Text Classification kNN and Linear Classifier

Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

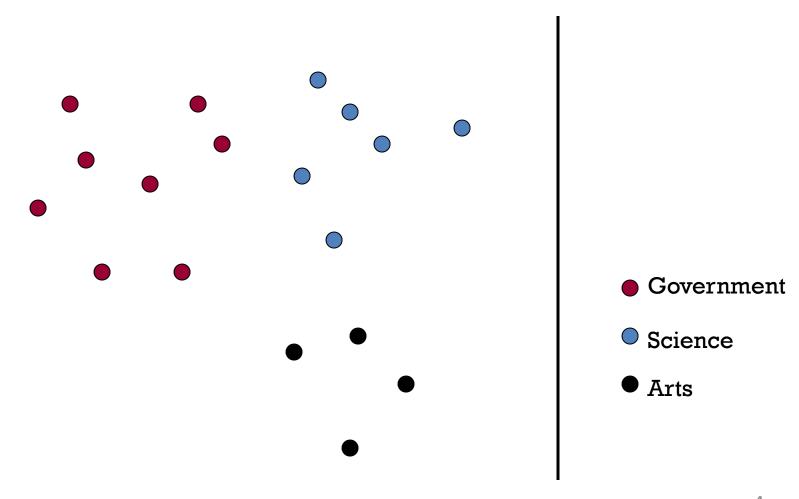
Recall: Vector Space Representation

- Each document is a vector, one component (term weight) for each term (= word).
- Normally normalize vectors to unit length.
- High-dimensional vector space:
 - Terms are axes
 - 10,000+ dimensions, or even 100,000+
 - Docs are vectors in this space
- How can we do classification in this space?
 - Recall that Naïve Bayes classification does not make use of the term weight.

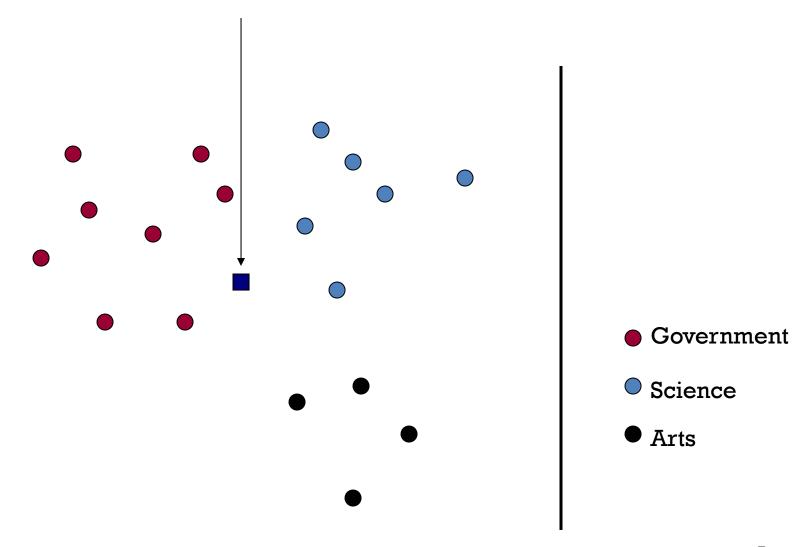
Classification Using Vector Spaces

- As before, the training set is a set of documents, each labeled with its class (e.g., topic)
- In vector space based representation, this set corresponds to a labeled set of points (or, equivalently, vectors) in the vector space
- We define surfaces to delineate classes in the space

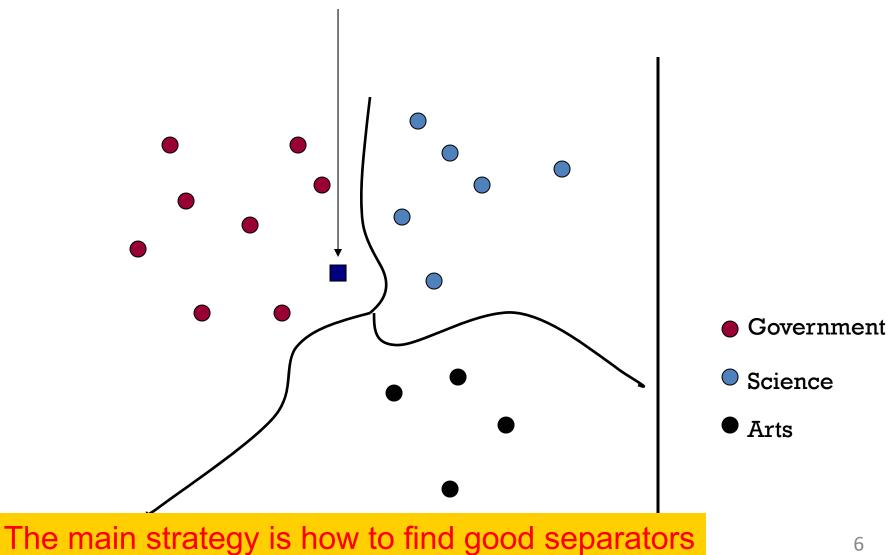
Documents in a Vector Space



Test Document of what class?



