CLIPS Programming 2

Advanced Pattern Matching

SEEM 5750

val ldMJICO

Variables in CLIPS are always written in a question mark followed by a symbolic
field name.

Some examples of variables:
?speed
7sensor
?value
?noun
?color
There should be no space between the question mark and the symbolic field name
CLIPS>
(defrule find-blue-eyes
(person (name ?name) (eyes blue))
=>
(printout t ?name "has blue eyes." cri¥)

Cartd ANAAvrvAce
I AdULUL AUUICTOO

 Avariable can be bound to the fact address of the fact matching a pattern
on the LHS of a rule by using the pattern binding operator, "<-".

— Once the variable is bound it can be used with the retract, modify, or
duplicate commands in place of a fact index.

Fact Address

CLIPS> (clear)
CLIPS>
(deftemplate person
(slot name)
(slot address))
CLIPS>
(deftemplate moved
(slot name)
(slot address))
CLIPS>
(defrule process-moved-information
?fl <- (moved (nhame 7?name)
(address ?address))
?f2 <- (person (nhame ?name))
=>
(retract ?fl)
(modify ?f2 (address 7?address)))

Car+t AAAvAce
I dLL AUUICTOO
CLIPS>
(deffacts example
(person (name "'John Hill™)
(address '"25 Mulberry Lane'))
(moved (name "'John Hill™)
(address "'37 Cherry Lane'™)))
CLIPS>(reset)
CLIPS>(watch rules)

CLIPS>(watch facts)

CLIPS>(run)
FIRE 1 process-moved-information: f-2,f-1
<== f-2 (moved (name "John Hill™)

(address '""37 Cherry Lane™))
<== f-1 (person(name "John Hill")

(address '"25 Mulberry Lane'))
==> -3 (person(name "John Hill")

(address '""37 Cherry Lane™))
CLIPS>

AlA \AilA~avrAc
CIiU iucLdl Uuo

Singole
Single-F

A single-field wildcard can be used when a field is required,
but the value is not important.

A single-field wildcard is represented by a question mark.
E.g.
— (person (name ? ? ?last-name))

When a single-field slot is left unspecified i

|
treats it as if there is a single-field wildcard

pattern, CLIPS
eck for that slot

W\ TV (9 I |

N
C

S Q

— E.g. (person (name ?first ?last))
— Is equivalent to:

e (person (name ?first ?last) (social-security-number ?))

BIOCKS VVOriId
_ I
A D
B E
C F

RULE MOVE-DIRECTLY
IF The goal is to move block ?upper on top of
block ?lower and
block ?upper 1s the top block in its stack and
block ?lower 1s the top block in its stack,
THEN Move block ?upper on top of block ?lower.

RULE
IF

THEN

RULE
IF

THEN

CLEAR-UPPER-BLCCK

The goal is to move block ?x and

block ?x is not the top block in its stack and
block 7above is on top of block ?x,

The goal is toc move block ?above to the floor

CLEAR-LOWER-BLOCK

The goal 1s to move another block on top of
block ?x and

block ?x is not the top block in its stack and

block 7above 1s on top of block ?x,

The gcal 1s to move block ?above teo the floor

c \A/~
> VVU

| % vl A
! 11U

D & Y o)
DIVULU

e RULE MOVE-TO-FLOOR
IF The goal is to move block ?upper on top of

the floor and
block ?upper is the top block in its stack,

THEN Move block ?upper on top of the floor.

DIULRKNS VVUIIU

e Types of facts needed:

— The information about which blocks are on top of other blocks is
crucial. This information could be described with the following
deftemplate:

(deftemplate on-top-of

(slot upper)
(slot lower))

— The facts identifying the blocks from the special words nothing and
floor.

e E.g. (block A)
— A factis needed to describe the block-moving goals.
(deftemplate goal (slot move) (slot on-top-of))

Blocks World

« The initial configuration of the blocks world:
(deffacts i1nitial-state
(block A)
(block B)
(block ©)
(block D)
(block E)
(block F)
(on-top-of (upper nothing) (lower A))
(on-top-of (upper A) (lower B))
(on-top-of (upper B) (lower C))
(on-top-of (upper C) (lower floor))
(on-top-of (upper nothing) (lower D))
(on-top-of (upper D) (lower E))
(on-top-of (upper E) (lower F))
(on-top-of (upper F) (lower floor))
(goal (move C) (on-top-of E)))

c \A/~
> VVU

| % vl A
! 11U

Df\f\
DIVULU

* The move-directly rule:

