Text Classification Naïve Bayes Algorithm

Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Document Classification

Categorization/Classification

• Given:

- A description of an instance, $d \in X$
 - *X* is the *instance language* or *instance space*.
 - Issue: how to represent text documents.
 - Usually some type of high-dimensional space
- A fixed set of classes:

$$C = \{c_1, c_2, ..., c_l\}$$

- Determine:
 - The category of d: γ(d) ∈ C, where γ(d) is a classification function whose domain is X and whose range is C.
 - We want to know how to build classification functions ("classifiers").

Supervised Classification

• Given:

- A description of an instance, $d \in X$
 - *X* is the *instance language* or *instance space*.
- A fixed set of classes:

$$C = \{c_1, c_2, ..., c_l\}$$

— A training set D of labeled documents with each labeled document $\langle d,c \rangle \in X \times C$

• Determine:

- A learning method or algorithm which will enable us to learn a classifier $\gamma:X\to C$
- For a test document d, we assign it the class $\gamma(d) \in C$

More Text Classification Examples Many search engine functionalities use classification

Assigning labels to documents or web-pages:

- Labels are most often topics
 - "finance," "sports," "news"
- Labels may be genres
 - "editorials" "movie-reviews" "news"
- Labels may be opinion on a person/product
 - "like", "hate", "neutral"
- Labels may be domain-specific
 - "interesting-to-me": "not-interesting-to-me"
 - "contains adult language" : "doesn't"
 - language identification: English, French, Chinese, ...
 - search vertical: about Linux versus not
 - "link spam": "not link spam"

Classification Methods

- Supervised learning of a document-label assignment function
 - Bayesian approach
 - Support-vector machines (SVM)
 - ... plus many other methods
 - No free lunch: requires hand-classified training data
- Many commercial systems use a mixture of methods
- Bayesian text classification is widely employed for spam filtering
 - Solid theoretical foundation
 - Easy and efficient to learn
 - A principled way of combining prior information with data
 - Still explored in some recent works, e.g. "A correlation-Based Feature Weighting Filter for Naïve Bayes", IEEE Trans on Knowledge and Data Engineering (TKDE), 2019.

Recall a few probability basics

- For events a and b:
- Bayes' Rule

$$p(a,b) = p(a \cap b) = p(a \mid b)p(b) = p(b \mid a)p(a)$$

$$p(\overline{a} \mid b) p(b) = p(b \mid \overline{a}) p(\overline{a})$$

$$p(a \mid b) = \frac{p(b \mid a)p(a)}{p(b)} = \frac{p(b \mid a)p(a)}{\sum_{x=a,\overline{a}} p(b \mid x)p(x)}$$
Prior Prior Prior Prior

• Odds:

$$O(a) = \frac{p(a)}{p(\overline{a})} = \frac{p(a)}{1 - p(a)}$$

Probabilistic Methods

- Learning and classification methods based on probability theory.
- Bayes theorem plays a critical role in probabilistic learning and classification.
- Builds a generative model that approximates how data is produced
- Uses prior probability of each category given no information about an item.
- Categorization produces a posterior probability distribution over the possible categories given a description of an item.

Bayes' Rule for text classification

For a document d and a class c

$$P(c,d)=P(c|d)P(d)=P(d|c)P(c)$$

$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

Naive Bayes Classifiers

Task: Classify a new instance d based on a tuple of attribute values into one of the classes $c_i \in C$

$$d = \langle x_1, x_2, \dots, x_n \rangle$$

$$c_{MAP} = \underset{c_j \in C}{\operatorname{argmax}} P(c_j \mid x_1, x_2, \dots, x_n)$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} \frac{P(x_{1}, x_{2}, \dots, x_{n} \mid c_{j}) P(c_{j})}{P(x_{1}, x_{2}, \dots, x_{n})}$$

$$= \underset{c_j \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c_j) P(c_j)$$

Naive Bayes Classifier: Naive Bayes Assumption

- $P(c_j)$
 - Can be estimated from the frequency of classes in the training examples.
- $P(x_1, x_2, \dots, x_n/c_i)$
 - $-O(|X|^n \bullet |C|)$ parameters
 - Could only be estimated if a very, very large number of training examples was available.

Naive Bayes Conditional Independence Assumption:

• Assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities $P(x_i | c_i)$.

