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Separating Hyperplanes

* Construct linear decision boundaries that explicitly
try to separate the data into different classes

FIGURE 4.14. A toy example with two classes sep-
arable by a hyperplane. The orange line is the least
squares solution, which misclassifies one of the train-
ing points. Also shown are two blue separating hyper-
planes found by the perceptron learning algorithm with
different random starts.



Separating Hyperplanes

Construct classifiers that use a linear combination of
input features and return the sign were called
perceptrons

* Perceptrons set the foundations for neural network
models

Hyperplane or affine set L defined by equation:
fx)=po+p"x=0

Since in R?, this is a line



Separating Hyperplanes
) =Fo+BTx=0]

Properties: \
* For any two points x; and x; lying ~ /
in L ﬁT(X —x):() I~
’ 1 2 ,I AT
* ﬁ . ” Bo+pB'2z=0
2B = T vector normal to i

the surface of L

e ForanypointxginL, BTxy = —p,
 The signed distance of any point x to L is given by:
1 1
T
Tx—xg) = (BTx + Bo) =+ X
Pl o) = g Prx 4 Bo) = g/ 9

* Hence, f(x) is proportional to the signed distance
from x to the hyperplane defined by f(x) = 0



Optimal Separating Hyperplanes

* {x, ..., Xy} our training dataset in d-dimension
* y.€{1,-1}: class label
— Note that the label value is 1 and -1 (not 1 and 0)
 Hyperplane defined by equation:
fx)=x"B+By=0
e A classification rule is:
G(x) = sign[x"f + By
* Since the classes are separable, we have
Vif (x;) >0 Vi



Optimal Separating Hyperplanes

* Find the optimal separating hyperplane

e Separates the two classes and maximizes the distance
to the closest point from either class

* Leads to better classification performance on test
data




Optimal Separating Hyperplanes

» The border is M @+ fio =0
away from the
hyperplane.

* The band is 2M
wide and it is
called margin

= Try to maximize

the margin: max M

ﬁuﬁﬂs”ﬁ”zl
subject to y;(z; B+ Bo) > M, i=1,...,N,



Optimal Separating Hyperplanes

= Consider the optimization problem:

max M
B,60,!18||=1

subject to y;(xl B+ Po) > M, i=1,...,N.

® This can ensure that all the points are at least a
signed distance M from the decision boundary

= We can get rid of || f l|=1 by replacing the
conditions with:

ﬁy@(mé" B+ Bo) > M,

» Equivalently (redefine ;)
vi(zi B+ Bo) > M||B]|-



Optimal Separating Hyperplanes

" Equivalently Since for any
and (3, satisfying these
inequalities, any positively
scaled multiple satisfies
them too, we can arbitrarily

setll B II= Y/y

"B+ Bo=0

" As a result, the optimization : i
is equivalentto: ,
min —

subject to yi(zi B+ Fo) >1,i=1,...,N.



Optimal Separating Hyperplanes

1
111111 —
ﬁﬁmgllﬁ\l

subject to yi(zl B+ Bo)>1,i=1,...,N.

" The constraints define an
empty margin around the
linear decision boundary of
thickness 1/"3"

= We choose f and 5, to
maximize the thickness of the
margin

"B+ Bo=0
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Optimal Separating Hyperplanes
in 2 ||8]]
B0 2

subject to y;(z; B+ Bo) > 1, i=1,...,N.

= A convex optimization problem (quadratic criterion
with linear inequality constraints)
* The Lagrange function, to be minimized w.r.t. 5 and

Bo, IS:
N

1
Le =5 1B 12 = ) aylyi(x B+ o) — 1]

=1
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Optimal Separating Hyperplanes

= Setting the derivatives to zero, we obtain:

N

B = 2 a;yiX;
=1
N

0= z a;y;
1=1

= Substituting into the Lagrange function, we obtain
Wolfe dual:

N 1 =N N .
Lp = z a; — Ez z aiAEYiViXi Xk
=1 =1 k=1

subjecttoa; = 0and Yiwq a;y; = 0

" The solution is obtained by maximizing L
= Standard software can be used
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Optimal Separating Hyperplanes

N 1 =N N .
Lp = z a; — Ez z aiAgYiViXi Xk
=1 =1 k=1

subjecttoa; = 0and Yiwq a;y; = 0

" The solution must satisfy the Karush-Kuhn-
Tucker conditions, which include the previous
equations and
ai|yi(x{ B+ Bo) — 1| = 0 Vi
= From these, we can see that
" Ifa; > 0, then yl-(x;T,B + ,80) = 1, orin other
words, x; is on the boundary of the slab;
u |f yi(xiT,B + ,BO) > 1, x; is not on the boundary
of the slab, and a; = 0



Optimal Separating Hyperplanes

= Recallthat: B = YN | a;V;X;

"B+ Bo=0

= We can see that the solution
vector 5 is defined in terms
of a linear combination of the
support points x;

= Those points defined to be on g
the boundary of the slab via '

ai>0

= Likewise, 3, is obtained by solving the above
equation for any of the support points
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Optimal Separating Hyperplanes

