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Introduction

* Recall that word2vec or GloVe learned a single vector
embedding for each unique word.

* Contextual embeddings such as BERT or GPT represent
each word by a different vector each time it appears in a
different context.

* Pretraining - the process of learning some sort of
representation of meaning for words or sentences by
processing very large amounts of text.

 WEe’ll call these pretrained models pretrained language
models, since they can take the form of the transformer
language models.

* Fine-tuning - the process of taking the representations
from these pretrained models, and further training the
model, often via an added neural net classifier, to perform
some downstream task like QA.



Introduction

* The pretraining phase learns a language model that
instantiates a rich representations of word meaning

* Thus enables the model to more easily learn (‘be fine-
tuned to’) the requirements of a downstream language
understanding task.

* The pretrain-finetune paradigm is an instance of what is
called transfer learning in machine learning

* Transfer learning - the method of acquiring knowledge
from one task or domain, and then applying it (transferring
it) to solve a new task.



Introduction

 There are two common paradigms for pretrained language
models.

* One s the causal or left-to-right transformer model we
introduced before.

* A second paradigm, called the bidirectional
transformer encoder

 The method of masked language modeling, introduced
with the BERT model that allows the model to see entire
texts at a time, including both the right and left context.

* The contextual embeddings from these pretrained
language models can be used to transfer the knowledge
embodied in these models to novel applications via fine-
tuning.

* Fine-tuned to tasks from parsing to question answering



Bidirectional Transformer Encoders

e We introduce the bidirectional transformer encoder that
underlies models like BERT and its descendants like
RoBERTa or SpanBERT.

* We explored causal (left-to-right) transformers that can
serve as the basis for powerful language models.

However, when applied to sequence classification and
labeling problems causal models have obvious
shortcomings since they are based on an incremental,
left-to-right processing of their inputs.

If we want to assign the correct named-entity tag to
each word in a sentence, or other sophisticated
linguistic labels, we’ll want to be able to take into
account information from the right context as we
process each element.



Bidirectional Transformer Encoders Fig. 1
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A causal, backward looking, transformer model. Each output is computed
independently of the others using only information seen earlier in the context.

* As can be seen, the hidden state computation at each
point in time is based solely on the current and earlier
elements of the input,

* ignoring potentially useful information located to the
right of each tagging decision.



Bidirectional Transformer Encoders

* Bidirectional encoders overcome this limitation by allowing
the self-attention mechanism to range over the entire
input.

Self-Attention
Layer

Information flow in a bidirectional self-attention model. In processing each
element of the sequence, the model attends to all inputs, both before and
after the current one.



Bidirectional Transformer Encoders

* The focus of bidirectional encoders is on computing
contextualized representations of the tokens in an input
sequence that are generally useful across a range of
downstream applications.

* Therefore, bidirectional encoders use self-attention to map
sequences of input embeddings (x4, -, x,,) to sequences
of output embeddings the same length (y¢, -, v,),

* where the output vectors have been contextualized
using information from the entire input sequence.



Bidirectional Transformer Encoders

* This contextualization is accomplished through the use of
the same self-attention mechanism used in causal models.

* As with these models, the first step is to generate a set of
key, query and value embeddings for each element of the
input vector x through the use of learned weight matrices
we, wk, and WV.

* These weights project each input vector x; into its specific
role as a key, query, or value.

qi = WCx;; ky = Whxj; v = Whx



Bidirectional Transformer Encoders

* The output vector y; corresponding to each input element
x; is a weighted sum of all the input value vectors v, as

follows:
n

Yi = Z AijVj
j=i
* The a weights are computed via a softmax over the
comparison scores between every element of an input
sequence considered as a query and every other element

as a key, where the comparison scores are computed using
dot products.

exp(score;;)

a. . —
J Y =1 €xp(score;y)

score;; = q; * kj



Bidirectional Transformer Encoders

* Since each output vector, y;, is computed independently,
the processing of an entire sequence can be parallelized
via matrix operations.

* The first step is to pack the input embeddings x; into a
matrix X € RNV*n

* That s, each row of X is the embedding of one token of
the input.

* We then multiply X by the key, query, and value weight
matrices (all of dimensionality d X d) to produce matrices
Q € RV*4 K € RV*? and V € RV*¢,

e containing all the key, query, and value vectors in a
single step.

Q=XW%K=XWKV=Xxw"



Bidirectional Transformer Encoders

* G@Given these matrices we can compute all the requisite
query-key comparisons simultaneously by multiplying Q

and K7 in a single operation.

* The result for an input with length 5 is illustrated below.