(defrule move-directly

?goal <- (goal (move ?blockl)
(on-top-of ?block2))
(block ?blockl)
(block ?block2)
(on-top-of (upper nothing) (lower ?blockl))
?stack-1 <- (on-top-of (upper ?blockl)
(lower ?block3))
?stack-2 <- (on-top-of (upper nothing)
(lTower 7?block2))

=>
(retract ?goal 7?stack-1 7?stack-2)
(assert (on-top-of (upper ?blockl) (lower ?block2))

(on-top-of (upper nothing) (lower ?block3)))
(printout t ?blockl " moved on top of" ?block2
" crif))

DIULRKNS VVUIIU

e The move-to-floor rule:
(defrule move-to-floor
?goal <- (goal (move 7?blockl)
(on-top-of floor))
(block ?blockl)
(on-top-of (upper nothing) (lower ?blockl))
?stack <- (on-top-of(upper ?blockl)
(lower ?block2))
=>
(retract ?goal ?stack)
(assert (on-top-of (upper ?blockl)
(lower fTloor))
(on-top-of (upper nothing)
(lower ?block2)))
(printout t ?blockl " moved on top of floor.” crif))

DIULRKNS VVUIIU

e The clear-upper-block rule
(defrule clear-upper-block
(goal (move ?blockl))

(block ?blockl)

(on-top-of (upper ?block2)(lower ?blockl))
(block ?block2)

=>
(assert (goal (move 7?block?2)
(on-top-of floor))))

DIULRKNS VVUIIU

e The clear-lower-block rule
(defrule clear-lower-block
(goal (on-top-of ?blockl))
(block ?blockl)
(on-top-of (upper ?block2) (lower ?blockl))
(block ?block2)
=>
(assert (goal (move 7?block?2)
(on-top-of floor))))

DIULCRKNDS VVUIIU
o Asample run of the program

CLIPS> (unwatch all)

CLIPS> (reset)

CLIPS> (run)

A moved on top of floor

B moved on top of floor

D moved on top of floor

C moved on top of E

CLIPS>

NN+ F IA \ALiIlAA~AAvrAec anA \/lAavviahlAc
IVIUILII U IUCdIUS dlIiIU vdl IdlITO

e

Multifield wildcards and variables can be used to match against zero or
more fields of a pattern.

The multitield wildcard is indicated by a dollar sign followed by a question
mark, “S?”, and represents zero or more occurrences of a field.

— The person pattern will match any name slot that contains at least one field
and has as its last field the specified name:

(defrule print-social-security-numbers
(print-ss-numbers-for ?last-name)
(person (name $? ?last-name)
(social-security-number ?ss-number))
=>
(printout t ?ss-number crlif))

NN+
L

fialdAd \W/ilA nA \/
vl ! U U U

IFA(‘ - -
1US dlill vd

y a IIS?II

1 1dMJICO

Q)

e C

(on

 Multifield variables are preceded
(deftemplate person
(multislot name)
(multislot children))

(deffacts some-people
(person (name John Q. Public)
(children Jane Paul Mary))
(person (name Jack R. Public)
(children Rick)))

(defrule print-children
(print-children $?name)
(person (name $?name)
(children $?children))
—>
(printout t ?name " has children' ?children
crift))

NN+ F IA \ALiIlAA~AAvrAec anA \/lAavviahlAc
IVIUILII U IUCdIUS dlIiIU vdl IdlITO

e

— The following dialog shows how the print-children rule works:

CLIPS> (reset)

CLIPS> (assert (print-children John Q. Public)
<Fact-3>

CLIPS> (run)

(John Q. Public) has children (Jane Paul Mary)
CLIPS>

* More than one multifield variable can be used in a single slot:
(defrule find-child
(find-child ?child)
(person (name $?name)
(children $?before ?child $?after))

=>
(printout t ?name " has child " ?child crif)
(printout t "Other children are " $?before " " $?after

crif))

c \A/~
> VVU

| 1, wlA DAy +A A
| 11U I\NCV LC U

e

S

DiAA~
DIVUCU
Reimplementation with multifield wildcards and variables
Stacks are represented as single facts.

