Vector Semantics and
Embeddings

Reference:
- D. Jurafsky and J. Martin, “Speech and Language Processing”

Motivation

Words that occur in similar contexts tend to have
similar meanings.

The link between similarity in how words are
distributed and similarity in what they mean is called
the distributional hypothesis.

Words which are synonyms (like oculist and eye-doctor) tend
to occur in the same environment (e.g. near words like eye or
examined)

* the amount of meaning difference between two words is
corresponding roughly to the amount of difference in their
environments

Motivation

We introduce vector semantics, which instantiates the
distributional hypothesis by learning representations of the
meaning of words, called embeddings, directly from their
distributions in texts.

These representations are used in every natural language
processing application that makes use of meaning

Static embeddings we introduce here underlie the more
powerful dynamic or contextualized embeddings like BERT.

These word representations can be obtained via
representation learning, automatically learning useful
representations of the input text.

Finding such self-supervised ways to learn representations
of the input, instead of creating representations by hand via
feature engineering, is an important focus of NLP research

Lexical Semantics

In the n-gram models and many traditional NLP
applications, our only representation of a word is as a string
of letters, or perhaps as an index in a vocabulary list.

This representation is not that different from a tradition in
philosophy, in which the meaning of words is represented
by just spelling the word with small capital letters.

’

* e.g.representing the meaning of ‘dog’ as DOG, and ‘cat
as CAT

Representing the meaning of a word by capitalizing it is a
pretty unsatisfactory model.

Lexical Semantics

* However, we want a model of word meaning to do all sorts
of things for us.

It should tell us that some words have similar meanings
(cat is similar to dog), other words are antonyms (cold
is the opposite of hot).

It should know that some words have positive
connotations (happy) while others have negative
connotations (sad).

It should represent the fact that the meanings of buy,
sell and pay offer differing perspectives on the same
underlying purchasing event (If | buy something from
you, you’ve probably sold it to me, and | likely paid

you).

Lexical Semantics
Lemmas and Senses

« We summarize some of these desiderata, drawing on results
in the linguistic study of word meaning, which is called
lexical semantics.

* Let’s start by looking at how one word (we will choose
mouse) might be defined in a dictionary:

mouse (N)
1. any of numerous small rodents ...
2. a hand-operated device that controls a cursor ...

 The form mouse is the lemma, also called the citation form.
The form mouse would also be the lemma for the word mice;
dictionaries don’t have separate definitions for inflected
forms like mice.

Lexical Semantics
Lemmas and Senses

e Similarly sing is the lemma for sing, sang, sung.

* In many languages the infinitive form is used as the lemma
for the verb, so Spanish dormir “to sleep” is the lemma for
duermes “you sleep”.

* The specific forms sung or carpets or sing or duermes are
called wordforms.

Lexical Semantics
Lemmas and Senses

e Asis shown each lemma can have multiple meanings; the
lemma mouse can refer to the rodent or the cursor control

device. We call each of these aspects of the meaning of mouse
a word sense.

The fact that lemmas can be polysemous (have multiple
senses) can make interpretation difficult.

* e.g.lssomeone who types ‘mouse info’ into a search
engine looking for a pet or a tool?

Lexical Semantics
Synonymy

* One important component of word meaning is the relationship
between word senses.

* For example, when one word has a sense whose meaning is
identical to a sense of another word, or nearly identical, we say
the two senses of those two words are synonyms. Synonyms
include such pairs as

couch/sofa vomit/throw up filbert/hazelnut
car/automobile

Lexical Semantics
Synonymy

A more formal definition of synonymy (between words rather
than senses) is that two words are synonymous if they are
substitutable one for the other in any sentence without
changing the truth conditions of the sentence, the situations in
which the sentence would be true.

 We often say in this case that the two words have the same
propositional meaning.

Lexical Semantics
Synonymy

* While substitutions between some pairs of words like car /
automobile or water / H,O are truth preserving, the words are
still not identical in meaning. Indeed, probably no two words
are absolutely identical in meaning.

 One of the fundamental tenets of semantics, called the
principle of contrast, is the assumption that a difference in
linguistic form is always associated with at least some
difference in meaning.

* e.g. The word H,0 is used in scientific contexts and would be
inappropriate in a hiking guide—water would be more appropriate—
and this difference in genre is part of the meaning of the word.

Lexical Semantics
Word Similarity

 While words don’t have many synonyms, most words do have
lots of similar words. Cat is not a synonym of dog, but cats and
dogs are certainly similar words.

 In moving from synonymy to similarity, it will be useful to shift
from talking about relations between word senses (like
synonymy) to relations between words (like similarity).

 Dealing with words avoids having to commit to a particular
representation of word senses, which will turn out to simplify
our task.

Lexical Semantics
Word Similarity

 The notion of word similarity is very useful in larger
semantic tasks.

 Knowing how similar two words are can help in

computing how similar the meaning of two phrases or
sentences are

* Useful component of natural language
understanding tasks like question answering,
paraphrasing, and summarization.

Lexical Semantics
Word Similarity

One way of getting values for word similarity is to ask humans
to judge how similar one word is to another. A number of
datasets have resulted from such experiments.

For example, the SimLex-999 dataset gives values on a scale
from 0 to 10, like the examples below, which range from near-
synonyms (vanish, disappear) to pairs that scarcely seem to
have anything in common (hole, agreement):

vanish disappear 9.8

behave obey 7.3
belief 1mpression 5.95
muscle bone 3.65

modest flexible 0.98
hole agreement 0.3

14

Lexical Semantics
Word Relatedness

The meaning of two words can be related in ways other than
similarity. One such class of connections is called word
relatedness, also traditionally called word association in

psychology.
Consider the meanings of the words coffee and cup. Coffee is
not similar to cup; they share practically no features (coffee is a

plant or a beverage, while a cup is a manufactured object with a
particular shape).