Fig. 3
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Bidirectional Transformer Encoders

* Asshown in the previous figure, the full set of self-
attention scores represented by QKT constitute an all-
pairs comparison between the keys and queries for each
element of the input.

* In the case of causal language models we saw before, we
masked the upper triangular portion of this matrix to
eliminate information about

* With bidirectional encoders we simply skip the mask,
allowing the model to contextualize each token using
information from the entire input.

* Beyond this simple change, all of the other elements of the
transformer architecture remain the same for bidirectional
encoder models.



Bidirectional Transformer Encoders
* Inputs to the model are segmented using subword tokenization

and are combined with positional embeddings before being
passed through a series of standard transformer blocks
consisting of self-attention and feedforward layers augmented
with residual connections and layer normalization. Fig. 4
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A transformer block showing all the layers.
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Bidirectional Transformer Encoders

* To make this more concrete, the original bidirectional
transformer encoder model, BERT, consisted of the
following:

* A subword vocabulary consisting of 30,000 tokens
generated using the WordPiece algorithm,

* Hidden layers of size of 768,

e 12 layers of transformer blocks, with 12 multihead
attention layers each.

* The result is a model with over 100M parameters.



Bidirectional Transformer Encoders

* The use of WordPiece (one of the large family of subword
tokenization algorithms that includes the BPE algorithm)
means that BERT and its descendants are based on
subword tokens rather than words.

* Every input sentence first has to be tokenized, and then all

further processing takes place on subword tokens rather
than words.

* Asshown later, this will require that for some NLP tasks
that require notions of words (like named entity tagging, or

parsing), we will occasionally need to map subwords back
to words.



Byte-Pair Encoding for Tokenization

* To deal with this unknown word problem, modern tokenizers
often automatically induce sets of tokens that include tokens
smaller than words, called subwords.

* Subwords can be arbitrary substrings, or they can be
meaning-bearing units like the morphemes -est or -er.

* Most tokens are words, but some tokens are frequently
occurring morphemes or other subwords like -er.

* Every unseen word like lower can thus be represented by
some sequence of known subword units, such as low and er,
or even as a sequence of individual letters if necessary.



Byte-Pair Encoding for Tokenization

Most tokenization schemes have two parts: a token learner,
and a token segmenter.

The token learner takes a raw training corpus (sometimes
roughly pre-separated into words, for example by
whitespace) and induces a vocabulary, a set of tokens.

The token segmenter takes a raw test sentence and segments
it into the tokens in the vocabulary.

Three algorithms are widely used: byte-pair encoding (BPE),
unigram language modeling, and WordPiece.



Byte-Pair Encoding for Tokenization

The BPE token learner begins with a vocabulary that is just
the set of all individual characters.

It then examines the training corpus, chooses the two
symbols that are most frequently adjacent (say ‘A, ‘B’), adds
a new merged symbol ‘AB’ to the vocabulary, and replaces
every adjacent 'A’ B’ in the corpus with the new ‘AB’.

It continues to count and merge, creating new longer and
longer character strings, until k merges have been done
creating k novel tokens

* kisthus a parameter of the algorithm.

The resulting vocabulary consists of the original set of
characters plus k new symbols.



Byte-Pair Encoding for Tokenization

* The algorithm is usually run inside words (not merging across
word boundaries), so the input corpus is first white-space-
separated to give a set of strings, each corresponding to the
characters of a word, plus a special end-of-word symbol _,
and its counts.

e Let’s see its operation on the following tiny input corpus of
18 word tokens with counts for each word (the word low
appears 5 times, the word newer 6 times, and so on), which
would have a starting vocabulary of 11 letters:

corpus vocabulary

low _ ,d,e,i,I,n,0,1,5,t,w

lowest

newer __

wider _

new _

N WO N U



Byte-Pair Encoding for Tokenization

* The BPE algorithm first counts all pairs of adjacent symbols:
the most frequent is the pair e r because it occurs in newer
(frequency of 6) and wider (frequency of 3) for a total of 9
occurrences.

