Term Weighting and Vector
Space Model

Reference: Introduction to Information Retrieval
by C. Manning, P. Raghavan, H. Schutze

Ranked retrieval

Thus far, our queries have all been Boolean.
— Documents either match or don’t.

Good for expert users with precise understanding of
their needs and the collection.

Also good for applications: Applications can easily
consume 1000s of results.
— Not good for the majority of users.

— Most users incapable of writing Boolean queries (or
they are, but they think it’s too much work).

Most users don’t want to wade through 1000s of
results.

— This is particularly true of web search.

Problem with Boolean search: feast or
famine

Boolean queries often result in either too few
(=0) or too many (1000s) results.

Query 1: “standard user dlink 650” - 200,000
hits

Query 2: “standard user dlink 650 no card found”:
0 hits

It takes skill to come up with a query that
produces a manageable number of hits.

With a ranked list of documents, it does not
matter how large the retrieved set is.

Scoring as the basis of ranked retrieval

* We wish to return in order the documents
most likely to be useful to the searcher

* How can we rank-order the documents in the
collection with respect to a query?

* Assign a score —say in [0, 1] —to each
document

* This score measures how well document and
qguery “match”.

Query-document matching scores

We need a way of assigning a score to a
query/document pair

Let’s start with a one-term query

If the query term does not occur in the
document: score should be O

The more frequent the query term in the
document, the higher the score (should be)

Term frequency tf

* The term frequency tf, , of term t in document
d is defined as the number of times that t
occurs in d.

 We can use tf when computing query-
document match scores.

Term frequency tf

 Sometimes, we may refine the raw term
frequency:

— A document with 10 occurrences of the term is
more relevant than a document with one
occurrence of the term.

— But not 10 times more relevant.

* Relevance does not increase proportionally
with term frequency.

Log-frequency weighting

* Sometimes, the log frequency weight of term t
in d is used:

. W _ 1+ logtft,d) iftft’d > ()
td = 0 , otherwise

Document frequency

Rare terms are more informative than frequent
terms

— Recall stop words

Consider a term in the query that is rare in the
collection (e.g., arachnocentric)

A document containing this term is very likely to
be relevant to the query arachnocentric

— We want a high weight for rare terms like
arachnocentric.

Document frequency, continued

Consider a query term that is frequent in the
collection (e.g., high, increase, line)

A document containing such a term is more
likely to be relevant than a document that
doesn’t, but it’s not a sure indicator of
relevance.

— Just term frequency is not sufficient
— We wish to capture the notion of rare terms

We will use document frequency (df) to
capture this in the score.

df (< N) is the number of documents that
contain the term

10

idf weight
 df,is the document frequency of term t: the
number of documents that contain t

—df is a measure of the informativeness of t

 We define the idf (inverse document
frequency) of t by
idf, =log,, N/df,

— We use log N/df, instead of N/df, to “dampen” the
effect of idf.

Will turn out the base of the log is unimportant

11

idf example, suppose N=1 million

calpurnia 1 6
animal 100 4
sunday 1,000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

There is one idf value for each term tin a collection.

12

tf-idf weighting

The tf-idf weight of a term is the product of its tf
weight and its idf weight.

wea = (1+10g(t,0)) x og (Vg

A very common weighting scheme in information
retrieval

— Note: the “-” in tf-idf is a hyphen, not a minus sign!
— Alternative names: tf.idf, tf x idf

Increases with the number of occurrences within a
document

Increases with the rarity of the term in the
collection

13

weight matrix

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 5.25 3.18 0 0 0 0.35
Brutus 1.21 6.1 0 1 0 0
Caesar 8.59 2.54 0 1.51 0.25 0
Calpurnia 0 1.54 0 0 0 0
Cleopatra 2.85 0 0 0 0 0
mercy 1.51 0 1.9 0.12 5.25 0.88
worser 1.37 0 0.11 4.15 0.25 1.95

Each document is now represented by a real-valued
vector of tf-idf weights € RV

14

Documents as vectors

So we have a |V|-dimensional vector space
Terms are axes of the space
Documents are points or vectors in this space

Very high-dimensional: hundreds of millions of
dimensions when you apply this to a web search
engine

This is a very sparse vector - most entries are
Zero.

Does not consider the word ordering
— Bag-of-word model

15

Queries as vectors

Key idea 1: Do the same for queries: represent
them as vectors in the space

Key idea 2: Rank documents according to their
oroximity to the query in this space

oroximity = similarity of vectors
oroximity = inverse of distance
Recall: We do this because we want to get away

from the you’re-either-in-or-out Boolean model.

Instead: rank more relevant documents higher
than less relevant documents

16

Formalizing vector space proximity

* First cut: distance between two points

—distance between the end points of the two
vectors

 Euclidean distance?
 Euclidean distance is a bad idea . ..

— Because Euclidean distance is large for
vectors of different lengths.