Test Document = Government

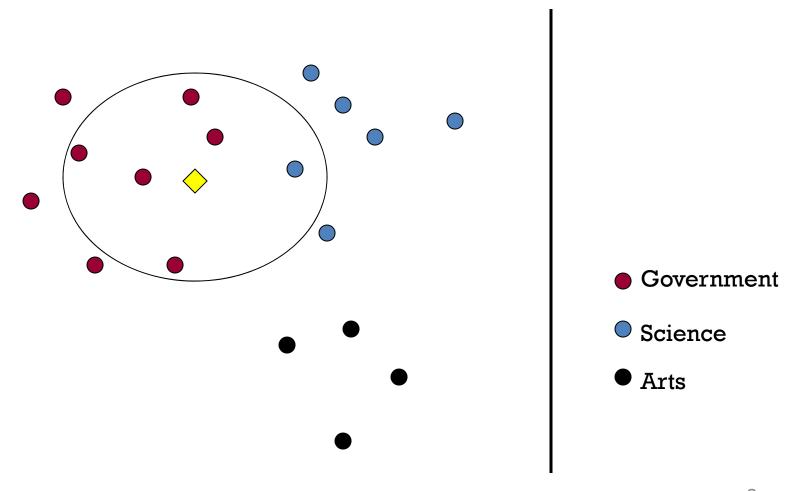


k Nearest Neighbor Classification

kNN = k Nearest Neighbor

- Use standard TF-IDF weighted vectors to represent text documents
- To classify document d into class c:
- Define k-neighborhood N as k nearest neighbors of d
- Count number of documents i in N that belong to c
- Estimate P(c|d) as i/k
- Choose as class $argmax_c P(c|d) = majority class$

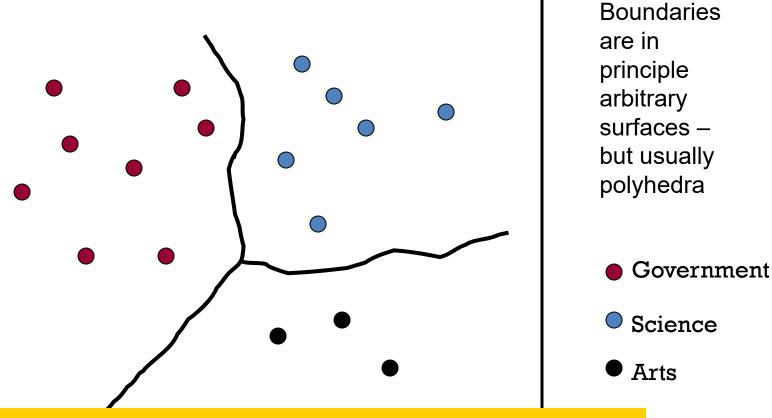
Example: k=6 (6NN)



Nearest-Neighbor Learning Algorithm

- Learning is just storing the representations of the training examples in D.
- Testing instance x:
 - Compute similarity between x and all examples in D.
 - Assign x the category of the most similar example in D (under 1NN)
 - More robust alternative is to find the k most-similar examples and return the majority category of these k examples.
- Also called:
 - Case-based learning, Memory-based learning, Lazy learning