The hyperplane produces
a function:

fO)=x"p+ Py =0
For classifying new
observations:

G (x) = signf (x)

Support vectors

suggest that FIGURE 4.16. The same data as in Figure 4.14.
hyperplane focuses The -Shaded region delineates the maxzimum margin sep-
. arating the two classes. There are three support points
more on points that indicated, which lie on the boundary of the margin, and
count. the optimal separating hyperplane (blue line) bisects the
slab. Included in the figure is the boundary found using
logistic regression (red line), which is very close to the

optimal separating hyperplane (see Section 12.5.3).
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Non-Separable Cases

When two classes are not
linearly separable, allow
slack variables for the
points on the wrong side of
the border:

g — (511£2)°“ 7£N)

Two natural ways to modify
constraint:

max M

ﬁﬂﬁﬂ;”-@”:l
subject to vizf8+6) > M-&4, 1=1,...,N
vi(zl B+ Bo) = M(1-¢&),

Vi, & 2> 0, Zf‘;l &; < constant. .



Non-Separable Cases
max M
B,80,||8]|=1
subject to vi(f8+6) > M-&4, 1=1,..., N,

or
yi(zli B+ Bo) = M1 -E),

Vi, & >0, Zfil &; < constant.

" For the constraint related to margin
" The first choice results in a nonconvex
optimization problem
" The second choice is a convex optimization
problem leading to the well-known support
vector classifier
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Non-Separable Cases

The optimization problem becomes:

min ||3|| subject to {

¢=0 when the point is on
the correct side of the
margin;

¢>1 when the point passes
the hyperplane to the
wrong side;

0<¢<1 when the pointis in
the margin but still on the
correct side.

yi(zl B+ Bo) = 1—¢&; Vi,
& >0, > & < constant.

18




Non-Separable Cases

yi(zI B+ Bo) > 1—&; Vi,

min subject to
18] J { & >0, ) & < constant.

= When a point is outside the boundary, ¢=0. It
does not play a big role in determining the
boundary ---- not forcing any special class of
distribution.
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Non-Separable Cases

yi(zl B+ Bo) > 1 — & Vi,

min subject to
151} J { & >0, ) & < constant.

' equivalent

min > Li812 + C‘Z 3

subject to & > 0, yi(z] B+ Bo) > 1 —&; Vi,

C replaces the “constant” and it can be regarded
as a cost parameter

20



Effect of Cost Parameter

Training Error: 0.270
TestEmor:  0.288 :
BayeSError: 0.210::::: H IRESEE ¢ HEE SN

Training Error: 0.26 *
TestError:  0.30 i
Bayes Error:  0.21 e

C = 10000

Figure 12.2: The linear support vector boundary for
the mizture data example with two overlapping classes,
for two different values of v. The broken lines indicate
the margins, where f(x) = £1. The support points
(av; > 0) are all the points on the wrong side of their
margin. The black solid dots are those support points
falling ezactly on the margin (£, =0, a; > 0). In the
upper panel 62% of the observations are support points,

while in the lower panel 85% are.

C =10.01

Support Vectors:

* Points on the wrong side
of the boundary

* Points on the correct side
of the boundary, but

I it.
close to it 21



Non-Separable Cases
Computation

= The Lagrange function IS:

:_Hg||2+02@ Zai[yi(xTﬁ-l-ﬁo (1-&)] Zmﬁm

which we minimize w.r.t. B, Bo, & (12-9)
= Take derivatives of {3, f3,, ¢;, set to zero:
N
B = ZG‘@%%: (12.10)
1=1
N
0 — Za’iyﬁ (12.11)
0 = C— i, Vi, (12.12)

and positivity constraints: @i, i, & = 0 Ve



Non-Separable Cases
Computation

Substitute 12.10~12.12 into 12.9, the Lagrangian
dual objective function:

N N N

§ : 1 E : § : T
LD — &; — 5 QG Y Yit Ly Ty

1=1 1=1 ¢/'=1

maximize Lp subject to 0 < a; < C and Zfil a;y; = 0.

Karush-Kuhn-Tucker conditions include

ailyi(ai B+ Po) — (1 - &) = 0, (12.14)
i 0, (12.15)
yi(zi B+ o) — (1 — &) 0, (12.16)
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Non-Separable Cases
Computation N

From B8 = ) ayz: , The solution of B has

the form: i=1 N
= E &Y%,
1=1

Non-zero coefficients &: only for those points i
for which

lyi(z{ B+ Bo)—(1—-&)] = 0,
« These are called “support vectors”. Some will lie on
the edge of the margin (0 < & < C;¢; = 0)
 The remainder have( < gl g;,z (' They are on the
wrong side of the margin.

24



Effect of Cost Parameter

Training Error: 0.270 Training Error: 0.26 st
Test Error: 0.288 Test Error: 0.30

Bayes Error:  0.210 Bayes Error:  0.21

C = 10000 C =0.01

* Larger values of C focus attention more on (correctly
classified) points near the decision boundary

 Smaller values of C involve data further away

* Either way, misclassified points are given weights, no
matter how far away.
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Non-linear SVM

= Datasets that are linearly separable with noise work out great:

= But what are we going to do if the dataset is just too hard?

