
Python Implementation for:

1. Document pre-processing

2. Feature selection

3. Text classification
o model training and prediction
o performance evaluation

SEEM 5680 Text Mining Models and Applications
Text Classification Demo

Language: Python
https://www.python.org/downloads/

IDE: VS Code (suitable for all systems)
https://code.visualstudio.com/

Package: nltk, sklearn
command line> pip install nltk
command line> pip install sklearn
(when using nltk, some extra files maybe downloaded via following the given instruction)

Data: Twitter text classification (Not racist/sexist vs. Racist/sexist)

The data and configuration document for the environment have been uploaded.

Environment setting

https://www.python.org/downloads/
https://code.visualstudio.com/

VS Code Interface

Left: explorer to show the files in the
opened folder

Right: editing area

Bottom: click Terminal → New Terminal to test the code. (python xxx.py)

Data format

id,label,tweet
1,0, @user when a father is dysfunctional and is so selfish he drags his kids into his dysfunction. #run
2,0,@user @user thanks for #lyft credit i can't use cause they don't offer wheelchair vans in pdx.
#disapointed #getthanked

……

14,1,@user #cnn calls #michigan middle school 'build the wall' chant '' #tcot
15,1,no comment! in #australia #opkillingbay #seashepherd #helpcovedolphins #thecove
#helpcovedolphins
16,0,ouch...junior is angryðŸ̃•#got7 #junior #yugyoem #omg

The data in train.csv and test.csv is in the following format.

Three columns represent:
id: an unique integer for each tweet
label: binary value, 0 means that it is not racist or sexist
tweet: the raw text of the tweet

import csv
from nltk import word_tokenize
from nltk.stem.porter import PorterStemmer
from nltk.corpus import stopwords
import scapy

def preprocess():
path_train = 'train.csv'
path_test = 'test.csv'
obtain raw text from given files
x_train, y_train = get_data_from_file(path_train)
x_test, y_test = get_data_from_file(path_test)

text preprocess
x_train = text_process(x_train)
x_test = text_process(x_test)

return x_train, y_train, x_test, y_test

File preprocess.py

Two functions are used in preprocess:

o get_data_from_text(path)
Obtain raw text of each sample from the dataset file

o text_process(x)
Conduct text preprocess for the given raw text data

preprocess()

Obtain preprocessed text data from the dataset file

to read x and y data from the csv file
def get_data_from_file(path_file):

with open(path_file, 'r', encoding='utf-8') as file_input:
csv_reader = csv.reader(file_input, delimiter = ',')
next(csv_reader) # skip the header of csv file
x_list = []
y_list = []
for row in csv_reader:

x_list.append(row[2])
y_list.append(row[1])

return x_list, y_list

text preprocessing using nltk package
def text_process(x_list):

porter_stemmer = PorterStemmer()
x_list_new = []
for x in x_list:

####### Lower Case #######
x = x.lower()
####### Tokenize #######
x_token_list = word_tokenize(x)
####### Remove Stopwords #######
x_token_list = [token for token in x_token_list if token not in
stopwords.words('english')]
####### Stemming #######
x_token_list = [porter_stemmer.stem(token) for token in x_token_list]

x_new = ' '.join(x_token_list)
x_list_new.append(x_new)

return x_list_new

File preprocess.py

File feature_extract.py

Two feature extraction methods are defined:

o get_feature_binary(sample_list)
Obtain the binary vectors for the text sample list

o get_feature_tfidf(sample_list)
Obtain the tf-idf vectors for the text sample list

from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.feature_selection import mutual_info_classif
from preprocess import preprocess
from numpy import argmax, argsort, array

get binary feature vectors from text
def get_feature_binary(sample_list):

vectorizer = CountVectorizer()
data matrix
data = vectorizer.fit_transform(sample_list).todense()
data[data > 0] = 1
print(data)
return data

get tf-idf feature vectors from text
def get_feature_tfidf(sample_list):

vectorizer = CountVectorizer()
data_count = vectorizer.fit_transform(sample_list)

transformer = TfidfTransformer()
tfidf = transformer.fit_transform(data_count).todense()
return tfidf

File feature_extract.py

o get_feature_binary_mutualinformation(sample_list)
A binary feature extraction method utilize the mutual information to select informative features

get binary feature vectors from text, and feature selection with top 50 mutual information
def get_feature_binary_mutualinformation(sample_list, y_list):

vectorizer = CountVectorizer()
data = vectorizer.fit_transform(sample_list).todense()
data[data > 0] = 1

mutual_info = mutual_info_classif(data, y_list)
index_mututal_info = argsort(-mutual_info)
data = array(data)[:, index_mututal_info[:50]]
print(data)

return data

from preprocess import preprocess
from feature_extract import get_feature_binary, get_feature_binary_mutualinformation, get_feature_tfidf
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC

training and prediction with Naive Bayesian classifier
def classify_NaiveBayesian(x, y, x_test):

train
nbayes = MultinomialNB()
nbayes.fit(x, y)
test
y_predict = nbayes.predict(x_test)
return y_predict

training and prediction with Logistic Regression classifier
def classify_Logistic(x, y, x_test):

lr = LogisticRegression()
lr.fit(x, y)
y_predict = lr.predict(x_test)
return y_predict

training and prediction with SVM classifier
def classify_SVM(x, y, x_test):

svm = SVC(kernel='linear')
svm.fit(x, y)
y_predict = svm.predict(x_test)
return y_predict

File classification.py

Three model training and predicting methods are
defined.

The input contains x and y from training set and x
from test set.

o classify_NaiveBayesian(x, y, x_test)
o classify_Logistic(x, y, x_test)
o classify_SVM(x, y, x_test)

File classification.py

evaluation(p_predict, p_truth_test)

the classification_report function can output several classic metrics for the classification task.

evaluation based on the predicted label and ground truth label
def evaluation(y_pred, y_test):

print(classification_report(y_pred,y_test,target_names= ['not racist/sexist ', 'racist/sexist '],digits=3))
return 0

from sklearn.metrics import classification_report

Besides, one can explore the sklearn.metrics for other evaluation methods for classification.

File classification.py The test script

The script is written in the classification.py file, but you can also put the test script in a separated python file or even a
folder for testing.

1. data preprocess
x_train, y_train, x_test, y_test = preprocess() ## raw text

2. feature extraction
x = get_feature_binary(x_train + x_test)
x = get_feature_tfidf(x_train + x_test)
x = get_feature_binary_mutualinformation(x_train + x_test, y_train + y_test)
x_train = x[:len(x_train)] ## feature vectors
x_test = x[len(x_train):] ## feature vectors

3. train the classifier and predict on test data
y_predict = classify_NaiveBayesian(x_train, y_train, x_test)
y_predict = classify_SVM(x_train, y_train, x_test)
y_predict = classify_Logistic(x_train, y_train, x_test)

4. evaluate the learned model and output result
evaluation(y_predict, y_test)

Result of test script

You can use different feature extraction methods and different classifier to solve this classification problem.

precision recall f1-score support

not racist/sexist 0.939 0.970 0.954 461
racist/sexist 0.417 0.256 0.317 39

accuracy 0.914 500
macro avg 0.678 0.613 0.636 500

weighted avg 0.898 0.914 0.904 500