17

Why distance is a bad idea

The Euclidean GOSSIP clo
distance between

iy ! 14
and d, is large even

though the

distribution of terms
in the query g and the
distribution of

terms in the
documentﬁz are

3
= JEALOUS

very similar.

18

Use angle instead of distance

Thought experiment: take a document d and
append it to itself. Call this document d'.

“Semantically” d and d’ have the same content

The Euclidean distance between the two
documents can be quite large

The angle between the two documents is O,
corresponding to maximal similarity.

Key idea: Rank documents according to angle
with query.

19

From angles to cosines

* The following two notions are equivalent.

— Rank documents in decreasing order of the angle
between query and document

— Rank documents in increasing order of
cosine(query,document)

* Cosine is a monotonically decreasing function
for the interval [0°, 180°]

20

Length normalization

* A vector can be (length-) normalized by dividing
each of its components by its length — for this we

use the L, norm: 1% :W
2 i

 Dividing a vector by its L, norm makes it a unit
(length) vector

» Effect on the two documents d and d’ (d
appended to itself) from earlier slide: they have
identical vectors after length-normalization.

21

cosine(query,document)

Dot product Unit vectors
J]
e q d_ > ad
cos(@,d) = =7 = o o
dd ‘d‘ \/ Y \/ izldiz

q; is the tf-idf weight of term i in the query

d; is the tf-idf weight of term i in the document
cos(q@ is the cosine similarity of g gand d .. o,
equivalently, the cosine of the angle between d and d.

22

Cosine similarity amongst 3 documents

How similar are
the novels?
SaS: Sense and
Sensibility

PaP: Pride and
Prejudice, and
WH: Wuthering
Heights

affection

jealous 10 7 11
gossip 2 0 6
wuthering 0 0 38

Term frequencies (counts)

= Assume that idf is 1. We only make use of term

frequency.

23

3 documents example contd.

Log frequency weighting After normalization
affection 3.06 2.76 2.30 affection 0.789 0.832 0.524
jealous 2.00 1.85 2.04 jealous 0.515 0.555 0.465
gossip 1.30 0 1.78 gossip 0.335 0 0.405
wuthering 0 0 2.58 wuthering 0 0 0.588

cos(SaS,PaP) ~

0.789 % 0.832 + 0.515 %« 0.555 + 0.335 « 0.0 + 0.0 « 0.0
~ 0.94

cos(SaS,WH) = 0.79

cos(PaP,WH) = 0.69

24

General Vector Space Model

Represent the query as a weighted tf-idf vector

Represent each document as a weighted tf-idf
vector

Compute the cosine similarity score for the
qguery vector and each document vector

Rank documents with respect to the query by
score

Return the top K (e.g., K= 10) to the user

25

Basic Algorithm

Let Length[N] hold the lengths (normalization
factors) for each of the N documents.

Let Scores[N] hold the scores for each of the
documents.

Store N/dft at the head of the posting for t.

Store the term frequency tf; ; for each posting
entry.

26

Basic Algorithm

COSINESCORE(q)
1 float Scores[N] =0

float Length[N]

for each query term t

do calculate w; 4 and fetch postings list for ¢
for each pair(d,tf;4) in postings list
do Scores[d|+ = w; g X Wt g

Read the array Length

for each d

do Scores|d] = Scores|d|/Length[d]

return Top K components of Scores|]

O WO o0 NS O B WMo

—

tf-idf weighting has many variants

Term frequency

Document frequency

MNormalization

n (natural) tfr q n (no) 1 n (none) 1
| (logarithm) 1+ log(tf: q) t (idf) log % c (cosine))
NG T
a (augmented) 0.5+ Lﬂé?‘i p (prob idf) max{0,log Nafdf’} u (pivoted 1/u
maxe(tTe 4) ‘ unique)
b (boolean) L ifthed >0 b (byte size) 1/CharLength”
0 otherwise o1 ’
L (] 1+log(tfe 4)
(og ave) TiTosGvercaliiea)

Columns headed ‘n’ are acronyms for weight schemes.

28

Weighting may differ in queries vs
documents

 Many search engines allow for different
weightings for queries vs documents

 To denote the combination in use, we use the
notation qqq.ddd with the acronyms from the
previous table

 Example: Itn.Inc means:

— Query: logarithmic tf (I in leftmost column), idf (t in
the second column), no normalization

— Document logarithmic tf, no idf, and cosine
normalization

29

Another Example

Document: car insurance auto insurance
Query: best car insurance

Weighting Scheme:
Query: Itn Document: Inc

I N S)

tf-raw tf-wt wt tf-raw tf-wt n’lized
auto 0 0 5000 23 0 1 1 0.41 0
best 1 1 50000 1.3 1.3 0 0 0 0
car 1 1 10000 2.0 2.0 1 1 0.41 0.82
insurance 1 1 1000 3.0 3.0 2 2 0.82 2.46

The number of docs (N) is 1,000,000
Score = 0+0+0.41%2+0.82*3 = 3.28

30