But coffee and cup are clearly related; they are associated by
co-participating in an everyday event (the event of drinking
coffee out of a cup).

Similarly the nouns scalpel and surgeon are not similar but are
related eventively (a surgeon tends to make use of a scalpel).

Lexical Semantics
Word Relatedness

One common kind of relatedness between words is if they
belong to the same semantic field. A semantic field is a set
of words which cover a particular semantic domain and bear
structured relations with each other.

For example, words might be related by being in the
semantic field of hospitals (surgeon, scalpel, nurse,
anesthetic, hospital), restaurants (waiter, menu, plate, food,
chef), or houses (door, roof, kitchen, family, bed).

Semantic fields are also related to topic models, which apply
unsupervised learning on large sets of texts to induce sets of
associated words from text.

Semantic fields and topic models are very useful tools for
discovering topical structure in documents.

Lexical Semantics
Semantic Frames and Roles

Closely related to semantic fields is the idea of a semantic
frame. A semantic frame is a set of words that denote
perspectives or participants in a particular type of event.

A commercial transaction, for example, is a kind of event in
which one entity trades money to another entity in return for
some goods or service, after which the goods changes hands or
perhaps the service is performed.

This event can be encoded lexically by using verbs like buy (the
event from the perspective of the buyer), sell (from the
perspective of the seller), pay (focusing on the monetary
aspect), or nouns like buyer. Frames have semantic roles (like
buyer, seller, goods, money), and words in a sentence can take
on these roles.

Lexical Semantics
Semantic Frames and Roles

 Knowing that buy and sell have this relation makes it possible
for a system to know that a sentence like Sam bought the book
from Ling could be paraphrased as Ling sold the book to Sam,

and that Sam has the role of the buyer in the frame and Ling the
seller.

 Being able to recognize such paraphrases is important for

guestion answering, and can help in shifting perspective for
machine translation.

18

Lexical Semantics
Connotation

Words have affective meanings or connotations. The word
connotation refers to the aspects of a word’s meaning that are
related to a writer or reader’s emotions, sentiment, opinions, or
evaluations.

For example, some words have positive connotations (happy)
while others have negative connotations (sad). Some words
describe positive evaluation (great, love) and others negative
evaluation (terrible, hate).

Positive or negative evaluation expressed through language is
called sentiment, and word sentiment plays a role in important
tasks like sentiment analysis, stance detection, and many
applications of natural language processing to the language of
politics and consumer reviews.

Lexical Semantics
Connotation

Early work on affective meaning found that words varied along
three important dimensions of affective meaning. These are
now generally called valence, arousal, and dominance, defined
as follows:

* valence: the pleasantness of the stimulus
e arousal: the intensity of emotion provoked by the stimulus
 dominance: the degree of control exerted by the stimulus

Lexical Semantics
Connotation

Thus words like happy or satisfied are high on valence, while
unhappy or annoyed are low on valence. Excited or frenzied are
high on arousal, while relaxed or calm are low on arousal.
Important or controlling are high on dominance, while awed or
influenced are low on dominance.

Each word is thus represented by three numbers,
corresponding to its value on each of the three dimensions, like
the examples below:

Valence Arousal Dominance
courageous 8.05 5.5 7.38

music 7.67 5.57 6.5
heartbreak 2.45 5.65 3.58
cub 6.71 3.95 4.24

life 6.68 5.59 5.89

21

Lexical Semantics
Connotation

* In using these 3 numbers to represent the meaning of a
word, the model was representing each word as a point in a
three-dimensional space, a vector whose three dimensions
corresponded to the word’s rating on the three scales.

* This revolutionary idea that word meaning could be
represented as a point in space (e.g., that part of the
meaning of heartbreak can be represented as the point
[2.45,5.65,3.58]) was the first expression of the vector
semantics models that we introduce next.

Vector Semantics

 How can we build a computational model that successfully
deals with the different aspects of word meaning (word
senses, word similarity and relatedness, lexical fields and

frames, connotation)?

A perfect model that completely deals with each of these
aspects of word meaning turns out to be elusive.

* The current best model, called vector semantics, draws its
inspiration from linguistic and philosophical work.

Vector Semantics

 The philosopher Ludwig Wittgenstein, skeptical of the
possibility of building a completely formal theory of
meaning definitions for each word, suggested instead that
“the meaning of a word is its use in the language”.

* |nstead of using some logical language to define each word,
we should define words by some representation of how the
word was used by actual people in speaking and
understanding.

Vector Semantics

e Linguists Joos, Harris, and Firth (the linguistic distributionalists),
came up with a specific idea for realizing Wittgenstein’s
intuition: define a word by its environment or distribution in

language use.
« A word’s distribution is the set of contexts in which it occurs,
the neighboring words or grammatical environments.
 Two words that occur in very similar distributions (that occur
together with very similar words) are likely to have the same
meaning.

Vector Semantics

Let’s see an example illustrating this distributionalist approach.
Suppose you didn’t know what the Cantonese word ongchoi
meant, but you do see it in the following sentences or contexts:

(6.1) Ongchoi is delicious sauteed with garlic.
(6.2) Ongchoi is superb over rice.
(6.3) ...ongchoi leaves with salty sauces...

And further more let’s suppose that you had seen many of these
context words occurring in contexts like:

(6.4) ...spinach sauteed with garlic over rice...
(6.5) ...chard stems and leaves are delicious...
(6.6) ...collard greens and other salty leafy greens

The fact that ongchoi occurs with words like rice and garlic and

delicious and salty, as do words like spinach, chard, and collard

greens might suggest to the reader that ongchoi is a leafy green
similar to these other leafy greens.

