
84

Self-Attention Networks: Transformers

Self-Attention — Parallelism

* Fig. 17 makes it clear that attention is quadratic in the
length of the input, since at each layer we need to compute
dot products between each pair of tokens in the input.

* This makes it extremely expensive for the input to a
transformer to consist of long documents (like entire
Wikipedia pages, or novels), and so most applications have
to limit the input length, for example to at most a page or a
paragraph of text at a time. Finding more efficient attention
mechanisms is an ongoing research direction.

85

Self-Attention Networks: Transformers

Transformer Blocks

* The self-attention calculation lies at the core of what’s
called a transformer block, which, in addition to the self-
attention layer, includes additional feedforward layers,
residual connections, and normalizing layers.

 The input and output dimensions of these blocks are
matched so they can be stacked just as was the case for
stacked RNNs.

86

Self-Attention Networks: Transformers
Transformer Blocks Fig. 18

. ™
/Transform er (Layer Normalize]
Block B
Residual 4
connection| | Feedforward Layer |
A

| Layer Normalize]

Residual ><-I}

connection [Self-Attention Layer]
K /

_J
@86 . &)

A typical transformer block consisting of a single attention
layer followed by a fully-connected feedforward layer with
residual connections and layer normalizations following each.,

Self-Attention Networks: Transformers
Transformer Blocks

Residual connections are connections that pass information
from a lower layer to a higher layer without going through
the intermediate layer.

Allowing information from the activation going forward and
the gradient going backwards to skip a layer improves
learning and gives higher level layers direct access to
information from lower layers

z = LayerNorm(x + SelfAttn(x))
y = LayerNorm(z + FFNN(z))
Layer normalization uses a variation of z-score from statistics

LayerNorm =y <(x _ M)) + [

o
where y and [are learnable parameters,
[is mean, o is standard deviation

Self-Attention Networks: Transformers
Multihead Attention

* The different words in a sentence can relate to each other in
many different ways simultaneously, e.g. distinct syntactic,
semantic, and discourse relationships between verbs and their
arguments in a sentence.

* It'd be difficult for a single transformer block to learn to
capture all of the different kinds of parallel relations
among its inputs.

e Transformers address this issue with multihead self-attention
layers

» Sets of self-attention layers, called heads, that reside in
parallel layers at the same depth in a model, each with its
own set of parameters.

* Given these distinct sets of parameters, each head can learn
different aspects of the relationships that exist among inputs
at the same level of abstraction.

Self-Attention Networks: Transformers

Multihead Attention

 To implement this notion, each head, i, in a self-attention
layer is provided with its own set of key, query and value

matrices: WX, WiQ and W,”. These are used to project the
inputs to the layer, x;, separately for each head.

* The output of a multi-head layer with h heads consists of h
vectors of the same length.

head; = SelfAttention(WiQX, wEx, w/ x)
 They are combined and then reduced down to the original
input dimension d,,, by concatenating the outputs from each

head and then using yet another linear projection to reduce it
to the original output dimension.

MultiHeadAttn(Q,K,V) = W9 (head,®head,® --- Dhead},)

Self-Attention Networks: Transformers
Multihead Attention Fig. 19

/
Project down to d / wO \

Cogﬁﬁéﬁ?:te (head1] | thz IA head3 | heid4 |

Multihead
Attention
Layer

/
CE D

Multihead self-attention: Each of the multihead self-attention layers is provided
with its own set of key, query and value weight matrices. The outputs from each
of the layers are concatenated and then projected down to d,;,54¢;, thus o1
producing an output of the same size as the input so layers can be stacked.

Self-Attention Networks: Transformers
Positional Embeddings

Unlike RNNs, there’s nothing that would allow
Transformers to make use of information about the
relative, or absolute, positions of the elements of an input
seguence.

If you scramble the order of inputs in the attention
computation illustrated earlier, you get exactly the same
answer.

To address this issue, Transformer inputs are combined
with positional embeddings specific to each position in an
input sequence.

92

Self-Attention Networks: Transformers
Positional Embeddings

Randomly initialized embeddings corresponding to each
possible input position up to some maximum length, e.g.
an embedding for the position 3 just like an embedding
for the word fish.

As with word embeddings, learn these positional
embeddings along with other parameters during training.

To produce an input embedding that captures positional
information, add the word embedding for each input to
its corresponding positional embedding. This new
embedding serves as the input for further processing.

A potential problem: too few training examples at the
outer length limits and poorly trained latter embeddings

Self-Attention Networks: Transformers
Positional Embeddings

Fig. 20
/ 1 —— e 1_: e \
Transformer — | /_1_
Blocks : : ‘
N}
Composite
Embeddings
(input + position)

Word m
Embeddings ?p
Position
Embeddings
Janet will back bill

A simple way to model position: simply adding an
embedding representation of the absolute position to the
input word embedding. o

Self-Attention Networks: Transformers
Positional Embeddings

Choose a static function that maps an integer inputs to
real-valued vectors in a way that captures the inherent
relationships among the positions, e.g. the fact that
position 4 in an input is more closely related to position 5
than it is to position 17

A combination of sine and cosine functions with differing
frequencies was used in the original Transformer work

95

Self-Attention Networks: Transformers

Transformers as Autoregressive Language Models

Let’s examine how to deploy them as language models via
semi-supervised learning.