* We then merge these symbols, treating er as one symbol,
and count again:
corpus vocabulary
low _ ,d,e,i,I,n, 0,15t wer,
lowest
newer _
wider
new _

N WO N U



Byte-Pair Encoding for Tokenization

* Now the most frequent pair is er _, which we merge; our
system has learned that there should be a token for word-
final er, represented as er_:

corpus vocabulary

W o N U

2

low _ ,d,e,i,I,n,0,1,s,t,werer_
lowest

newer_

wider_

new _

* Next n e (total count of 8) get merged to ne:
corpus vocabulary

N WO N U

low _ ,d,e,i,I,n,0,1,5,t,w,er,er_, ne
lowest

newer _

wider_

new



Byte-Pair Encoding for Tokenization

* If we continue, the next merges are:

Merge Current Vocabulary

(ne, w) ,d,e,i,l,n, 0,15t w,er er_, ne, new

(1, o) ,d,e,i,l,n, 0,15t werer_, ne, new, lo

(lo, w) ,d,e,i,l,n, 0,15, t w,er,er_, ne, new, lo, low

(new, er_) ,d,e,i,I,n,0,1,5 t,w,er, er_, ne, new, lo, low, newer_

(low, ) ,d,e,i,l,n, 0,15t w,er, er_, ne, new, lo, low, newer_, low_

23



Byte-Pair Encoding for Tokenization

* Once we've learned our vocabulary, the token parser is used
to tokenize a test sentence.

* The token parser just runs on the test data the merges we
have learned from the training data, greedily, in the order we
learned them.

* So first we segment each test sentence word into characters.
Then we apply the first rule: replace every instance of e rin
the test corpus with er.

 Then the second rule: replace every instance of er _in the
test corpus with er_, and so on.

* By the end, if the test corpus contained the wordnewer
it would be tokenized as a full word.

* Butanew (unknown) word like l o w e r _ would be merged
into the two tokens low er_.



Byte-Pair Encoding for Tokenization
* Of course in real algorithms BPE is run with many thousands
of merges on a very large input corpus.

* The result is that most words will be represented as full
symbols, and only the very rare words (and unknown words)
will have to be represented by their parts.
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Wordpiece Algorithm for Tokenization

1. Initialize the wordpiece lexicon with characters (for example a
subset of Unicode characters, collapsing all the remaining
characters to a special unknown character token).

2. Repeat until there are V wordpieces:

(a) Train an n-gram language model on the training corpus,
using the current set of wordpieces.

(b) Consider the set of possible new wordpieces made by
concatenating two wordpieces from the current lexicon.
Choose the one new wordpiece that most increases the
language model probability of the training corpus.



Bidirectional Transformer Encoders

A fundamental issue with transformers is that the size of
the input layer dictates the complexity of model.

Both the time and memory requirements in a transformer
grow quadratically with the length of the input.

Consequentially, it is necessary to set a fixed input length
that is long enough to provide sufficient context for the
model to function and yet still be computationally
tractable.

* For BERT, a fixed input size of 512 subword tokens was
used.



Training Bidirectional Encoders
* Previously, we trained causal transformer language models
by making them iteratively predict the next word in a text.

* The guess-the-next-word language modeling task is not
suitable.

* Fortunately, the traditional learning objective suggests an
approach that can be used to train bidirectional encoders.

* Cloze task - instead of trying to predict the next word, the
model learns to perform a fill-in-the-blank task.



Training Bidirectional Encoders

* Instead of predicting which words are likely to come next

in this example:
Please turn your homework :
we’re asked to predict a missing item given the rest of the

sentence.
Pleaseturn ~ homework 1n.
 That s, given an input sequence with one or more
elements missing, the learning task is to predict the
missing elements.

* During training the model is deprived of one or more

elements of an input sequence and must generate a
probability distribution over the vocabulary for each of

the missing items.

 We then use the cross-entropy loss from each of the
model’s predictions to drive the learning process.



Training Bidirectional Encoders

* This approach can be generalized to any of a variety of
methods that corrupt the training input and then asks the
model to recover the original input.

* Examples of the kinds of manipulations that have been
used include masks, substitutions, reorderings, deletions,
and extraneous insertions into the training text



Training Bidirectional Encoders — Masking Words

Masked Language Modeling (MLM) - the original approach
to training bidirectional encoders.

MLM uses unannotated text from a large corpus, as with
the language model training methods we’ve already seen.

The model is presented with a series of sentences from the
training corpus where a random sample of tokens from
each training sequence is selected for use in the learning
task. Once chosen, a token is used in one of three ways:

* Itisreplaced with the unique vocabulary token [MASK].

* Itis replaced with another token from the vocabulary,
randomly sampled based on token unigram
probabilities.

* Itis left unchanged.



Training Bidirectional Encoders — Masking Words
* In BERT, 15% of the input tokens in a training sequence are
sampled for learning. Of these,
 80% are replaced with [MASK],
* 10% are replaced with randomly selected tokens, and
* the remaining 10% are left unchanged.

* The MLM training objective is to predict the original inputs
for each of the masked tokens using a bidirectional
encoder of the kind described in the last section.

* The cross-entropy loss from these predictions drives the
training process for all the parameters in the model.