Vector Semantics

* We can do the same thing computationally by just counting
words in the context of ongchoi; we’ll tend to see words like
sauteed and eaten and garlic.

 The fact that these words and other similar context words
also occur around the word spinach or collard greens can
help us discover the similarity between these words and
ongchoi.

27

Vector Semantics

e Vector semantics thus combines two intuitions:

* the distributionalist intuition (defining a word by counting
what other words occur in its environment),

* the vector intuition on connotation: defining the meaning
of a word as a vector, a list of numbers, a point in N-
dimensional space.

 There are various versions of vector semantics, each defining
the numbers in the vector somewhat differently, but in each
case the numbers are based in some way on counts of
neighboring words.

 The idea of vector semantics is thus to represent a word as a
point in some multi-dimensional semantic space. Vectors for
representing words are generally called embeddings, because
the word is embedded in a particular vector space.

Vector Semantics

 The next figure displays a visualization of embeddings that
were learned for a sentiment analysis task, showing the
location of some selected words projected down from the
original 60-dimensional space into a two-dimensional space

not good. . b

to by s dislike Waitst
that now . incredibly bad

a [you
than ith .

very good incredibly good
amazing fantastic
terrific ofiics wonderful
good

IGTICA WY A two-dimensional (t-SNE) projection of embeddings for some words and
phrases, showing that words with similar meanings are nearby in space. The original 60-
dimensional embeddings were trained for sentiment analysis. Simplified from Li et al. (2015)

with colors added for explanation. 9

Vector Semantics

* Notice that positive and negative words seem to be
located in distinct portions of the space (and different also

from the neutral function words).
* This suggests one of the great advantages of vector

semantics: it offers a fine-grained model of meaning that
lets us also implement word similarity (and phrase

similarity).

Vector Semantics

For example, the sentiment analysis classifier only works if
enough of the important sentimental words that appear in the
test set also appeared in the training set.

But if words were represented as embeddings, we could assign
sentiment as long as words with similar meanings as the test
set words occurred in the training set.

Vector semantic models are also extremely practical because
they can be learned automatically from text without any
complex labeling or supervision.

Vector Semantics

As a result of these advantages, vector models of meaning are
now the standard way to represent the meaning of words in
NLP.

We’ll introduce the two most commonly used models.

* First is the tf-idf model, often used as a baseline, in which
the meaning of a word is defined by a simple function of
the counts of nearby words. We will see that this method
results in very long vectors that are sparse, i.e., contain
mostly zeros (since most words simply never occur in the
context of others).

 Then we'll introduce the word2vec model, one of a family
of models that are ways of constructing short, dense
vectors that have useful semantic properties.

Words and Vectors
Vectors and Documents

* Vector or distributional models of meaning are
based on co-occurrence matrix — a way of
representing how often words co-occur.

* |n a term-document matrix, each row represents

a word in vocabulary and each column represents
a document.

33

Words and Vectors
Vectors and Documents

* The following table shows a small selection from a term-
document matrix.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

 The matrix shows the occurrence of fours words in four plays
by Shakespeare.

Each cell in the matrix represents the number of times a
particular word occurs in a particular document.

34

Words and Vectors
Vectors and Documents

e Each position indicates a meaningful dimension on
which the documents can vary.
As You Like It Twelfth Night Julius Caesar Henry V

e ey P —— ——

battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4

wit 20 15 2

* The first dimension for both these vectors
corresponds to the number of times the word battle
occurs, and we can compare each dimension.

35

Words and Vectors
Vectors and Documents

* Generally, the term-document matrix X has |V | rows
and D columns.

* We can think of the vector for a document as
identifying a point in |VV|-dimensional space.

* The example documents are points in 4-dimensional
space.

36

Words and Vectors
Vectors and Documents
* Fig. 6.4 shows a visualization in two dimensions; we've

arbitrarily chosen the dimensions corresponding to the
words battle and fool.

40
Henry V [4,13]
15 7
s
= 10 71/ Julius Caesar [1,7]
5 7 As You Like It /36,1] Twelfth Night /58,0]
%
T 1 T T 1T T T T T T°>
5 10 15 20 25 30 35 40 45 50 55 60
fool

BTy X] A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

Words and Vectors
Words as vectors

* Vector semantics can also be used to represent the

meaning of words, by associating each word with a
vector.

e The word matrix is now a row vector rather than a
column vector, hence the dimensions of the vector
are different.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

38

Words and Vectors
Words as vectors

* The four dimensions of the vector for fool,
136,58,1,4], correspond to the four Shakespeare
plays.

* The same four dimensions are used to form the
vectors for the other 3 words.

e Similar words have similar vectors because they tend
to occur in similar documents.

* The term-document matrix lets us represent the
meaning of a word by the documents it tends to
occur in.

Words and Vectors
Words as vectors

* Itis most common to use a different kind of context
for the dimensions of a word’s vector representation.

e Rather than the term-document matrix we use term-
term matrix.

* Term-term matrix is more commonly called word-
word matrix or term-context matrix.

* The columns of the term-term matrix are labeled by
words rather than documents.

Words and Vectors
Words as vectors

* This matrix is thus of dimensionality |V | X |V]|.

 Each cell records the number of times the row word
and the column word co-occur in some context.

* [tis most common, however, to use smaller contexts,
generally a window around the word, for example of
4 words to the left and 4 words to the right

* The cell represents the number of times the column
word occurs in such a 4 word window around the
row word.

Words and Vectors
Words as vectors

* Here are 4-word windows surrounding four
sample words:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie
computer peripherals and personal digital assistants. These devices usually

a computer. This includes information available on the internet

42

Words and Vectors

Words as vectors

* If we then take every occurrence of each word and count the
context words around it, we get a word-word co-occurrence
matrix.