The Naive Bayes Classifier

 Conditional Independence Assumption: features detect term presence and are independent of each other given the class:

$$P(X_1,\ldots,X_5\mid C) = P(X_1\mid C) \bullet P(X_2\mid C) \bullet \cdots \bullet P(X_5\mid C)$$

First Naive Bayes Model

- Model 1: Multivariate Bernoulli
 - One feature X_{ω} for each word in dictionary
 - $-X_{w}$ = true if w appears in d; otherwise X_{w} = false
 - Naive Bayes assumption:
 - Given the document's class, appearance of one word in the document tells us nothing about chances that another word appears
- Model Learning

$$\widehat{P}(X_w = true | c_j) =$$
fraction of documents of class c_j in which word w appears

Multivariate Bernoulli Model

Learning the Model

- First attempt: maximum likelihood estimates
 - simply use the frequencies in the data

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$

$$\hat{P}(X_i = t \mid c_j) = \frac{N(X_i = t, C = c_j)}{N(C = c_j)}$$

Problem with Maximum Likelihood

$$P(X_1,\ldots,X_5\mid C) = P(X_1\mid C) \bullet P(X_2\mid C) \bullet \cdots \bullet P(X_5\mid C)$$

 What if we have seen no training documents with the word muscleache and classified in the topic Flu?

$$\hat{P}(X_5 = t \mid C = Flu) = \frac{N(X_5 = t, C = Flu)}{N(C = Flu)} = 0$$

 Zero probabilities cannot be conditioned away, no matter the other evidence!

$$\ell = \operatorname{arg\,max}_{c} \hat{P}(c) \prod_{i} \hat{P}(X_{i} = t \mid c)$$

Smoothing to Avoid Overfitting

$$\hat{P}(X_i = t \mid c_j) = \frac{N(X_i = t, C = c_j) + 1}{N(C = c_j) + k}$$
of values of X_i

k=2 in this case

Bernoulli Naive Bayes Algorithm Learning (Training)

```
TRAINBERNOULLINB(\mathbf{C},\mathbf{D})

1 V \leftarrow \text{EXTRACTVOCABULARY}(\mathbf{D})

2 N \leftarrow \text{COUNTDOCS}(\mathbf{D})

3 for each c \in \mathbf{C}

4 do N_C \leftarrow \text{COUNTDOCSINCLASS}(\mathbf{D}, c)

5 prior[c] \leftarrow N_C/N

6 for each t \in V

7 do N_{ct} \leftarrow \text{COUNTDOCSINCLASSCONTAININGTERM}(\mathbf{D}, c, t)

8 condprob[t][c] \leftarrow (N_{ct} + 1)/(N_C + 2)

9 return V, prior, condprob
```

Bernoulli Naive Bayes Algorithm Classifying (Testing)

```
APPLYBERNOULLINB(\mathbf{C}, V, prior, condprob, d)

1 V_d \leftarrow \text{EXTRACTTERMSFROMDOC}(V, d)

2 for each c \in \mathbf{C}

3 do score[c] \leftarrow \log prior[c]

4 for each t \in V

5 do if t \in V_d

6 then score[c] += \log condprob[t][c]

7 else score[c] += \log(1-condprob[t][c])

8 return argmax_{c \in C} score[c]
```

Second Model

- Model 2: Multinomial = Class conditional unigram
 - One feature X_i for each word position in document
 - feature's values are all words in dictionary
 - Value of X_i is the word in position i
 - Naive Bayes assumption:
 - Given the document's class, word in one position in the document tells us nothing about words in other positions

Multinomial Naïve Bayes Model

- Can create a mega-document for class c_j by concatenating all documents in this class
- Use the frequency of w in mega-document

$$\hat{P}(X_i = w \mid c_j) =$$
fraction of times in which word w appears among all words in documents of class c_j

Using Multinomial Naive Bayes Classifiers to Classify Text: Basic method

 Attributes are text positions, values are words.