* All of the input tokens play a role in the self-attention
process, but only the sampled tokens are used for learning.



Training Bidirectional Encoders — Masking Words

* Specifically, the original input sequence is first tokenized
using a subword model.

 The sampled items which drive the learning process are
chosen from among the set of tokenized inputs.

 Word embeddings for all of the tokens in the input are
retrieved from the word embedding matrix and then
combined with positional embeddings to form the input to
the transformer.



Training Bidirectional Encoders — Masking Words Fig. 5
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Masked language model training. In this example, three of the input tokens
are selected, two of which are masked and the third is replaced with an
unrelated word. The probabilities assigned by the model to these three
items are used as the training loss. (Although the input is displayed as words
rather than subword tokens in examples, keep in mind that BERT and similar
models actually use subword tokens instead.) 34



Training Bidirectional Encoders — Masking Words

In the example shown, long, thanks and the have been
sampled from the training sequence, with the first two
masked and the replaced with the randomly sampled
token apricot.

The resulting embeddings are passed through a stack of
bidirectional transformer blocks.

To produce a probability distribution over the vocabulary
for each of the masked tokens, the output vector from the
final transformer layer for each of the masked tokens is
multiplied by a learned set of classification weights W, €
RIVIXAr and then through a softmax to yield the required
predictions over the vocabulary.

y; = softmax(Wyh;)



Training Bidirectional Encoders — Masking Words

* With a predicted probability distribution for each masked
item, we can use cross-entropy to compute the loss for
each masked item—the negative log probability assigned
to the actual masked word, as shown in the example.

 The gradients that form the basis for the weight updates
are based on the average loss over the sampled learning
items from a single training sequence (or batch of
seguences).



Training Bidirectional Encoders — Masking Spans

 For many NLP applications, the natural unit of interest may
be larger than a single word (or token).

* (Question answering, syntactic parsing, coreference and
semantic role labeling applications all involve the
identification and classification of constituents, or phrases.

* This suggests that a span-oriented masked learning
objective might provide improved performance on such

tasks.



Training Bidirectional Encoders — Masking Spans

A span is a contiguous sequence of one or more words
selected from a training text, prior to subword
tokenization.

In span-based masking, a set of randomly selected spans
from a training sequence are chosen.

In the SpanBERT work that originated this technique, a
span length is first chosen by sampling from a geometric
distribution that is biased towards shorter spans an with
upper bound of 10.

Given this span length, a starting location consistent with
the desired span length and the length of the input is
sampled uniformly.



Training Bidirectional Encoders — Masking Spans

* Once a span is chosen for masking, all the words within the

span are substituted according to the same regime used in
BERT:

 80% of the time the span elements are substituted with the
[MASK] token,

* 10% of the time they are replaced by randomly sampled
words from the vocabulary, and

 10% of the time they are left as is.
* This substitution process is done at the span level

e allthe tokens in a given span are substituted using the
same method.

e As with BERT, the total token substitution is limited to 15% of
the training sequence input.

* Having selected and masked the training span, the input is
passed through the standard transformer architecture to
generate contextualized representations of the input tokens.



Training Bidirectional Encoders — Masking Spans

Downstream span-based applications rely on span
representations derived from the tokens within the span,
as well as the start and end points, or the boundaries, of a
span.

Representations for these boundaries are typically derived
from the first and last words of a span, the words
immediately preceding and following the span, or some
combination of them.

Span Boundary Objective (SBO) - a boundary oriented
component with which the SpanBERT learning objective
augments the MLM objective.

 The SBO relies on a model’s ability to predict the words
within a masked span from the words immediately
preceding and following it.



Training Bidirectional Encoders — Masking Spans

This prediction is made using the output vectors associated
with the words that immediately precede and follow the
span being masked, along with positional embedding that
signals which word in the span is being predicted:

L(x) = Lyim(x) + Lspo(x)
Lspo(x) = —logP(x|xs, Xe, Px)
where s denotes the position of the word before the span
and e denotes the word after the end.

The prediction for a given position i within the span is
produced by concatenating the output embeddings for words
s and e span boundary vectors with a positional embedding
for position i and passing the result through a 2-layer
feedforward network.

S = FFNN([YS—1;Ye+1;pi—S+1D
z = softmax(Es)
The final loss is sum of the BERT MLM loss and the SBO loss.