(deffacts i1nitial-state

(stack A B O)

(stack D E F)

(goal (move C) (on-top-of E))

(stack))

The empty stack fact is included to prevent this fact from being added
later.

| e \AMAvlA DAaviicidAaA
| S VVUIIU I\NCVIoILCU

D oY o)
DIVUL
(defrule move-directly

?goal <- (goal (move ?blockl)

(on-top-of ?block2))

?stack-1 <- (stack ?blockl $?restl)

?stack-2 <- (stack ?block2 $?rest2)

=>

(retract ?goal 7stack-1 7?stack-2)

(assert (stack $?restl))

(assert (stack ?blockl ?block2 $?rest2?))

(printout t ?blockl " moved on top of "
?block2 "." crif))

| e \AMAvlA DAaviicidAaA
| S VVUIIU I\NCVIoILCU

DIlAA
DIVUL
(defrule move-to-floor

?goal <- (goal (move ?blockl)

(on-top-of floor))

?stack-1 <-(stack ?blockl $?rest)

=>

(retract ?goal 7?stack-1)

(assert (stack ?blockl))

(assert (stack $?rest))

(printout t ?blockl ' moved on top of floor."
crif))

c \A/~
> VVU

DI 1, rlA DAaviiciqAa A
D] 11U N\NCVIOILTU

OC

(defrule clear-upper-block
(goal (move ?blockl))
(stack ?top $? ?blockl $?)
=>
(assert (goal (move 7?top)
(on-top-of floor))))

(defrule clear-lower-block
(goal (on-top-of ?blockl))
(stack ?top $? ?blockl $?)
=>
(assert (goal (move 7?top)
(on-top-of floor))))

C A CAncEr mnteo
B IU CUILIOLI 110D

e d

e The Not Field Constraint

iy V7

— Its symbol is the tilde, “~.
— The not constraint acts on the one constraint or variable that
immediately follows it.

(defrule person-without-brown-hair

(person (name ?name) (halr ~brown))
=>

(printout t ?name " does not have brown hair"

crif))

Tha Nr CinlA "
111TC Ul T 11U

At
CUILIOLUI

e d

2% o
IL
e The or constraint

— represented by the bar, “|*

— is used to allow one or more possible values to match a field of a
pattern

(defrule black-or-brown-hair
(person (name ?name) (hair brown | black))
=>

(printout t ?name " has dark hair"™ crif))

Y

! I Ul

A A IA
1IC AllU 1IU ©

1A +rrar1nd
1T Lidlilil

 The symbol of the and constraint is the ampersand,
H&”

(defrule black-or-brown-hair
(person (name ?name)
(hairr ?coloré&brown]black))

(printout t ?name
crif))

has' ?color hair''

L
=
O
t
@)
-
(0p)

Q)

)
Q.
M

’
N

L®)

 CLIPS Elementary Arithmetic Operators

R

D

)

)

o

)

)

Arithmetic Operators Meaning
+ Addition
- Subtraction
* Multiplication
/

Division

A numeric expression must be written in prefix form
Infix form: (y2 — yl) /7 (X2 — x1)>0

Prefix form: (> (/ (- y2 y1)(- x2 x1)) 0)

l:l llf'\f\'l':f\lf\f‘ "\If'\fJ l:\llf\lf'f\f‘t‘:f\lf\l‘
I UTICLIVUIIO AdllU L IJICDDIUIID

CLIPS> (+ 2 3.0)

5.0

CLIPS> (+ 2.0 3)

5.0

CLIPS> (+ 2 3)

5

CLIPS>

CLIPS> (+ 2 3 4) <- Evaluation proceeds from left to right
9

CLIPS> (- 2 3 4)

-5

CLIPS> (*
24

CLIPS> (/ 2 3 4)
0.166667

CLIPS>

The answer for division may vary slightly depending on the
machine being used.

N
W

4)
v

@Y If'\fJ EIV\

l:lllf'\ 7\ o N\
I Ullo dliUu LA |J

~4
ICL

2 + 3 * 4

1. 2 + (3 * 4)
CLIPS> (+ 2 (* 3 4))
14
CLIPS>

2. (2 +3) *4
CLIPS> (* (+ 2 3) 4)
20
CLIPS>

CLIPS> (assert (answer (+ 2 2)))
<Fact-0>

CLIPS> (facts)

-0 (answer 4)

For a total of 1 fact.