* This table shows a simplified subset of the word-word co-
occurrence matrix for these four words computed from the

Wikipedia corpus.

aardvark ... computer data result pie sugar
cherry 0 2 8 9 442 25
strawberry 0 0 0 1 60 19
digital (O 1670 1683 85 5 4)
information 0 3325 3982 378 5 13

DTNV Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

43

Words and Vectors
Words as vectors

 The two words cherry and strawberry are more
similar to each other (both pie and sugar tend to
occur in their window) than they are to other words
like digital,

e Conversely, digital and information are more similar
to each other than, say, to strawberry.

44

Words and Vectors
Words as vectors

4000—
a—, information
5 3000 [3982,3325]
Q. digital
& 2000—/1683,1670]
)
= 1000

| I I I
1000 2000 3000 4000

data

DT CE WA A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

45

Words and Vectors
Words as vectors

* The size of the window used to collect counts can
vary based on the goals of the representation.

* Generally, the size of the window is between 1 and 8
words on each side of the target word.

46

Measuring Similarity: the Cosine

* Similarity between two target words v and w, we
need a measure taking two such vectors.

 The most common similarity metric is the cosine
of the angle between the vectors.

* The cosine similarity metric between two vectors
v and w thus can be compute as

_— —

= 1lel

Blwl JZ{-V le 7

cosine(v,w) =

Measuring Similarity: the Cosine

e Let’s see how the cosine computes which of the words
cherry or digital is closer in meaning to information.

* We use raw counts from the following simplified table:

pie data computer
cherry 442 8 2
digital 5 1683 1670
information 5 3982 3325

_ _ 442 x5+ 8 %3982 + 2 » 3325
cos(cherry,information) = =.018

V4422 + 82 + 224/52 4+ 39822 + 33252

o _ 55+ 1683 * 3982 + 1670 * 3325
cos(digital,information) = =.996
V52 + 16832 + 16702v52 + 39822 + 33252

48

Measuring Similarity: the Cosine

 The model decides that information is closer to digital
than it is to cherry, a result that seems sensible.

digital information

"""" IIII>

500 1000 1500 2000 2500 3000

Dimension 1: ‘pie’

Dimension 2: ‘computer’

49

TD-IDF: Weighting Terms in the Vector

 Consider the co-occurrence matrix, it turns out that
simple frequency isn’t the best measure of
association between words.

* One problem is that raw frequency is very skewed
and not very discriminative.

— If we want to know what kinds of contexts are shared by
cherry and strawberry but not by digital and information,
we’re not going to get good discrimination from words like
the, it, or they, which occur frequently with all sorts of
words and aren’t informative about any particular word.

— In the previous table for the Shakespeare corpus, the
dimension for the word good is not very discriminative
between plays; good is simply a frequent word and has
roughly equivalent high frequencies in each of the plays.

TD-IDF: Weighting Terms in the Vector

* It’s a bit of a paradox. Words that occur nearby frequently
(maybe pie nearby cherry) are more important than words
that only appear once or twice. Yet words that are too
frequent—ubiquitous, like the or good— are unimportant.

 How can we balance these two conflicting constraints?

Remarks: The TF-IDF algorithm (the ‘-’ here is a hyphen, not a
minus sign)

51

TD-IDF: Weighting Terms in the Vector

* The tf-idf weighting of the value for word t in document d,
W gthus combines term frequency with idf:

Weq = tfeq X idf;

* The following table applies tf-idf weighting to the
Shakespeare term-document matrix in the previous table.

— Note that the tf-idf values for the dimension
corresponding to the word good have now all become 0;
since this word appears in every document, the tf-idf
algorithm leads it to be ignored in any comparison of the
plays. Similarly, the word fool, which appears in 36 out of
the 37 plays, has a much lower weight.

TD-IDF: Weighting Terms in the Vector

As You Like It Twelfth Night Julius Caesar Henry V
battle 0.074 0 0.22 0.28
good 0 0 0 0
fool 0.019 0.021 0.0036 0.0083
wit 0.049 0.044 0.018 0.022

A tf-idf weighted term-document matrix for four words in four
Shakespeare plays. Note that the idf weighting has eliminated
the importance of the ubiquitous word good and vastly
reduced the impact of the almost-ubiquitous word fool.

53

Applications of the TF-IDF Vector Model

 The vector semantics model represents a target word
as a vector with dimensions corresponding to all the
words in the vocabulary (length |V |, with
vocabularies of 20,000 to 50,000), which is also
sparse (most values are zero).

54

Applications of the TF-IDF Vector Model

 The values in each dimension are the frequency with
which the target word co-occurs with each
neighboring context word, weighted by tf-idf.

* The model computes the similarity between two
words x and y by taking the cosine of their tf-idf
vectors; high cosine, high similarity.

 This entire model is sometimes referred to for short
as the tf-idf model, after the weighting function.

Applications of the TF-IDF Vector Model

* One common use for a tf-idf model is to compute
word similarity, a useful tool for tasks like finding
word paraphrases, tracking changes in word
meaning, or automatically discovering meanings of
words in different corpora.

— For example, we can find the 10 most similar words to any
target word w by computing the cosines between w and
each of the V. — 1 other words, sorting, and looking at the
top 10.

56

Applications of the TF-IDF Vector Model

e The tf-idf vector model can also be used to decide if
two documents are similar.

 We represent a document by taking the vectors of all
the words in the document, and computing the
centroid of all those vectors.

57

Applications of the TF-IDF Vector Model

 The centroid is the multidimensional version of the
mean; the centroid of a set of vectors is a single
vector that has the minimum sum of squared
distances to each of the vectors in the set. Given k

word vectors wy, w,, ..., Wy, the centroid document

vector d is:
_W1+W2 ++Wk

B k

58

Applications of the TF-IDF Vector Model

* Given two documents, we can then compute their
document vectors d;and d,, and estimate the
similarity between the two documents by

cos(dq,d,).