Training Bidirectional Encoders — Masking Spans

Fig. 6

Span-based loss

108 Vinank (e

()

ST
FFN —( . )
P4 )UK

= ]-Ug Ythanks

( Bidirectional Transformer Encoder j
Layer
f f ! ! ! ! f t
So long [mask] [mask] [mask] all the fish
So long and thanks for all the fish

Span-based language model training. In this example, a span of length 3 is
selected for training and all of the words in the span are masked. The figure
illustrates the loss computed for word thanks; the loss for the entire span is

based on the loss for all three of the words in the span.




Training Bidirectional Encoders — Masking Spans

* The above figure illustrates span-based language model
training with an earlier example.

 The span selected is and thanks for which spans from
position 3 to 5.

* The total loss associated with the masked token thanks is
the sum of the cross-entropy loss generated from the
prediction of thanks from the output y,, plus the cross-
entropy loss from the prediction of thanks from the output
vectors for y,, ys and the embedding for position 4 in the
span.



Training Bidirectional Encoders — Next Sentence Prediction

* The focus of masked-based learning is on predicting words
from surrounding contexts with the goal of producing
effective word-level representations.

* However, an important class of applications involves
determining the relationship between pairs of sentences.

* These includes tasks like paraphrase detection (detecting if
two sentences have similar meanings), entailment
(detecting if the meanings of two sentences entail or
contradict each other) or discourse coherence (deciding if
two neighboring sentences form a coherent discourse).

* Next Sentence Prediction (NSP) - a second learning
objective to capture the kind of knowledge required for
applications such as these introduced by BERT.



Training Bidirectional Encoders — Next Sentence Prediction

* In this task, the model is presented with pairs of sentences
and is asked to predict whether each pair consists of an
actual pair of adjacent sentences from the training corpus
or a pair of unrelated sentences.

* In BERT, 50% of the training pairs consisted of positive
pairs, and in the other 50% the second sentence of a pair
was randomly selected from elsewhere in the corpus.

e The NSP loss is based on how well the model can
distinguish true pairs from random pairs.



Training Bidirectional Encoders — Next Sentence Prediction

* To facilitate NSP training, BERT introduces two new tokens
to the input representation (tokens that will prove useful
for fine-tuning as well).

* After tokenizing the input with the subword model, the
token [CLS] is prepended to the input sentence pair, and
the token [SEP] is placed between the sentences and after
the final token of the second sentence.

* Finally, embeddings representing the first and second
segments of the input are added to the word and
positional embeddings to allow the model to more easily
distinguish the input sentences.



Training Bidirectional Encoders — Next Sentence Prediction

* During training, the output vector from the final layer
associated with the [CLS] token represents the next
sentence prediction.

* As with the MLM objective, a learned set of classification
weights Wysp € R%*% js used to produce a two-class
prediction from the raw [CLS] vector.

yi = softmax(Wysph;)

* Cross entropy is used to compute the NSP loss for each

sentence pair presented to the model.



Training Bidirectional Encoders — Next Sentence Prediction

* The overall NSP training setup is illustrated below.

* In BERT, the NSP loss was used in conjunction with the

MLM training objective to form final loss.
Fig. 7
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Training Bidirectional Encoders — Training Regimes
 The corpus used in training BERT and other early
transformer-based language models consisted of
* an 800M word corpus of book texts called BooksCorpus
* a 2.5B word corpus derived from the English Wikipedia
for a combined size of 3.3 Billion words.

e State-of-the-art models employ corpora that are orders of
magnitude larger than these early efforts.

 The BooksCorpus is no longer used.



Training Bidirectional Encoders — Training Regimes

* To train the original BERT models

* Pairs of sentences were selected from the training
corpus according to the NSP 50/50 scheme.

* Pairs were sampled so that their combined length was
less than the 512 token input.

* Tokens within these sentence pairs were then masked
using the MLM approach with the combined loss from
the MLM and NSP objectives used for a final loss.

* Approximately 40 passes (epochs) over the training
data was required for the model to converge.

* The result of this pretraining process consists of both
* Learned word embeddings

* All the parameters of the bidirectional encoder that are
used to produce contextual embeddings for novel input



Training Bidirectional Encoders — Contextual Embeddings

* Contextual embeddings - Given a pretrained language
model and a novel input sentence, we can think of the
output of the model as constituting contextual
embeddings for each token in the contextual input.

* These contextual embeddings can be used as a contextual
representation of the meaning of the input token for any
task requiring the meaning of word.
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Training Bidirectional Encoders — Contextual Embeddings

* Contextual embeddings are thus vectors representing
some aspect of the meaning of a token in context.

* For example, given a sequence of input tokens
X1, -, Xy, We can use the output vector y; from the
final layer of the model as a representation of the
meaning of token x; in the context of sentence
X1y eeey Xp-

* Orinstead of just using the vector y; from the final
layer of the model, it’'s common to compute a
representation for x; by averaging the output tokens y;
from each of the last four layers of the model.