CLIPS> (clear)

9

)

)

2 Vel

ng R

C \I I 1 A f‘ll
QUMM dlu

Ng values

 Asasimple example of using functions to perform calculations
— consider the problem of summing up the area of a group of rectangles.

— The heights and widths are specified with the following deftemplate.
(deftemplate rectangle (slot height) (slot width))

— A deffacts containing sample information
(deffacts initial-information
(rectangle (height 10) (width 6))
(rectangle (height 7) (width 5))
(rectangle (height 6) (width 8))
(rectangle (height 2) (width 5))

(sum 0))

2 Vel

ng R

C \I I 1 A f‘ll
QUMM dlu

Ng values

Lﬁ

An attempt to produce a rule to sum the rectangle:

(defrule sum-rectangles
(rectangle (height ?height) (width ?width))
?sum <- (sum ?total)
=>
(retract ?sum)
(assert (sum (+ ?total (* ?height ?width)))))
This rule, however, will loop endlessly.

e One solution to solve the problem would be to retract the
rectangle fact after its area was added to the sum fact.

 Ifthe rectangle fact needs to be preserved, a different approach
is required.

CII f"\l II f‘ll
SQUMI II N 15 vVdliu

sing R

(defrule sum-rectangles

(rectangle (height ?height) (width ?width))
=>

(assert (add-to-sum (* ?height ?width))))

(defrule sum-areas
?sum <- (sum ?total)
?new-area <- (add-to-sum 7?area)
=>
(retract ?sum ?new-area)
(assert (sum (+ ?total ?area))))

Tha RIN/ ~nNn
11T DI Ul

N LCiin
INL T

~4
1ICL

e The bind function can be used to bind the value of a variable to the value
of an expression.

(bind <variable> <value)
e The bound variable > <variable> > uses the syntax of a single-field variable.

e The new value » <value> > should be an expression that evaluates to either
a single-field or a multifield value.

(defrule sum-areas
?sum <- (sum ?total)
?new-area <- (add-to-sum 7?area)
=>
(retract ?sum ?new-area)
(printout t "Adding " ?area " to " ?total crl¥T)
(bind ?new-total (+ ?total 7?area))

(printout t "New sum is " ?new-total crlif)
(assert (sum ?new-total)))

™~

1/ N C ~
I/ U FUlici

@Y

ons

e The Read Function
— CLIPS allows information to be read from the keyboard using the read function.

CLIPS> (clear)
CLIPS>
(defrule get-first-name
=>
(printout t "What i1s your fTirst name? ')
(bind ?response (read))
(assert (user"s-name ?response)))

CLIPS> (reset)

CLIPS> (run)

What 1s your first name? Gary
CLIPS> (facts)

-0 (initial-fact)

-1 (user"s-name Gary)
For a total of 2 facts.
CLIPS>

@Y

ons

™~

1/ N C ~
I/ U FUlici

e The Open Function

— Before a file can be accessed for reading or writing, it must be opened using
the open function.

(open <file-name> <file-ID> [<fFile-access>])
— As an example,

« (open "input.dat' data ''r'')
— File Access Modes

Mode Action

4 Read access only

oy Write access only
AL Read and write access

“a” Append access only

™~

1/ N C ~
I/ U FUlici

@Y

ons

— If <file-access> is not included as an argument, the default value of “r”
will be used.

— The open function acts as a predicate function.

e |t returns the symbol TRUE if a file was successfully opened; otherwise the
symbol FALSE is returned .

™~

1/ N C ~
I/ U FUlici

@Y

ons

The Close Function

Once access is no longer needed to a file, it should be closed.
(close [<file-1D>])

Where the optional argument <file-ID> specifies the logical name of the file to
be closed. If <file-ID> is not specified, all open files will be closed.
E.g.

(close data)

Remember each opened file should eventually be closed with the
close function.

If a command is not issued to close a file, the data written to it may be
lost.

\

F)
ct
@)
)
T,

e Reading and Writing to a File

— The use of logical names allows input and output to and from other
sources.