 Document similarity is also useful for all sorts of
applications; information retrieval, plagiarism
detection, news recommender systems, and even for
digital humanities tasks like comparing different
versions of a text to see which are similar to each
other.

Weighing terms: Pointwise Mutual
Information (PMI)

e It turns out that frequency isn’t the best measure of
association between words.

* One problem is raw frequency is very skewed and
not very discriminative.

 We'd like context words that are particularly
informative about the target word.

* The best weighting or measure of association
between words should tell us how much more often
than chance the two words co-occur.

60

Weighing terms: Pointwise Mutual
Information (PMI)

 Pointwise mutual information is such a measure.
* |tis based on the notion of mutual information.

e The mutual information between two random
variables X and Y is

_ P(x,y)
[(X,Y) = Zx:zy:P(x,y)logz PCOP(Y)

61

Weighing terms: Pointwise Mutual
Information (PMI)

* The pointwise mutual information is a measure of
how often two events x and y occur, compared with
what we would expect if they were independent:

P(x,y)
P(x)P(y)

I(x,y) = log,

62

Weighing terms: Pointwise Mutual
Information (PMI)

* We can apply this intuition to co-occurrence vectors
by defining the pointwise mutual information
association between a target word w and a context
word ¢ as

P(w,c)

P(w)P(c)

* The numerator tells us how often we observed the
two words together.

PMI(w,c) = log,

63

Weighing terms: Pointwise Mutual
Information (PMI)

 The denominator tells us how often we would expect
the two words to co-occur assuming they each

occurred independently, so their probability could be
multiplied.

* The ratio gives us an estimate of how much more the
target and feature co-occur than we expect by
chance.

* Negative PMI values tend to be unreliable unless our
corpora are enormous.

64

Weighing terms: Pointwise Mutual
Information (PMI)

* |tis more common to use Positive PMI which
replaces all negative PMI values with zero:

P(w,c)

PW)P(0)’ 0)

* Assume we have a co-occurrence matrix F with W
rows and C columns, where f;; gives the number of

times word w; occurs in context ¢;.

PPMI(w,c) = max (logz

65

Weighing terms: Pointwise Mutual
Information (PMI)

* This can be turned into a PPMI matrix where PPM1I;;
gives the PPMI value of word w; with context ¢; as
follows:

el xSy Y B RSy
w
=1/
P«j =

W C
i=1 Zj=1 fij

PPMI;; = max(logzp_pg g
% j

0)

66

Weighing terms: Pointwise Mutual
Information (PMI)

 We could compute
PPMI(w = information,c = data)
* Consider the following word-word co-occurrence matrix,

and let’s pretend for ease of calculation that these are the
only words/contexts that matter.

computer data result pie sugar Count(w)
cherry 2 8 9 442 25 486
strawberry 0 0 1 60 19 80
digital 1670 1683 85 5 4 3447
information 3325 3982 378 5 13 7703
count(context) 4997 5673 473 512 61 11716

67

Weighing terms: Pointwise Mutual
Information (PMI)

* Assume it encompassed all the relevant word

contexts/dimensions:
3982

P(w = information,c = data) = T171€ — 3399
Pw=i tion) = 7795 _ 6575
w = information = 11716~
5673
P(c = data) = = .4842

11716
PPMI(w = information,c = data)

_ 3399 _
= l"gz(/(6575 * .4842)) =.0944

68

Weighing terms: Pointwise Mutual
Information (PMI)

p(w,context) p(w)
computer data result pie sugar p(w)
cherry 0.0002 0.0007 0.0008 0.0377 0.0021 0.0415
strawberry 0.0000 0.0000 0.0001 0.0051 0.0016 0.0068
digital 0.1425 0.1436 0.0073 0.0004 0.0003 0.2942
information 0.2838 0.3399 0.0323 0.0004 0.0011 0.6575
p(context) 0.4265 0.4842 0.0404 0.0437 0.0052

Replacing the counts with joint probabilities, showing the

marginals around the outside.

69

Weighing terms: Pointwise Mutual
Information (PMI)

computer data result pie sugar
cherry 0 0 0 4.38 3.30
strawberry 0 0 0 4.10 5.51
digital 0.18 0.01 0 0 0
information 0.02 0.09 0.28 0 0

The PPMI matrix showing the association between words and context words,
computed from the counts. Note that the 0 PPMI values are ones that had a
negative PMI; for example PPMI(cherry,computer) = —6.7,

meaning that cherry and computer co-occur on Wikipedia less often than we
would expect by chance, and with PPMI we replace negative values by zero.

70

Weighing terms: Pointwise Mutual
Information (PMI)

 PMI has the problem of being biased toward infrequent
events.

* Very rare words tend to have very high PMI values.

 One way to reduce this bias toward low frequency events is to
slightly change the computation for P(c), using a different
function P,(c) that raises context to the power of a:
P(w,c)
,0)
P(w)F,(c)
count(c)“
Y.c count(c)®

PPMI,(w,c) = max(log,

Pa(c) —

71

Weighing terms: Pointwise Mutual
Information (PMI)

* Another possible solution is Laplace smoothing.

 Before computing PMI, a small constant k (values of 0.1-3 are
common) is added to each of the counts, shrinking all the
non-zero values.

* The larger the k, the more the non-zero counts are
discounted.

72

Word2vec

 We turn to an alternative method for representing a
word: the use of vectors that are short (of length

perhaps 50-500) and dense (most values are non-
zero).

 Dense vectors work better in every NLP task than
sparse vectors. While we don’t completely
understand all the reasons for this, we have some
Intuitions.

Word2vec

* First, dense vectors may be more successfully
included as features in machine learning systemes.