Transfer Learning through Fine-Tuning

Just as we used static embeddings like word2vec to represent the
meaning of words, we can use contextual embeddings as
representations of word meanings in context for any task that
might require a model of word meaning.

Static embeddings represent the meaning of word types
(vocabulary entries)

Contextual embeddings represent the meaning of word tokens:
instances of a particular word type in a particular context.

Contextual embeddings can thus be used for tasks like measuring
the semantic similarity of two words in context, and are useful in
linguistic tasks that require models of word meaning.

We'll see the most common use of these representations: as
embeddings of word or even entire sentences that are the inputs
to classifiers in the fine-tuning process for downstream NLP
applications.



Transfer Learning through Fine-Tuning

 The power of pretrained language models lies in their ability to
extract generalizations from large amounts of text

e generalizations useful for myriad downstream applications.

* Fine-tuning - a process through which we create interfaces
from these models to downstream applications in order to
make practical use of these generalizations.

* Fine-tuning facilitates the creation of applications on top of
pretrained models through the addition of a small set of
application-specific parameters.

* The fine-tuning process consists of using labeled data from the
application to train these application-specific parameters.

e Typically, this training will either freeze or make only minimal
adjustments to the pretrained language model parameters.

 We’ll introduce fine-tuning methods for the most common
applications including sequence classification, sequence
labeling, sentence-pair inference, and span-based operations.



Transfer Learning through Fine-Tuning — Sequence Classification

e Sequence classification applications often represent an
input sequence with a single consolidated representation.

 With RNNs, we used the hidden layer associated with the
final input element to stand for the entire sequence.

* With transformers, a similar approach is used.

* Sentence embedding - an additional vector added to the
model to stand for the entire sequence.

e although the term ‘sentence embedding’ is also used in
other ways.



Transfer Learning through Fine-Tuning — Sequence Classification

* In BERT, the [CLS] token plays the role of this embedding.

* This unique token is added to the vocabulary and is
prepended to the start of all input sequences, both during
pretraining and encoding.

* The output vector in the final layer of the model for the
[CLS] input represents the entire input sequence and
serves as the input to a classifier head.

* C(Classifier head - a logistic regression or neural network
classifier that makes the relevant decision.



Transfer Learning through Fine-Tuning — Sequence Classification
Fig. 8
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Sequence classification with a bidirectional transformer encoder. The output
vector for the [CLS] token serves as input to a simple classifier.
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Transfer Learning through Fine-Tuning — Sequence Classification

For sentiment classification, a simple approach to fine-
tuning a classifier for this application involves learning a
set of weights, W, to map the output vector for the [CLS]
token, y ;s to a set of scores over the possible sentiment
classes.

For example, a three-way sentiment classification task
(positive, negative, neutral) and dimensionality d;, for the

size of the language model hidden layers gives W, €
RSth .

Classification of unseen documents proceeds by passing
the input text through the pretrained language model to

generate y.; s, multiplying it by W, and finally passing the
resulting vector through a softmax.

y = softmax(Weycrs)



Transfer Learning through Fine-Tuning — Sequence Classification

* Finetuning the values in W, requires supervised training
data consisting of input sequences labeled with the
appropriate class.

* Training proceeds in the usual way; cross-entropy loss
between the softmax output and the correct answer is
used to drive the learning that produces W/.

* A key difference from what we’ve seen earlier with neural
classifiers is that this loss can be used to not only learn the
weights of the classifier, but also to update the weights for
the pretrained language model itself.

* In practice, reasonable classification performance is
typically achieved with only minimal changes to the
language model parameters, often limited to updates over
the final few layers of the transformer.



Transfer Learning through Fine-Tuning — Pair-Wise Sequence Classification

* As mentioned earlier, an important type of problem involves the
classification of pairs of input sequences.

* Practical applications include logical entailment, paraphrase
detection and discourse analysis.

* Fine-tuning an application for one of these tasks proceeds just as with
pretraining using the NSP objective.

* During fine-tuning, pairs of labeled sentences from the supervised
training data are presented to the model.

* As with sequence classification, the output vector associated with
the prepended [CLS] token represents the model’s view of the input
pair.

* As with NSP training, the two inputs are separated by a [SEP] token.

* To perform classification, the [CLS] vector is multiplied by a set of
learning classification weights and passed through a softmax to
generate label predictions, which are then used to update the weights.