0 X

= How about... mapping data to a higher-dimensional space:

26



Non-linear SVM
Feature Space

= General idea: the original input space can be mapped to
some higher-dimensional feature space where the training set
is separable:

a
A
°
°
°
e 1. ®  _ x. o .
o _.ot® o O: x—opx) - °
° P e
*r - - o
.......
S [ °
o . @ ? . o
o H
2 > ® @ @
° ® ®
o >
° o ot ®
° ® o ® °
°
......
o | fe o o

°

27



Non-linear SVM
Kernels

N
. Sinceﬂ=§ Q;Y;i T
1=1

the classifying function will have the form:
N

flx) = z a;yixTx; + Py

1=1
N

= Z a;yi{x, x;) + Bo
i=1
* Note that most &; are zero. It relies on an inner

product between test point x and the support
vectors x; (non-zero &;)



Non-linear SVM
Kernels

= Enlarge the feature space to make the
procedure more flexible
= Basis functions (mapping function)

h(iB,,) — (hl(:vz), hg(iL’i), cu ,hM(LL'z)),

» Use the same procedure to construct support
vector classifier

f(sc) = h(z)TB + Po.
* The decision is made by
G(z) = sign(f(x))



Non-linear SVM
Kernels

Recall in N | N N
= o s vrarars oL
linear space.: Lp = Z &~ 3 Z Z O O Y Yir Ty Ty

¥

With new al ] o=
_ Lp = E a; — 5 E E a;i Yiyi (h(z:), h(zir)).
basis: i—1 2 i=1i'=1

* The inner products can be computed very
efficiently
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Non-linear SVM
Kernels

Recall that

~ N N
B = Z&iyimi EE—— B - Z&z’yih('x,)
=1 =]

The model can go through similar transformation
N

f) = > ayilx,x;) + Bo
=1
N

f )= @yilh(x), k() +
=1

= [tinvolves h(x) only through inner products.
31



Non-linear SVM
Kernels
* |n fact, we need not specify the transformation

h(x) at all, but require only knowledge of the
kernel function:

K(z,z") = (h(z), h(z"))
* [t computes inner products in the transformed
space. We don’ t need to know what h(x) itself is!

= |tis also called “Kernel trick”
= Some commonly used kernels:

dth-Degree polynomial: K(z,2') = (1 + (z,2'))¢,
Radial basis: K(z,z') = exp(—7||z — 2'||?),

Neural network: K(z,z’) = tanh(x;{z, ") + k2).
32



Non-linear SVM
Kernels

Example: Consider a feature space with two inputs X;and
X,, and a polynomial kernel of degree 2. Then
KX, X)) =1+ (X, X'))>?
= (14 X, X{ + X,X3)*
=1+ 2X. X +2X, X5 + (X1 X1)? + (X, X5)? + 2X, X1 X, X,

Then, M = 6 and the mapping h(X) consists of:
hi(X) =1, hy(X) = \/EXL hs(X) = \/EXZ,
hy(X) = X12, hs(X) = Xzz, he(X) = \/EX1X2

The inner product in the transformed space can be
expressed in terms of a kernel function K in the original
space

KX, X") = (h(X),h(X")) = (1 + (X, X))



Non-linear SVM

Kernels
As a result
N
f(X) = Z a;viK(x,x;) + Bo
i=1

Recall that £(X) depends only on the support
vectors, i.e. a; # 0

34



Non-linear SVM
Kernels

= The role of the parameter C is clearer in an
enlarged feature space

= Alarge value of C will discourage any positive
¢;, and lead to an overfit wiggly boundary in
the original feature space

= Asmall value of C will encourage a small value
of |||, which in turn causes f(x) and hence
the boundary to be smoother



Non-linear SVM

SVM - Degree-4 Polynomial in Feature Space SVM - Radial Kernel in Feature Space

Training Error: 0.180 - i Yevng 00 \\‘G- @‘@
Test Error:  0.245 : >y U : TestEror:  0.218 et I E::
Bayes Error:  0.210 - : 0 Bayes Error:  0.210 g

FIGURE 12.3. Two nonlinear SVMs for the mizture data. The upper plot uses
a 4th degree polynomial kernel, the lower a radial basis kernel (with v = 1). In
each case C was tuned to approximately achieve the best test error performance,
and C = 1 worked well in both cases. The radial basis kernel performs the best
(close to Bayes optimal), as might be expected given the data arise from mixtures

of Gaussians. The broken purple curve in the background is the Bayes decision
boundary. 36



Non-linear SVM
Kernels

= K(x,x ) can be seen as a similarity measure
between x and x’ .

» The decision is made essentially by a weighted
sum of similarity of the object to all the support

vectors.

FO) = ) aiK(x,x) + o

Xi€ES

S: the set of support vectors



