Text Preprocessing

Reference: Introduction to Information Retrieval
by C. Manning, P. Raghavan, H. Schutze

Parsing a document

e What formatisitin?
— pdf/word/excel/html?

 What language isitin?
e What character set is in use?
— (CP1252, UTF-8, ...)

These tasks are often done heuristically ...

Complications: Format/language

 Documents being indexed can include docs from
many different languages

— A single index may contain terms from many
languages.

* Sometimes a document or its components can
contain multiple languages/formats
— Chinese email with an English pdf attachment.

— French email quote clauses from an English-language
contract

* There are commercial and open source libraries
that can handle a lot of this stuff

Tokenization

Input: “Friends, Romans and Countrymen”

Output: Tokens
— Friends

— Romans

— Countrymen

A token is an instance of a sequence of characters

Each such token is now a candidate for an index
entry, after further processing

— Described below
But what are valid tokens to emit?

Tokenization

e |ssues in tokenization:
— Finland’s capital —»
Finland AND s? Finlands? Finland’s?

— Hewlett-Packard — Hewlett and Packard as two
tokens?
* typical solution: break up hyphenated sequence.
* co-education
* lowercase, lower-case, lower case ?
* It can be effective to get the user to put in possible hyphens
— San Francisco: one token or two?
* How do you decide it is one token?

Numbers

3/20/91

55 B.C.

B-52

My PGP key is 324a3df234cb23e
(800) 234-2333

— Older IR systems do not index numbers

— But often very useful: think about things like
looking up error codes/stacktraces on the web

— We often index “meta-data” separately
* Creation date, format, etc.

Tokenization: language issues

* French

— L'ensemble — one token or two?
e [?L'?Lle?
e Want 'ensemble to match with un ensemble

— Until at least 2003, it didn’t on Google
» Internationalization!

* German noun compounds are not segmented

— Lebensversicherungsgesellschaftsangestellter
— ‘life insurance company employee’

— German retrieval systems benefit greatly from a compound splitter
module
— Can give a 15% performance boost for German

Tokenization: language issues

* Chinese and Japanese have no spaces
between words:

—SHRLRIENE R ERERERERNGS BiX.

— Not always guaranteed a unique tokenization

* Further complicated in Japanese, with
multiple alphabets intermingled

— Dates/amounts in multiple formats

74 —F2. 5004 11 FHT 4;‘:445#/%7}157:—:;(»?96, 0005)

Katakana Hiragana Kanji Romaji

End-user can express query entirely in Hiragana!

Tokenization: language issues

e Arabic (or Hebrew) is basically written right to left, but
with certain items like numbers written left to right

* Words are separated, but letter forms within a word form
complex ligatures
<> <& < start
$o0=d I ld) e llp 132 01962 sk b is! spd) @ddegd
"Algeria achieved its independence in 1962 after 132 years of
French occupation.’

 With Unicode, the order of characters in files matches the
conceptual order, and the reversal of displayed characters
is handled by the rendering system.

Stop words

Common words which would appear to be of little value.

— e.g. the, 3, and, to, be
With a stop list, you exclude from the dictionary entirely the
commonest words. Intuition:

— They have little semantic content

— There are a lot of them: ~30% of postings for top 30 words

But the trend is away from doing this:

— Good compression techniques means the space for including
stop words in a system is very small

— Good query optimization techniques mean you pay little at
query time for including stop words.

— You need them for:
* Phrase queries: “King of Denmark”
* Various song titles, etc.: “Let it be”, “To be or not to be”
» “Relational” queries: “flights to London”

Normalization to terms

* We may need to “normalize” words in indexed
text as well as query words into the same form

— We want to match U.S.A. and USA

 Resultis terms: a term is a (normalized) word
type, which is an entry in our IR system dictionary

* We most commonly implicitly define equivalence
classes of terms by, e.g.,
— deleting periods to form a term
* US.A., USA
— deleting hyphens to form a term
* anti-discriminatory, antidiscriminatory

Normalization: other languages

* Normalization of things like date forms
—7H30H vs. 7/30
— Japanese use of kana vs. Chinese characters

* Tokenization and normalization may depend on

the language and so is intertwined with language
detection

 Crucial: Need to “normalize” indexed text as well
as query terms identically

Case folding

Reduce all letters to lower case

— exception: upper case in mid-sentence?

e e.g., General Motors
* Fed vs. fed
e SAIL vs. sail

— Often best to lower case everything, since users will
use lowercase regardless of ‘correct’ capitalization...

Longstanding Google example:
— Query: C.A.T.
— #1 result is for “cats”, not Caterpillar Inc.

Lemmatization

* Reduce inflectional/variant forms to base form
e.g.,
—am, are, is — be
— car, cars, car's, cars' — car

* the boy's cars are different colors — the boy
car be different color

* Lemmatization implies doing “proper”
reduction to dictionary headword form

Stemming

 Reduce terms to their “roots” before indexing

e “Stemming” suggests crude affix chopping
— language dependent

— e.g., automate(s), automatic, automation all
reduced to automat.

for example compressed for exampl compress and
and compression are both q compress ar both accept
accepted as equivalent to as equival to compress

compress.

Porter’s algorithm

e Commonest algorithm for stemming English
— Results suggest it’s at least as good as other
stemming options
* Conventions + 5 phases of reductions
— phases applied sequentially
— each phase consists of a set of commands

— sample convention: Of the rules in a compound
command, select the one that applies to the
longest suffix.

Typical rules in Porter

sses —> Ss

ies —> i
ational — ate
tional — tion

Weight of word sensitive rules
(m>1) EMENT -

* replacement - replac
e cement - cement

Does stemming help?

* English: very mixed results. Helps recall for
some queries but harms precision on others

e.g., operative (dentistry) = oper

* Definitely useful for Spanish, German, Finnish,

— 30% performance gains for Finnish!