Transfer Learning through Fine-Tuning — Pair-Wise Sequence Classification

* As an example, let’s consider an entailment classification
task with the Multi-Genre Natural Language Inference
(MultiNLI) dataset.

* Natural language inference (NLI, also called recognizing
textual entailment) - a task in which a model is presented
with a pair of sentences and must classify the relationship
between their meanings.

* In the MultiNLI corpus, pairs of sentences are given one of
3 labels: entails, contradicts and neutral.

* These labels describe a relationship between the meaning
of the first sentence (the premise) and the meaning of the
second sentence (the hypothesis).



Transfer Learning through Fine-Tuning — Pair-Wise Sequence Classification
* Here are representative examples of each class from the
corpus:
e Neutral
a: Jon walked back to the town to the smithy.
b: Jon traveled back to his hometown.
e Contradicts
a: Tourist Information offices can be very helpful.
b: Tourist Information offices are never of any help.
e Entails
a: I’'m confused.
b: Not all of it is very clear to me.
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Transfer Learning through Fine-Tuning — Pair-Wise Sequence Classification

* A relationship of contradicts means that the premise
contradicts the hypothesis; entails means that the premise

entails the hypothesis; neutral means that neither is
necessarily true.

 The meaning of these labels is looser than strict logical
entailment or contradiction indicating that a typical
human reading the sentences would most likely
interpret the meanings in this way.

* To fine-tune a classifier for the MultiNLI task, we pass the
premise/hypothesis pairs through a bidirectional encoder
as described before and use the output vector for the [CLS]
token as the input to the classification head.

e As with ordinary sequence classification, this head
provides the input to a three-way classifier that can be
trained on the MultiNLI training corpus.



Transfer Learning through Fine-Tuning — Sequence Labelling

e Sequence labelling tasks, such as part-of-speech tagging or
BlO-based named entity recognition, follow the same basic
classification approach.

* The final output vector corresponding to each input token
is passed to a classifier that produces a softmax
distribution over the possible set of tags.

* With a simple classifier consisting of a single feedforward
layer followed by a softmax, the set of weights to be
learned for this additional layer is Wi € R**%n  where k is
the number of possible tags for the task.

* As with RNNs, a greedy approach, where the argmax tag
for each token is taken as a likely answer, can be used to
generate the final output tag sequence.

y; = softmax(Wxz;)
t; = argmax (y;)
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Sequence labeling for part-of-speech tagging with a bidirectional transformer
encoder. The output vector for each input token is passed to a simple k-way classifier.

e Alternatively, the distribution over labels provided by the
softmax for each input token can be passed to a conditional

random field (CRF) layer which can take global tag-level
transitions into account. 65



Transfer Learning through Fine-Tuning — Sequence Labelling

A complication with this approach arises from the use of
subword tokenization such as WordPiece or Byte Pair
Encoding.

Supervised training data for tasks like named entity
recognition (NER) is typically in the form of BIO tags
associated with text segmented at the word level.

For example the following sentence containing two named
entities:

[Loc Mt. Sanitas ] is in [; 5 Sunshine Canyon] .
would have the following set of per-word BIO tags.

MLt. Sanitas is in Sunshine Canyon .

B-LOCI-LOC O O B-LOC I-LOC O
Unfortunately, the WordPiece tokenization for this sentence
yields the following sequence of tokens which doesn’t align
directly with BIO tags in the ground truth annotation:
"Mt’, °.’, ’San’, *##itas’, ’1s’, ’in’, ’Sunshine’, ’Canyon’’.’



Transfer Learning through Fine-Tuning — Sequence Labelling

* To deal with this misalignment, we need a way to assign BIO
tags to subword tokens during training and a corresponding
way to recover word-level tags from subwords during
decoding.

* Fortraining, we can just assign the gold-standard tag
associated with each word to all of the subword tokens
derived from it.

* For decoding, the simplest approach is to use the argmax BIO
tag associated with the first subword token of a word.

 Thus, in our example, the BIO tag assigned to “Mt” would
be assigned to “Mt.” and the tag assigned to “San” would
be assigned to “Sanitas”, effectively ignoring the
information in the tags assigned to “.” and “##itas”.

 More complex approaches combine the distribution of tag
probabilities across the subwords in an attempt to find an
optimal word-level tag.



Transfer Learning through Fine-Tuning — Span-Based Applications

* Span-oriented applications operate in a middle ground
between sequence level and token level tasks.

 Thatis, in span-oriented applications the focus is on
generating and operating with representations of
contiguous sequences of tokens.

* Typical operations include identifying spans of interest,
classifying spans according to some labeling scheme, and
determining relations among discovered spans.