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i} P(x_{i} | c_{j})$$

$$= \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) P(x_{1} = \text{"our"} | c_{j}) \cdots P(x_{n} = \text{"text"} | c_{j})$$

Still too many possibilities

Using Multinomial Naive Bayes Classifiers to Classify Text: Basic method

- Assume that classification is independent of the positions of the words
 - Use same parameters for each position
 - Result is bag-of-words model
- Word appearance does not depend on positions

$$P(X_i = w | c) = P(X_j = w | c)$$

for all positions *i,j*, word *w*, and class *c*

Just have one multinomial feature predicting all words

Multinomial Naive Bayes Learning Approach

- From training corpus, extract Vocabulary
- Calculate required $P(c_j)$ and $P(x_k \, / \, c_j)$ terms For each c_i in C do
 - $docs_j \leftarrow$ subset of documents for which the target class is c_i
 - $P(c_j) \leftarrow \frac{|docs_j|}{|total \# documents|}$
 - $Text_j \leftarrow single document containing all <math>docs_j$
 - $n \leftarrow$ total number of words in $Text_i$
 - For each word x_k in *Vocabulary*
 - n_k ← number of occurrences of x_k in $Text_j$

$$P(x_k \mid c_j) \leftarrow \frac{n_k + 1}{n + |Vocabulary|}$$

Multinomial Naive Bayes Classifying (Testing) Approach

- positions ← all word positions in current document which contain tokens found in Vocabulary
- Return c_{NR} , where

$$c_{NB} = \underset{c_{j} \in C}{\operatorname{argmax}} P(c_{j}) \prod_{i \in positions} P(x_{i} \mid c_{j})$$

Multinomial Naive Bayes: Example

	docID	words in document	in c = China?
Training	1	Chinese Beijing Chinese	yes
set	2	Chinese Chinese Shanghai	yes
	3	Chinese Macao	yes
	4	Tokyo Japan Chinese	no
Test set	5	Chinese Chinese Tokyo Japan	?

$$P(c) = \frac{3}{4} \qquad P(\bar{c}) = \frac{1}{4}$$

$$P(\text{Chinese}|c) = \frac{(5+1)}{(8+6)} = \frac{6}{14} = \frac{3}{7} \qquad P(\text{Toyko}|c) = P(\text{Japan}|c) = \frac{(0+1)}{(8+6)} = \frac{1}{14}$$

$$P(\text{Chinese}|\bar{c}) = \frac{(1+1)}{(3+6)} = \frac{2}{9} \qquad P(\text{Toyko}|\bar{c}) = P(\text{Japan}|\bar{c}) = \frac{(1+1)}{(3+6)} = \frac{2}{9}$$

Multinomial Naive Bayes: Example

$$P(c) = \frac{3}{4} \qquad \qquad P(\bar{c}) = \frac{1}{4}$$

$$P(\text{Chinese}|c) = \frac{(5+1)}{(8+6)} = \frac{6}{14} = \frac{3}{7}$$
 $P(\text{Toyk}o|c) = P(\text{Japan}|c) = \frac{(0+1)}{(8+6)} = \frac{1}{14}$

$$P(\text{Chinese}|\bar{c}) = \frac{(1+1)}{(3+6)} = \frac{2}{9}$$
 $P(\text{Toyk}o|\bar{c}) = P(\text{Japan}|\bar{c}) = \frac{(1+1)}{(3+6)} = \frac{2}{9}$

$$P(c|d_5) \propto \frac{3}{4} \cdot \left(\frac{3}{7}\right)^3 \cdot \frac{1}{14} \cdot \frac{1}{14} \approx 0.0003$$

$$P(\bar{c}|d_5) \propto \frac{1}{4} \cdot \left(\frac{2}{9}\right)^3 \cdot \frac{2}{9} \cdot \frac{2}{9} \approx 0.0001$$

The classifier assigns the test document to c = China

Multinomial Naive Bayes Algorithm Learning (Training)

```
TrainMultinomialNB(C,D)
1 V \leftarrow \text{EXTRACTVOCABULARY}(\mathbf{D})
2 N \leftarrow CountDocs(D)
3 for each c \in \mathbf{C}
4 do N_c \leftarrow \text{CountDocsInClass}(\mathbf{D}, c)
5 prior[c] \leftarrow N_c/N
6 text_c \leftarrow ConcatenateTextOfAllDocsInClass(D, c)
7 for each t \in V
      do T_{ct} \leftarrow \text{CountTokensOfTerm}(text_c, t)
8
    for each t \in V
10 do condprob[t][c] \leftarrow \frac{T_{ct}+1}{\sum_{t'}(T_{ct'}+1)}
11return V, prior, condprob
```

Multinomial Naive Bayes Algorithm Classifying (Testing)

```
APPLYMULTINOMIALNB(\mathbf{C}, V, prior, condprob, d)

1 W \leftarrow \text{EXTRACTTOKENSFROMDOC}(V, d)

2 for each c \in \mathbf{C}

3 do score[c] \leftarrow \log prior[c]

4 for each t \in W

5 do score[c] += \log condprob[t][c]

6 return argmax_{c \in C} score[c]
```

Underflow Prevention: using logs

- Multiplying lots of probabilities, which are between 0 and 1 by definition, can result in floating-point underflow.
- Since log(xy) = log(x) + log(y), it is better to perform all computations by summing logs of probabilities rather than multiplying probabilities.
- Class with highest final un-normalized log probability score is still the most probable.