kNN decision boundaries

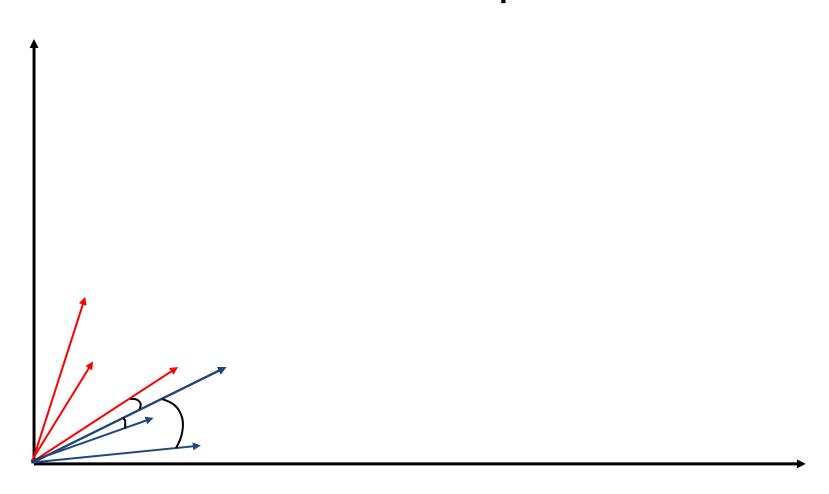


kNN gives locally defined decision boundaries between classes – far away points do not influence each classification decision (unlike in Naïve Bayes, Rocchio, etc.)

Similarity Metrics

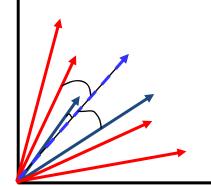
- Nearest neighbor method depends on a similarity (or distance) metric.
- For text, cosine similarity of tf.idf weighted vectors is typically most effective.

Illustration of 3 Nearest Neighbor for Text Vector Space



3 Nearest Neighbor Comparison

 Nearest Neighbor tends to handle polymorphic categories better.



k Nearest Neighbor

- Value of k is typically odd to avoid ties; 3 and 5 are most common, but larger values between 50 to 100 are also used.
- Alternatively, we can select k that gives best results on a held-out portion of the training set.

kNN Algorithm Training (Preprocessing) and Testing

TRAIN-KNN(C,D)

- 1 $\mathbf{D}' \leftarrow \mathsf{PREPROCESS}(\mathbf{D})$
- 2 $k \leftarrow SELECT-K(\mathbf{C},\mathbf{D}')$
- 3 return D', k

APPLY-KNN(\mathbf{C} , \mathbf{D}' , k, d)

- 1 $S_k \leftarrow \text{COMPUTENEARESTNEIGHBORS}(\mathbf{D}', k, d)$
- 2 for each $c_i \in \mathbf{C}$
- $3 \quad \mathbf{do} \ p_{\mathbf{j}} \leftarrow |S_k \cap c_{\mathbf{j}}|/k$
- 4 **return** argmax_ip_i

 p_j is an estimate for $P(c_j|S_k) = P(c_j|d)$

 c_j denotes the set of all documents in the class c_j

kNN: Discussion

- No feature selection necessary
- Scales well with large number of classes
 - Don't need to train n classifiers for n classes
- Classes can influence each other
 - Small changes to one class can have ripple effect
- Can avoid training if preferred
- May be more expensive at test time

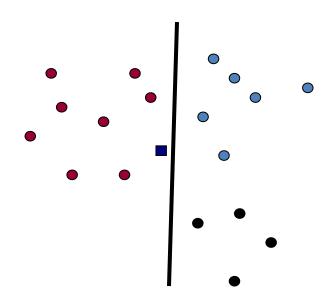
Linear Classifiers

Linear Classifiers

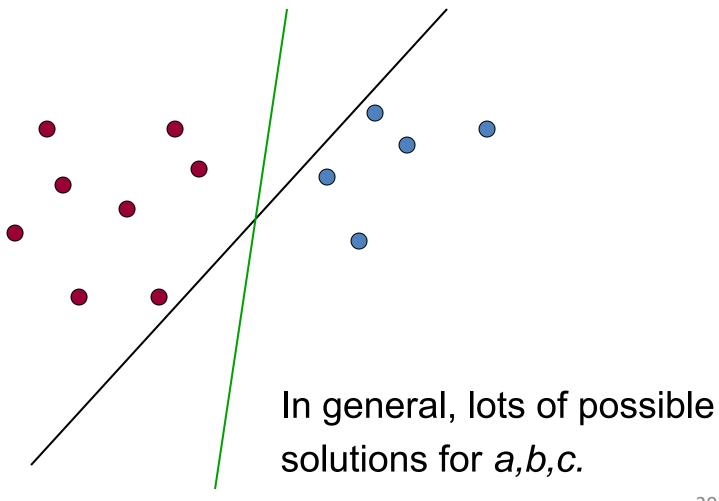
- Consider 2 class problems
 - Deciding between two classes, perhaps, government and non-government
 - One-versus-rest classification
- How do we define (and find) the separating surface?
- How do we decide which region a test doc is in?

Separation by Hyperplanes

- A strong high-bias assumption is linear separability:
 - in 2 dimensions, can separate classes by a line
 - in higher dimensions, need hyperplanes
- separator can be expressed as ax + by = c



Which Hyperplane?