* Applications include named entity recognition, question
answering, syntactic parsing, semantic role labeling and
coreference resolution.



Transfer Learning through Fine-Tuning — Span-Based Applications

* Formally, given an input sequence x consisting of T tokens,
(x4, X5, ..., XT), @ span is a contiguous sequence of tokens
with starti andend jsuchthat1 < i <j < T.

e This formulation results in a total set of spans of size

T(T-1
equal to (2 ).

* For practical purposes, span-based models often impose
an application-specific length limit L, so the legal spans are
limited to those where j — i < L.



Transfer Learning through Fine-Tuning — Span-Based Applications

* The first step in fine-tuning a pretrained language model
for a span-based application using the contextualized input
embeddings from the model to generate representations
for all the spans in the input.

* Most schemes for representing spans make use of two
primary components: representations of the span
boundaries and summary representations of the contents
of each span.

* To compute a unified span representation, we concatenate
the boundary representations with the summary
representation.



Transfer Learning through Fine-Tuning — Span-Based Applications

* Inthe simplest possible approach, we can use the
contextual embeddings of the start and end tokens of a
span as the boundaries, and the average of the output
embeddings within the span as the summary
representation.

1 J
= h
i (j—i)+1zk=i g

spanRep;; = [h;; hj; g; ]
* A weakness of this approach is that it doesn’t distinguish

the use of a word’s embedding as the beginning of a span
from its use as the end of one.




Transfer Learning through Fine-Tuning — Span-Based Applications

 Therefore, more elaborate schemes for representing the
span boundaries involve learned representations for start

and end points through the use of two distinct
feedforward networks:

S; = FFNNg¢qre (h;)
ej — FFNNend(h])

spanRep;; = [s;; €j; gi ;]
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Transfer Learning through Fine-Tuning — Span-Based Applications

Similarly, a simple average of the vectors in a span is unlikely
to be an optimal representation of a span since it treats all of
a span’s embeddings as equally important.

For many applications, a more useful representation would
be centered around the head of the phrase corresponding to
the span.

One method for getting at such information in the absence of
a syntactic parse is to use a standard self-attention layer to
generate a span representation.

gij = SelfATTN(hU)

Given span representations g for each span in the total set
S(x), classifiers can be fine-tuned to generate application-
specific scores for various span-oriented tasks: binary span
identification (is this a legitimate span of interest or not?),
span classification (what kind of span is this?), and span
relation classification (how are these two spans related?).



Transfer Learning through Fine-Tuning — Span-Based Applications

Fig. 10
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Transfer Learning through Fine-Tuning — Span-Based Applications

Using NER as an example, given a scheme for representing
spans and set of named entity types, a span-based
approach to NER is a straightforward classification problem
where each span in an input is assigned a class label.

More formally, given an input sequence x, we want to
assign a label y, from the set of valid NER labels, to each of
the spans in the total set S(x).

Since most of the spans in a given input will not be named
entities we’ll add the label NULL to the set of typesin'Y.
yij = softmax(FFNN(g;;))

With this approach, fine-tuning entails using supervised
training data to learn the parameters of the final classifier,
as well as the weights used to generate the boundary
representations, and the weights in the self-attention layer
that generates the span content representation.



Transfer Learning through Fine-Tuning — Span-Based Applications

* During training, the model’s predictions for all spans are
compared to their gold-standard labels and cross-entropy
loss is used to drive the training.

* During decoding, each span is scored using a softmax over
the final classifier output to generate a distribution over
the possible labels, with the argmax score for each span
taken as the correct answer.

e Avariation on this scheme designed to improve
precision adds a calibrated threshold to the labeling of
a span as anything other than NULL.



Transfer Learning through Fine-Tuning — Span-Based Applications

* There are two significant advantages to a span-based
approach to NER over a BIO-based per-word labeling
approach.

* The first advantage is that BIO-based approaches are prone
to a labeling mis-match problem.

 That s, every label in a longer named entity must be
correct for an output to be judged correct.

* The following labeling would be judged entirely wrong due
to the incorrect label on the first item.
Jane Villanueva of United Airlines Holding discussed ...
B-PER I-PER O I-ORGI-ORG I-ORG O

* Span-based approaches only have to make one
classification for each span, as shown in the previous
illustration.



Transfer Learning through Fine-Tuning — Span-Based Applications

The second advantage to span-based approaches is that
they naturally accommodate embedded named entities.

For example, in the example both United Airlines and
United Airlines Holding are legitimate named entities.

The BIO approach has no way of encoding this embedded
structure.

The span-based approach can naturally label both since
the spans are labeled separately.