CLIPS> (open "example.dat" example "'w')
TRUE

CLIPS> (printout example '"green' crlfT)
CLIPS> (printout example 7 crif)

CLIPS> (close example)

TRUE

CLIPS>

I/f\ Ciivnnrt "
/U FUNCT

ons

* The general format of the read function is:
(read [<logical-name>])

— The read function defaults to reading from the standard input device, t, if it is
given no arguments.

CLIPS> (open "'example.dat" example ''r')
TRUE

CLIPS>(read example)
green

CLIPS>(read example)
-

CLIPS>(read example)
EOF

CLIPS>(read example)
TRUE

CLIPS>

™~

1/ N C ~
I/ U FUlici

@Y

ons

e The Format Function

(format <logical-name> <control-string>
<parameters>%*)

— control string, which must be contained within double quotes.
* The control string consists of format flags
— The return value of the format function is the formatted string.

— If the logical name nil is used with the format command, then no
output is printed (either to the terminal or a file), but the formatted
string is still returned.

CLIPS> (format nil "Name: %-15s Age: %3d ™
""'Bob Green' 35)
""Name: Bob Green Age: 35"

CLIPS> (format nil "Name: %-15s Age: %3d '
"Ralph Heiden" 32)

"Name: Ralph Heiden Age: 32"
CLIPS>

™~

1/ N C ~
I/ U FUlici

@Y

ons

The format flag “%-15s" is used to print the name in a column that is 15
characters wide.

The - sign indicates that the output is to be left justified and the character
s indicates that a string or symbol is to be printed.

The general specification of a format flag is:
%-M.Nx

— where “-" is optional and means to left justify. The default is to right justify.
— The letter M is a number specifying the field width in columns.

— The letter N is an optional number specifying the number of digits past
the decimal point that will be printed.

— The letter x is a character specifying the display format specification.

@Y

ons

11V

1/ N C ~4
/U FUncCt

e Display format Specifications

Character

Meaning

B wvH o0 0 QO

Integer

Floating-point

Exponenual (in power-of-ten format)

General (numeric); display in whatever format is shorter
Octal; ansigned number (N specifier not applicable)
Hexadecimal; unsigned number (IN specifier not applicable)
String; quoted strings will be stripped of quotes

Carriage return/line feed

The "%" character itseif

e The Readline Function

— The readline function can be used to read an entire line of input.
(readline [<logical-name>])

CLIPS> (clear)
CLIPS> (defrule get-name
=>
(printout t "What i1s your name? ')
(bind ?response (readline))
(assert (user"s-name ?response)))
CLIPS> (defrule print-singlefield-values
(user®s-name ?name)
=>
(printout t ?name crlif))
CLIPS> (reset)
CLIPS> (run)
What 1s your name? Swan Lar Tsz-wail
Swan Lai Tsz-wal
CLIPS> (facts)
-0 (initial-fact)
-1 (user®"s-name "'Swan Lai Tsz-wai')
For a total of 2 facts.
CLIPS>

DvrAA 4 Ciinn ~n e
rICu L B Ul 1D

~4
ICL

cate

e

e A predicate function is defined to be any function that returns either the symbol TRUE or the
symbol FALSE.
 Predicate functions may be either predefined or user-defined functions.
— Predefined functions are those functions already provided by CLIPS.

— User-defined or external functions are functions other than predefined functions that are written in
C or another language and linked with CLIPS.

CLIPS> (and (> 4 3) (> 4 5))

FALSE

CLIPS> (or (> 4 3) (> 4 5))
TRUE

CLIPS> (> 4 3)

TRUE

CLIPS> (< 6 2)

FALSE

CLIPS> (integerp 3)
TRUE

CLIPS> (integerp 3.5)
FALSE

CLIPS>

f\lf'\A
Ul iU

ThAa TAac+ O +1iAanAal Cl
11IT ITOL O LiVvilidl LI

e 2l o
L

eimei

* The test conditional element provides a powerful way to evaluate
expressions on the LHS of the rule.

* Instead of pattern matching against a fact in the fact list, the test CE
evaluates an expression.

* |If the expression evaluates to any value other than the symbol FALSE, the
test CE is satisfied. If the expression evaluates to the symbol FALSE, the
test CE is not satisfied.

(test <predicate-function>)
e.g. (test (> 7?size 1))

r

TL\ 7\ o
11 Ul 1o

A Dvradi~ra+a CianlA O +vrAar1nt
IT FricCcUiCLdlC 1T ICTIU o Lidllll

The predicate field constraint, :, is useful for performing
predicate tests directly within patterns.