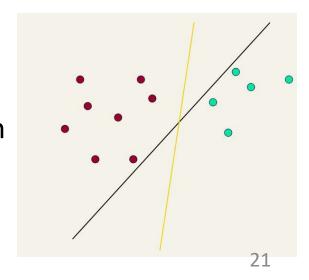


Which Hyperplane?

- Lots of possible solutions for *a,b,c*.
- Some methods find an optimal separating hyperplane

[according to some criterion of expected goodness]

- Which points should influence optimality?
 - All points
 - Linear regression
 - Naïve Bayes
 - Only "difficult points" close to decision boundary
 - Support vector machines



High-Dimensional Linear Classifier

• For general linear classifiers, assign the document d with m features $d=(d_1,...d_M)$ to one class if:

$$\left(\sum_{i=1}^{M} w_i d_i\right) - \theta > 0$$

Otherwise, assign to the other class.

Applying Linear Classifier

APPLYLINEARCLASSIFIER(\vec{w} , θ , \vec{d})

- 1 $score \leftarrow \sum_{i=1}^{M} w_i d_i$
- 2 **if** *score* $> \theta$
- 3 then return 1
- 4 else return 0

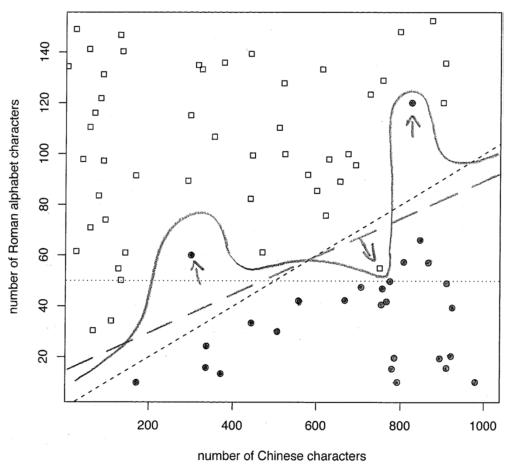
Linear Classifiers

- Many common text classifiers are linear classifiers
 - Naïve Bayes
 - Logistic regression
 - Support vector machines (with linear kernel)
 - Linear regression
- Despite this similarity, noticeable performance differences

Linear Problem

- A linear problem The underlying distributions of the two classes are separated by a line.
- This separating line is called class boundary.
 - It is the "true" boundary and we distinguish it from the decision boundary that the learning method computes

Linear Problem

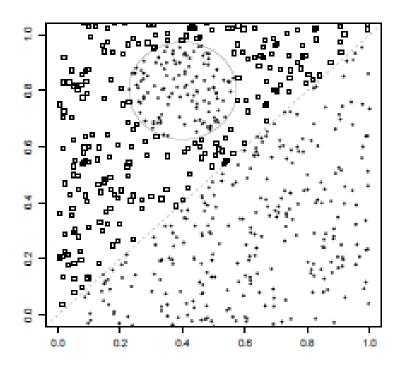


- A linear problem that classifies whether a Web page is a Chinese Web page (solid circles)
- The class boundary is represented by short dashed line
- There are three noise documents

Linear Problem

- If there exists a hyperplane that perfectly separates the two classes, then we call the two classes linearly separable.
- If linear separability holds, there is an infinite number of linear separators.
 - We need a criterion for selecting among all decision hyperplanes.

Nonlinear Problem



- If a problem is nonlinear problem and its class boundaries cannot be approximated well with linear hyperplanes, then nonlinear classifiers are better
- An example of a nonlinear classifier is kNN

More Than Two Classes

- Any-of or multivalue classification
 - Classes are independent of each other.
 - A document can belong to 0, 1, or >1 classes.
 - Quite common for documents

document	class
1	c_1, c_3, c_4
2	c_3, c_5
:	:

Set of Binary Classifiers: Any-of

- Build a separator between each class and its complementary set (docs from all other classes).
- Decompose into |c| binary classification problems.
- Given test doc, evaluate it for membership in each class.
- Apply decision criterion of classifiers independently
- Though maybe you could do better by considering dependencies between categories

More Than Two Classes

- One-of or multinomial or polytomous classification
 - Classes are mutually exclusive.
 - Each document belongs to exactly one class
 - E.g., digit recognition is polytomous classification
 - Digits are mutually exclusive

Set of Binary Classifiers: One-of

- Build a separator between each class and its complementary set (docs from all other classes).
- Given test doc, evaluate it for membership in each class.
- Assign document to class with:
 - maximum score
 - maximum confidence
 - maximum probability