— For example, if we use 100-dimensional word embeddings
as features, a classifier can just learn 100 weights to
represent a function of word meaning;

— if we instead put in a 50,000 dimensional vector, a
classifier would have to learn tens of thousands of weights

for each of the sparse dimensions.
e Second, because they contain fewer parameters than
sparse vectors of explicit counts, dense vectors may
generalize better and help avoid overfitting.

Word2vec

* Finally, dense vectors may do a better job of
capturing synonymy than sparse vectors.

— For example, car and automobile are synonyms; but in a
typical sparse vector representation, the car dimension
and the automobile dimension are distinct dimensions.

— Because the relationship between these two dimensions is
not modeled, sparse vectors may fail to capture the
similarity between a word with car as a neighbor and a
word with automobile as a neighbor.

Word2vec

 We introduce one method for very dense, short
vectors, skip-gram with negative sampling,
sometimes called SGNS.

* The skip-gram algorithm is one of two algorithmsin a
software package called word2vec, and so
sometimes the algorithm is loosely referred to as
word2vec.

e The word2vec methods are available online with
code and pretrained embeddings.

Word2vec

* The intuition of word2vec is that instead of counting
how often each word w occurs near, say, apricot,
we’ll instead train a classifier on a binary prediction
task: “Is word w likely to show up near apricot?”

 We don’t actually care about this prediction task;
instead we’ll take the learned classifier weights as
the word embeddings.

Word2vec

* The revolutionary intuition here is that we can just
use running text as implicitly supervised training data
for such a classifier.

A word s that occurs near the target word apricot
acts as gold ‘correct answer’ to the question “Is word
w likely to show up near apricot?”

* This avoids the need for any sort of hand-labeled
supervision signal.

Word2vec

The intuition of skip-gram is:

1. Treat the target word and a neighboring context
word as positive examples.

2. Randomly sample other words in the lexicon to get
negative samples

3. Use logistic regression to train a classifier to
distinguish those two cases

4. Use the regression weights as the embeddings

Word2vec

The classifier

* Imagine a sentence like:

. lemon, a [tablespoon of apricot jam, al] pinch...
cl c2 W c3 c4

* OQOur goalis to train a classifier such that, given a tuple (w, ¢)
of a target word w paired with a candidate context word ¢
(e.g. (apricot, jam) / (apricot, aardvark)) it will return the
probability that c is real context word (true for jam, false for
aardvark).

P(+|w,c)
* The probability that word c is not a real context word for w is:
P(—|w,c) =1—-P(+|w,c)

Word2vec

The classifier

* To compute the probability, the intuition of the skip-gram
model is to base this probability on embedding similarity: a
word is likely to occur near the target if its embedding is
similar to the target embedding.

 Two vectors are similar if they have a high dot product:

Similarity(w,c) = c-w
* The dot product ¢ - w is not a probability, it’s just a number
ranging from -oo to oo,

* To turn the dot product into a probability, we’ll use the logistic
or sigmoid function o(x):

1
U(x) - 1+e~—%

Word2vec

The classifier

* The probability that word c is a real context word for

target word w is computed as:
1

14+ e W
* The probability that word c is NOT a real context word
for target word w is thus computed as:

P(—|lw,c) =1—-P(+|w,c)
1
- 1+ecW

P(+|w, c) gives us the probability for one word, but
there are many context words in the window.

P(+|w,c) =

Word2vec

The classifier

Skip-gram makes the strong but very useful simplifying
assumption that all context words are independent,
allowing us to just simply their probabilities.

L
1
P(+|w,cq.) = 1_[1 o—Ciw
=1

L
log P(+|w,cq.p) = z log
i=1

1+e W

In summary, skip-gram trains a probabilistic classifier
that, given a test target word w and its context window
of L words ¢4.;, assigns a probability based on how
similar this context window is to the target word.

Word2vec

The classifier

* The probability is based on applying the logistic (sigmoid)
function to the dot product of the embeddings of the
target word with each context word.

* To compute this probability, we just need embeddings for
each target word and context word in the vocabulary.

Word2vec

The classifier

1.d
aardvark [eee 1 \

apricot [eee

r W target words

9 . zebra [ee9 |V| J

~ aardvark [eee WH‘I\

apricot [eeq

r C context & noise
words

zebra [@ee 2V j

* The algorithm stores two embeddings for each word, the target embedding and
the context embedding

* The parameter 0 that the algorithm learns is thus a matrix of 2|V| vectors, each of
dimension d formed by concatenating two matrices, the target embeddings W
and the context+noise embeddings C. 85

Word2vec

Learning Skip-gram embeddings

e Skip-gram learns embeddings by starting with random
embedding vectors and then iteratively shifting the embedding
of each word w to be more like the embeddings of words that
occur nearby

. lemon, a [tablespoon of apricot jam, a] pinch...

C1 Cy w C3 Cy

86

Word2vec

Learning Skip-gram embeddings

lemon, a[tablespoon of apricot jam, a] pinch...

C1 Cy w C3 Cy

* This example has a target word w (apricot), and 4 context
words in the L = +2 window, resulting in 4 positive training
instances (on the left below):

Positive examples + Negative examples -

w Cpos w Cneg w Cneg
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where apricot dear
apricot a apricot coaxial apricot if

87

Word2vec

Learning Skip-gram embeddings

* For training a binary classifier we also need negative
examples, and in fact skip-gram uses more negative
examples than positive examples, the ratio set by a
parameter k.

* For each of these (w, ¢,5) training instances we’ll create
k negative samples, each consisting of the target w plus a
‘noise word’ Cpeq-

A noise word is a random word from the lexicon,
constrained not to be the target word w. The above
shows the setting where k = 2, so we’ll have 2 negative
examples in the negative training set for each positive
example w, ¢y5.