* Proceed just as we did with the RNN-based approach:
given a training corpus of plain text we’ll train a model to
predict the next word in a sequence using teacher forcing.

* At each step, given all the preceding words, the final
Transformer layer produces an output distribution over
the entire vocabulary.

* During training, the probability assigned to the correct
word is used to calculate the cross-entropy loss for each
item in the sequence.

* As with RNNs, the loss for a training sequence is the
average cross-entropy loss over the entire sequence.
96

Self-Attention Networks: Transformers
Transformers as Autoregressive Language Models rig. 21

Next word Iong and thanks for all

T
y y i Y 1
Loss I_ log ylong | |7 I()g yillldl |_ lOg Ythanks | ’_ lOg yfor | I_ 10 ya,ll l e = Z L("E
4 \ A \ \ t=1

o L

el

Softmax over
Vocabulary

Linear Layer N /

Transformer :
Block :

Input
Embeddings

Il 2
-

So long and thanks for

* With Transformers, each training item can be processed in parallel
since the output for each element in the sequence is computed
separately.

* Once trained, we can compute perplexity of the resulting model, or
autoregressively generate novel text just as with RNN-based modéls.

Self-Attention Networks: Transformers
Contextual Generation

 Asimple variation on autoregressive generation that
underlies a number of practical applications uses a prior
context to prime the autoregressive generation process.

* A standard language model is given the prefix to some
text and is asked to generate a possible completion to it.

* As the generation process proceeds, the model has direct
access to the priming context as well as to all of its own
subsequently generated outputs.

* This ability to incorporate the entirety of the earlier
context and generated outputs at each time step is the
key to the power of these models.

Self-Attention Networks: Transformers
Contextual Generation

Fig. 22
Completion Text
A
- . _ N
all ; the”

]

Sample from Softmax (.1) | (adw)
L1

linear layer) — : N/

! I
| ; Y

Transformer
Blocks

Input i
Embeddings i
|
|
So long and thanks for | _rall Jthe
| A . -
L _/ -
——
Prefix Text

Autoregressive text completion with Transformers.

99

Self-Attention Networks: Transformers
Text Summarization

* Text summarization is a practical application of context-
based autoregressive generation.

* The task is to take a full-length article and produce an
effective summary of it.

* To train a Transformer-based autoregressive model to
perform this task, start with a corpus consisting of full-
length articles accompanied by their corresponding
summaries.

100

Self-Attention Networks: Transformers

Text Summarization Fig. 23

Original Article
The only thing crazier than a guy in snowbound Massachusetts boxing up the powdery white stuff
and offering it for sale online? People are actually buying it. For $89, self-styled entrepreneur
Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box — enough
for 10 to 15 snowballs, he says.
But not if you live in New England or surrounding states. “We will not ship snow to any states
in the northeast!” says Waring’s website, ShipSnow Yo.com. “We’re in the business of expunging
snow!”
His website and social media accounts claim to have filled more than 133 orders for snow — more
than 30 on Tuesday alone, his busiest day yet. With more than 45 total inches, Boston has set a
record this winter for the snowiest month in its history. Most residents see the huge piles of snow
choking their yards and sidewalks as a nuisance, but Waring saw an opportunity.
According to Boston.com, it all started a few weeks ago, when Waring and his wife were shov-
eling deep snow from their yard in Manchester-by-the-Sea, a coastal suburb north of Boston.
He joked about shipping the stuff to friends and family in warmer states, and an idea was born.
His business slogan: “Our nightmare is your dream!” At first, ShipSnowYo sold snow packed
into empty 16.9-ounce water bottles for $19.99, but the snow usually melted before it reached its
destination...

Summary
Kyle Waring will ship you 6 pounds of Boston-area snow in an insulated Styrofoam box — enough
for 10 to 15 snowballs, he says. But not if you live in New England or surrounding states.

Examples of articles and summaries from the CNN/Daily Mail corpus
(Hermann et al., 2015), (Nallapati et al., 2016). 101

Self-Attention Networks: Transformers

Text Summarization

* A surprisingly effective approach to applying Transformers to
summarization is to append a summary to each full-length
article in a corpus, with a unigue marker separating the two.

* More formally, each article-summary pair (x4, ..., X;,),
(y1, .-, V) in a training corpus is converted into a single
training instance (x4, ..., X;n, 0, V1, ... V) With an overall
length of n + m + 1.

* These training instances are treated as long sentences and
then used to train an autoregressive language model using
teacher forcing, exactly as we did earlier.

* Once trained, full articles ending with the special marker are
used as the context to prime the generation process to
produce a summary.

Self-Attention Networks: Transformers
Text Summarization

Fig. 24

Summarization with Transformers

Generated Summary

N

7

Waring

The only reached wil
4 7 El
. _ /
Original Story Delimiter

 The model has access to the original article

as well as to the

newly generated text throughout the process.

e Variations on this simple scheme are the basis for successful
text-to-text applications including machine translation,

summarization and question answering.

103