It can stand by itself in a field or be used as one part of a more
complex field using the -, &, and | connective field constraints.

The predicate field constraint is always followed by a function
for evaluation

(pile-size ?7size)
(test (> 7si1ze 1))

These two patterns could be replaced with the following
single pattern:

(pile-size ?si1ze&:(> ?size 1))

ThAa DAatiivrn \/ Pal ate
11T I\CTLUI Ul 1D

"\III
11 vdl

C |A 4 2L
I IU Ll 110

e d

e

The return value field constraint, =, allows the return value of a function
to be used for comparison inside a pattern.

Like the predicate field constraint, the return value field constraint must
be followed by a function.

However, the function does not have to be a predicate function.

The only restriction is that the function must have a single-field return
value.

For example, the field constraint:
=(mod ?size 4)
— could be read as “The field is equal to ?size modulus 4.”

Th
11

 Two separate rules can be combined using an or CE.
(defrule shut-off-electricity
(or (emergency (type flood))
(extinguisher-system (type water-sprinkler)
(status on)))
=>
(printout t "Shut off the electricity” crif))
e A more appropriate rule is to update the fact list to indicate the electricity has
been shut off.
(defrule shut-off-electricity
?power <- (electrical-power (status on))
(or (emergency (type flood))
(extinguisher-system (type water-sprinkler)
(status on)))
=>
(modify ?power (status off)))
(printout t "Shut off the electricity” crlif))

r

Th Al Palalks
! 1Vlid

A A N
1ICT AINLD ©

" 14
L

AnaA | Cl
Ul iUl 1 LI

A n
L

eimei

e The and CE is provided so it can be used with other CEs to make more
complex patterns.

(defrule use-carbon-dioxide-extinguisher

?7system <- (extinguisher-system
(type carbon-dioxide)
(status off))

(or (emergency (type class-B-Tire))

(and (emergency (type class-C-fTire))
(electrical-power (status off))))

=>

(modify ?system (status on))

(printout t "Use carbon dioxide extinguisher™
crif))

+i~nanal CI A n+
LiVvlidl LI L

emen

Th NNDT
11 Ul C©

7\ IﬂA
IC IV U

on

CLIPS allows the specification of the absence of a fact in the LHS of a rule using the not conditional
element.
IF the monitoring status is to be reported and
there is an emergency being handled

THEN report the type of the emergency
IF the monitoring status is to be reported and

there is no emergency being handled
THEN report that no emergency is being handled

The not CE can be conveniently applied to the simple rules above as follows:

(defrule report-emergency
(report-status)
(emergency (type ?type))
(printout t "Handling™ 7?type ' emergency” crif))
(defrule no-emergency
(report-status)
(not (emergency))
=>
(printout t "No emergency being handled" crlif))

TC C N
|

ONna

~An A | CI
UIlIUIL 1 L1

A 2L o
L

emen

The exists conditional element allows you to pattern match based on the
existence of at least one fact that matches a pattern without regard to the
total number of facts that actually match the pattern.

This allows a single partial match or activation for a rule to be generated
based on the existence of one fact out of a class of facts.

E.g.
(deftemplate emergency (slot type))
(defrule operator-alert-for-emergency
(exists (emergency))
=>
(printout t "Emergency: Operator Alert" crlf)
(assert (operator-alert)))

TLl
11l

CNADAI'Il CONDITINNI NALCNIT
r'UNALL CJUINUILTTITV |

C Al CILC C
L IN INAL LLLIVILIN

e |t allows you to pattern match based on a set of CEs that are satisfied for every
occurrence of another CE.

e The general format of the forall CE is as follows:
(forall <first-CE>

<remaining-CEs>+)
Each fact matching the <first-CE> must also have facts that mach all of the <remaining-
CEs>.
(deftemplate emergency (slot type) (slot location))
(deftemplate fire-squad (slot name) (slot location))
(deftemplate evacuated (slot building))
(defrule all-fires-being-handled
(forall (emergency (type fire) (location ?where))
(fire-squad (location ?where))
(evacuated (buirlding ?where)))
=>
(printout t “All buildings that are on fire “ crif
“have been evacuated and” crif
“have firefighters on location” crif))