Word2vec

Learning Skip-gram embeddings

* The noise words are chosen according to their unigram
frequency p(w)

— If we were sampling according to unweighted frequency
p(w), it would mean that with unigram probability
p(“the”) we would choose the word the as a noise word,
with unigram probability p(“aardvark™) we would choose
aardvark, and so on.

* Butin practice, it is common to use weighted unigram

frequency p,(w) ,where a is a weight.
count(w)“

Yo count(w’)«

P,(w) =

Word2vec

Learning Skip-gram embeddings

* Itiscommon to set a = 0.75. For rare words, P,(w) > P(w)
* Forexample, If P(a) = 0.99 and P(b) = 0.01, then:

9975

Ful@) = g7 o175 = 7
.01.75

P,(b) = = .03

9975 +,0175

90

Word2vec

Learning Skip-gram embeddings

* Given the set of positive and negative training instances,
and an initial set of embeddings, the goal of the learning
algorithm is to adjust those embeddings to:

— Maximize the similarity of the target word, context
word pairs (W, ¢,s) drawn from the positive examples

— Minimize the similarity of the (w, ¢;¢4) pairs drawn
from the negative examples.

* Consider (w, ¢yps) With its k noise words Cpeg,,***, Cregy

we can express these two goals as the loss function L to
be minimized.

Word2vec

Learning Skip-gram embeddings

Lep = —log

)]
P(+|w, Cpos) 1_[P(—|w, Cnegl)
=1

k
— logP(+‘W, CpOS) + z log P(—lW, Cnegi)
i=1

= —[logP(-!-‘W, Cpos) + Z?:l log(l o P(+‘W’ Cnegi_))]

K
= —|loga(cpos - W) + Z log U(_Cnegi ‘W)
i=1

92

Word2vec

Learning Skip-gram embeddings

 We want to maximize the dot product of the word
with the actual context words, and minimize the dot
products of the word with the k negative sampled
non-neighbor words.

 Then we minimize this loss function using stochastic
gradient descent

93

Word2vec
Learning Skip-gram embeddings

(aardvark [eee

move apricot and jam closer,
apricot @eslw|” = =< increasing C,os * W
W - \
|
Ne: ; :
Y “...apricot jam...”
k zebra [ee9@ s //‘,‘
7, Lo
(aardvark [ee® /" ‘. move apricot and matrix apart

jam [@eelC, l“ d ; decreasing €., * W
C - . i
k—2 matrlx m Cneg]‘ < (]
Tolstoy [@89®) C,.pole- -~ “move apricot and Tolstoy apart

"

decreasing C,..,

| zebra [sss

One step of gradient descent. It tries to shift embeddings so that the target
embedding are closer to context embeddings for nearby words and further from
context embeddings for noise words 94

Word2vec

Learning Skip-gram embeddings

* To get the gradient, we need to take the derivative
with respect to the different embeddings.

dL
acpci = [U(Cpos ' W) — 1]W
dL
2~ [o{eneg W)
K
dL
a‘:;E = [U(Cpos ' W) — 1]Cpos T Z[U(Cnegi ' W)] Cneg;

=1

95

Word2vec

Learning Skip-gram embeddings

 The update equations going from time step t to t + 1 in stochastic

gradient descent:

nggg = ngos — U[U(Cﬁos . W) — 1]W

Cﬁ;& = Cﬁeg — U[U(Cﬁeg ' W)]W

K
wtt = wt - U[U(Cpos ' Wt) — 1]Cpos + E[U(C‘negi ' Wt)] Cneg;
i—1

* The algorithm starts with randomly initialized W and C matrices.
Then walks through the training corpus using gradient descent
to move W and C so as to maximize the objective by making the

above updates. o

Word2vec

Learning Skip-gram embeddings

* The skip-gram model thus actually learns two separate
embeddings for each word i: the target embedding w; and the
context embedding c;.

* These embeddings are stored in two matrices, the target
matrix W and the context matrix C.

* |t’s common to just add them representing word i with the
vector w; + ¢;. Alternatively we can throw away the C matrix
and just represent each word i by the vector w;

* The context window size L affects the performance. We can
tune the parameter L on a dev set.

Visualizing Embeddings

 How can we visualize a (e.g.) 100-dimensional
vector?
* The simplest way to visualize the meaning of a word

w embed is to list the most similar words to w
sorting all words in the vocabulary by their cosines.

98

Visualizing Embeddings

ANKLE
SHOULDER
ARM . . .

LEG Yet another visualization method
HEAD | is to use a clustering algorithm to
ERI%EER . : :

TOE show a hierarchical representation
FACE . .
EAR_ of which words are similar to
« TOOTH . .
8% others in the embedding space.
PUPPY
oW
MOUSE
——= TURTLE
o oser - The example on the left uses
{(:.%ﬁ’éﬁ% hierarchical clustering of some
] "4‘2’&‘1.?(%0 embedding vectors for nouns as a
CRUSSIA visualization method.
AFRICA
ASIA
EUROPE
AMERICA
BRAZIL
MOSCOW
FRANCE

HAWAII

99

Visualizing Embeddings

* Probably the most common visualization
method, however, is to project the 100
dimensions of a word down into 2 dimensions.

100

Semantic Properties of Embeddings

* Vector semantics models have a number of
parameters. One parameter that is relevant to both
sparse td-idf vectors and dense word2vec vectors is
the size of the context window used to collect
counts.

— Generally between 1 and 10 words each side of the target
word (for a total context of 2-20 words).

101

Semantic Properties of Embeddings

e Shorter context windows tend to lead to
representations that are a bit more syntactic, since the
information is coming from immediately nearby words.

 When the vectors are computed from short context
windows, the most similar words to a target word w
tend to be semantically similar words with the same
parts of speech.

* When vectors are computed from long context
windows, the highest cosine words to a target word w
tend to be words that are topically related but not
similar.