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} [\log P(c_j) + \sum_{i \in positions} \log P(x_i | c_j)]$$

Note that model is now just max of sum of weights.

Naive Bayes Classifier

$$c_{NB} = \underset{c_j \in C}{\operatorname{argmax}} [\log P(c_j) + \sum_{i \in positions} \log P(x_i | c_j)]$$

- Simple interpretation: Each conditional parameter $\log P(x_i|c_j)$ is a weight that indicates how good an indicator x_i is for c_j .
- The prior $\log P(c_j)$ is a weight that indicates the relative frequency of c_j .
- The sum is then a measure of how much evidence there is for the document being in the class.
- We select the class with the most evidence for it

Feature Selection: Why?

- Text collections have a large number of features
 - 10,000 1,000,000 unique words ... and more
- May allow using a particular classifier feasible
 - Some classifiers can't deal with 100,000 of features
- Reduces training time
 - Training time for some methods is quadratic or worse in the number of features
- Can improve generalization (performance)
 - Eliminates noise features
 - Avoids overfitting

Feature Selection: how?

Two ideas:

- Hypothesis testing statistics:
 - Are we confident that the value of one categorical variable is associated with the value of another
 - Chi-square test (χ^2)
- Information theory:
 - How much information does the value of one categorical variable give you about the value of another
 - Mutual information
- They're similar, but χ^2 measures confidence in association, (based on available statistics), while MI measures extent of association (assuming perfect knowledge of probabilities)

Feature Selection

- For each category we build a list of *k* most discriminating terms.
- For example (on 20 Newsgroups):
 - sci.electronics: circuit, voltage, amp, ground, copy, battery, electronics, cooling, ...
 - rec.autos: car, cars, engine, ford, dealer, mustang, oil, collision, autos, tires, toyota, ...
- Greedy: does not account for correlations between terms

χ^2 Statistic (CHI)

• $\chi 2$ is interested in $(f_0 - f_e)^2/f_e$ summed over all table entries: is the observed number what you'd expect given the marginals?

$$\chi^{2}(Feature) = \sum (O-E)^{2} / E = (2-.25)^{2} / .25 + (3-4.75)^{2} / 4.75$$
$$+ (500-502)^{2} / 502 + (9500-9498)^{2} / 9498 = 12.9 \ (p < .001)$$

- The null hypothesis is rejected with confidence .999, since 12.9 > 10.83 (the value for .999 confidence).
- Higher χ 2 values imply higher dependency among the word w and the class

	Word w appeared	Word w inot appeared	(5/10005)*(502/10005)*10005 = 0.2509
Class = auto	2 (0.25)	500 <i>(502)</i>	502
Class ≠ auto	3 (4.75)	9500 <i>(9498)</i>	
	5	10000	observed: f_o

χ^2 statistic (CHI)

There is a simpler formula for $2x2 \chi^2$:

$$\chi^{2}(t,c) = \frac{N \times (AD - CB)^{2}}{(A+C) \times (B+D) \times (A+B) \times (C+D)}$$

A = #(t,c)	$C = \#(\neg t, c)$
$B = \#(t, \neg c)$	$D = \#(\neg t, \neg c)$

$$N = A + B + C + D$$

Value for complete independence of term and category?

Feature selection via Mutual Information

- In training set, choose k words which best discriminate (give most info on) the categories.
- The Mutual Information between a word w and a class c is:

$$I(w,c) = \sum_{e_w \in \{0,1\}} \sum_{e_c \in \{0,1\}} p(e_w, e_c) \log \frac{p(e_w, e_c)}{p(e_w)p(e_c)}$$

where $e_w = 1$ when the document contains the word w (0 otherwise); $e_c = 1$ when the document is in class c (0 otherwise)

Feature Selection

- Mutual Information
 - Clear information-theoretic interpretation
 - May select very slightly informative frequent terms that are not very useful for classification
- Chi-square
 - Statistical foundation
 - May select rare uninformative terms
- Just use the commonest terms?
 - No particular foundation
 - In practice, this is often 90% as good