Semantic Properties of Embeddings

* For example, it is shown that using skip-gram with a
window of +2, the most similar words to the word
Hogwarts (from the Harry Potter series) were names
of other fictional schools: Sunnydale (from Buffy the
Vampire Slayer) or Evernight (from a vampire series).

 With a window of +5, the most similar words to
Hogwarts were other words topically related to the
Harry Potter series: Dumbledore, Malfoy, and half-
blood.

Semantic Properties of Embeddings

 Two words have first-order co-occurrence if they are
typically nearby each other.

— Thus wrote is a first-order associate of book or poem.

 Two words have second-order co-occurrence if they
have similar neighbors.

— Thus wrote is a second-order associate of words like said
or remarked.

104

Semantic Properties of Embeddings

Analogy

* Another semantic property of embeddings is their
ability to capture relational meanings.

 Rumelhart and Abra
parallelogram mode
simple analogy prob
to what?

namson (1973) proposed the
parallelogram model for solving

ems of the formaisto b as a*is

* A system given a problem like apple:tree :: grape:?,
i.e., appleis to tree as grape isto ___, and must fill

in the word vine.

Semantic Properties of Embeddings

Analogy

In the parallelogram model, illustrated below, the
vector from the word apple to the word tree

(= tree — apple) is added to the vector for grape
(grape); the nearest word to that point is returned.

tree
1

apple o—

vine
grape

106

Semantic Properties of Embeddings

Relational properties of the vector space, shown by projecting

vectors onto 2 dimensions — — 4+ ——jscloseto —
mg man woman queen
T T T T T
05 ¢ heiress 1
|
0.4} ! |
3 f
§ Tove. ! - countess
03} *aunt | /' »duchess
,.er,isteﬂl ; o
02F ' x :f ,I /' »empress
I | / &,
0.1k | | '1 vmadam p .'/ |
. | | | ' / ! J/
I ‘ heir /
i / /
of 1 neptiow | ¥ q
| / ;) A
: | woman . p ’
=0.1p : ‘uncle / queee .
‘ brother ‘ " {duke
-0.2+ I / o
/ 1/
P
/ / | emperor
-0.3 ; , | 1
[/
-0.4 i / I
{sir [
-0.5 ‘ man lking 4
L ' 1 1 1 1 1 1 1 L 1 107

Semantic Properties of Embeddings

* The embedding model thus seems to be extracting
representations of relations like MALE-FEMALE, or

CAPITAL-CITY-OF, or even COMPARATIVE/SUPERLATIVE
in the next diagram.

e Foraa:b ::a”:b*problem, meaning the algorithm is
given vectors a, b, and a* and must find b*, the
parallelogram method is thus:

b* = argmin distance(x,b — a + a*)
X

with some distance function, such as Euclidean distance

Semantic Properties of Embeddings

Relational properties of the vector space, shown by projecting vectors onto two
dimensions. Offsets seem to capture comparative and superlative morphology

05
_ .. - = slowest
04} pmew==" N
. “slower - = = = = —+shortest
03k .7 7shorter]
‘ slow~ /
short~
02 - -
0.1F .
ok sgtronger. ~ T - = = - - = _ . strongest |
4
/’ _-Touder = " " " === - - m o ..

strong . loudest

-0.1F _ - P |
. Clearer — T T T = === - o ~ — clearest
’: - soﬁer _____ e e eceececee .. - softest

-0.2F dear/:/,aafker - - e e - o o 1

soﬂ o - o . dafkeSI

dark «
-0.3 1 1 1 I 1 1 1 1 109

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 05 0.6

Semantic Properties of Embeddings

Embeddings and Historical Semantics:

* Embeddings can also be a useful tool for studying
how meaning changes over time, by computing
multiple embedding spaces, each from texts written
in a particular time period.

* For example, the below figure shows a visualization
of changes in meaning in English words over the last
two centuries

— computed by building separate embedding spaces for each
decade from historical corpora like Google N-grams and
the Corpus of Historical American English.

Semantic Properties of Embeddings

A gay (1900s)

gay (1990s)

gay (1950s)

broadcast (1850s)

/ broadcast (1900s)

broadcast (1990s)

C

awful (1850s)

awful (1900s)
awful (1990s)

A t-SNE visualization of the semantic change of 3 words in English
using word2vec vectors. The modern sense of each word, and the
grey context words, are computed from the most recent (modern)
time-point embedding space. Earlier points are computed from

earlier historical embedding spaces.

111

Semantic Properties of Embeddings

A

gay (1900s) B C awful (1850s)

broadcast (1850s)

gay (1950s)

broadcast (1900s)
/ / awful (1900s)
gay (1990s) s awful (1990s)

broadcast (1990s)

The visualizations show the changes in the word gay from
meanings related to “cheerful” or “frolicsome” to referring to
homosexuality, the development of the modern “transmission”
sense of broadcast from its original sense of sowing seeds, and
the pejoration of the word awful as it shifted from meaning “full

of awe” to meaning “terrible or appalling”
112

Bias and Embeddings

* The closest value returned by the parallelogram
algorithm in word2vec embedding spaces is usually

not in fact b™ but one of the 3 input words or their
morphological variants.

— e.g., cherry:red :: potato:x returns potato or
potatoes instead of brown), so these must be
explicitly excluded.

Bias and Embeddings

* Some embedding analogies may also exhibit gender
stereotypes.

” ”n

_ uman _ programmer”+"woman" in embEddingS
trained on news text is “homemaker”

— “father” is to “doctor” as “mother” is to “nurse”

* Allocational harm — When a system allocates
reources (e.g. jobs) unfairly to different groups.

— For example, algorithms that use embeddings as
part of a search for hiring programmers or doctors
might incorrectly downweight documents with
women’s hames.