Feature selection for NB

- In general feature selection is *necessary* for multivariate Bernoulli NB.
- Otherwise you suffer from noise, multicounting
- "Feature selection" really means something different for multinomial NB. It means dictionary truncation
 - The multinomial NB model only has 1 feature

Naive Bayes on spam email

SpamAssassin

- Naive Bayes has found a home in spam filtering
 - Paul Graham's A Plan for Spam
 - A mutant with more mutant offspring...
 - Naive Bayes-like classifier with weird parameter estimation
 - Widely used in spam filters
 - Classic Naive Bayes superior when appropriately used
 - According to David D. Lewis
 - But also many other things: black hole lists, etc.
- Many email topic filters also use NB classifiers

Evaluating Categorization

- Evaluation must be done on test data that are independent of the training data (usually a disjoint set of instances).
 - It's easy to get good performance on a test set that was available to the learner during training (e.g., just memorize the test set).
 - The holdout method reserves a certain amount for testing and uses the remainder for training
 - Usually: one third for testing, the rest for training

Evaluation Metric

- Metrics (Measures): classification accuracy, precision, recall, F1
- Classification accuracy: c/n where n is the total number of test instances and c is the number of test instances correctly classified by the system.
 - Assuming one class per document

Per class evaluation measures

- Given a class *i*, treat it as a binary classification problem.
- Recall: Fraction of docs in class i classified correctly
- Precision: Fraction of docs assigned class i that are actually about class i
- Accuracy: (1 error rate) Fraction of all docs classified correctly with respect to class i

A combined measure: F

 Combined measure that assesses precision/recall tradeoff is F measure (weighted harmonic mean):

$$F = \frac{1}{\alpha \frac{1}{P} + (1 - \alpha) \frac{1}{R}} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R}$$

- People usually use balanced F_1 measure
 - i.e., with $\beta = 1$ or $\alpha = \frac{1}{2}$

Micro- vs. Macro-Averaging

- Handling the evaluation of more than one class
- Macroaveraging: Compute performance for each class, then average.
- Microaveraging: Collect decisions for all classes, compute contingency table, evaluate.

Micro- vs. Macro-Averaging: Example

Class 1

	Truth: yes	Truth: no
Classifi er: yes	10	10
Classifi er: no	10	970

Class 2

	Truth:	Truth:
	yes	no
Classifi er: yes	90	10
Classifi er: no	10	890

Micro Ave. Table

	Truth: yes	Truth: no
Classifier: yes	100	20
Classifier: no	20	1860

- Macroaveraged precision: (0.5 + 0.9)/2 = 0.7
- Microaveraged precision: 100/120 = .83
- Microaveraged score is dominated by score on common classes

Cross-validation

- Cross-validation averaging results over multiple training and test splits of the overall data
- Cross-validation avoids overlapping test sets
 - First step: data is split into k subsets of equal size
 - Second step: each subset in turn is used for testing and the remainder for training
- This is called k-fold cross-validation
- The error estimates are averaged to yield an overall error estimate

Cross-validation

 Split the available data set into k equal partitions, namely, P₁, ... P_k

Training set	Testing set	Accuracy
P_2, \ldots, P_k	P ₁	A_1
P_1,P_3,\ldots,P_k	P_2	A_2
:	:	
$P_1, P_2,, P_{k-1}$	P_k	A_k
Average Accuracy		A

Violation of NB Assumptions

- The independence assumptions do not really hold of documents written in natural language.
 - Conditional independence
 - Positional independence

Naive Bayes Posterior Probabilities

- Classification results of naive Bayes (the class with maximum posterior probability) are usually fairly accurate.
- However, due to the inadequacy of the conditional independence assumption, the actual posterior-probability numerical estimates are not.
 - Output probabilities are commonly very close to 0 or 1.
- Correct estimation ⇒ accurate prediction, but correct probability estimation is NOT necessary for accurate prediction (just need right ordering of probabilities)

Naive Bayes is Not So Naive

- More robust to irrelevant features than many learning methods
 Irrelevant Features cancel each other without affecting results
 Decision Trees can suffer heavily from this.
- More robust to concept drift (changing class definition over time)
- Very good in domains with many <u>equally important</u> features
 Decision Trees suffer from *fragmentation* in such cases especially if little data
- Optimal if the Independence Assumptions hold: Bayes Optimal Classifier
 Never true for text, but possible in some domains
- Very Fast Learning and Testing (basically just count the data)
- Low Storage requirements