CLIPS Programming 3

Modular Design, Execution
Control, and Rule Efficiency

SEEM 5750

NAafyfAarnanl -|--|-v- i+~
veren ivid L ALLITVUULCO

CLIPS provides a number of slot attributes that can be specified when a
deftemplate’s slots are defined.

It is possible to define the allowed types and values that can be stored in a
slot.

L‘\ \llf\

rilan i+
1 1E ypc DUL

e

 The type attribute defines the data types that can be placed in a slot.

e The general format of the type attribute is
(type <type-specification>)
— where <type-specification> is either
 ?VARIABLE or

e one or more of the symbols
— SYMBOL,
— STRING,
— LEXEME,
— INTEGER,
— FLOAT,
— NUMBER,
— INSTANCE-NAME,
— INSTANCE-ADDRESS,

— INSTANCE,
— FACT-ADDRESS, or

— EXTERNAL-ADDRESS.

5.

N A :L\Il+f\
The Type Attribute

e Example:
(deftemplate person
(multislot name (type SYMBOL))
(slot age (type INTEGER)))

* For example, assigning the symbol four to the age slot rather than the
integer 4 will cause an error as shown:

CLIPS> (assert (person (name Fred Smith)
(age four)))

[CSTRNCHK1] A literal slot value found in the assert command does not
match the allowed types for slot age.

CLIPS>

\AZ

owe

Th
11

A All ~A\/
1T A\l U

Al
vdl

++vrilhii+Ac
LLITULC DO

e CLIPS also allows you to specify a list of allowed values for a specific type.

 For example, if a gender slot is added to the person deftemplate, the
allowed symbols for that slot can be restricted to male and female:
(deftemplate person(
multislot name (type SYMBOL))
(slot age (type INTEGER))
(slot gender (type SYMBOL)
(allowed-symbols male female)))

\AZ

owe

Th
11

A All ~A\/
1T A\l U

Al
vdl

++vrilhii+Ac
LLITULC DO

There are eight different allowed value attributes provided by CLIPS:

— allowed-symbols, allowed-strings, allowed-Lexemes, allowed-integers, allowed-floats,
allowed-numbers, allowed-instance-names, and allowed-values.

For example, (allowed-symbols male female) does not restrict the type of the
gender slot to being a symbol.

— It merely indicates that if the slot’s value is a symbol, then it must be one of
the two symbols: either male or female.

— Any string, integer, or float would be a legal value for the gender slot if the
(type SYMBOL) attribute were removed

The allowed-values attribute can be used to completely restrict the set of allowed
values for a slot to a specified list.
(deftemplate person
(multislot name (type SYMBOL))
(slot age (type INTEGER))
(slot gender (allowed-values male female)))

ThAa DAancan il 1+~
[he Range Attribute

The range attribute allows the specification of minimum and maximum
numeric values.

The general format of the range attribute is
(range <lower-limit> <upper-limit>)

— where <lower-limit> and <upper-limit> are either ?VARIABLE or a numeric
value.

Example:
(deftemplate person
(multislot name (type SYMBOL))
(slot age (type INTEGER) (range 0 ?VARIABLE)))

[‘@

ThAa CAvAd Alitv: A++vilne 14
111 CdlUullidl L)llf\LlJ MUL

e

The cardinality attribute allows the specification of the minimum and
maximum number of values that can be stored in a multislot.

The general format of the cardinality attribute is
(cardinality <lower-limit> <upper-limit>)

— where<lower-limit> and <upper-limit> are either ?VARIABLE or a positive
integer.

Note that type, allowed value, and range attributes are applied to every
value contained in a multislot.

Example:
(deftemplate volleyball-team
(slot name (type STRING))
(multislot players (type STRING)
(cardinality 6 6))
(multislot alternates (type STRING)
(cardinality 0 2)))

ThAa DNAfA 1+ ++vrilh i+
111 LUJCTIAdUlL LLITVULC

N
M

It is often convenient to automatically have a specified value stored in a
slot if no value is explicitly stated in an assert command.

The general format of the default attribute is

(default <default-specification>)
— where<default-specification> is either ?DERIVE, ?NONE, a single expression
(for a single-field slot), or zero or more expressions (for a multifield slot).
If the default attribute is not specified for a slot, then it is assumed to be
(default ?DERIVE).

— For a single-field slot, this means that a value is selected that satisfies the
type, range, and allowed values attributes for the slot.

— The derived default value for a multifield slot will be a list of identical values
that are the minimum allowed cardinality for the slot (zero by default).

ThAa DNAfA 1+ ++vrilh i+
111 LUJCTIAdUlL LLITVULC

N
M

— An example of derived values is the following:
CLIPS> (clear)
CLIPS> (deftemplate example
(slot a)
(slot b (type INTEGER))
(slot c (allowed-values red green blue))
(multislot d)
(multislot e (cardinality 2 2)
(type FLOAT)
(range 3.5 10.0)))
CLIPS> (assert (example))

<Fact - 0>

CLIPS> (facts)

f-0 (example (a nil)
(b 0)
(c red)
(d)

(e 3.5 3.5))
For a total of 1 fact.
CLIPS>

ThAa DNAfA 1+ ++vrilh i+
111 LUJCTIAdUlL LLITVULC

N
M\

 |f ’NONE is specified in the default attribute. a value must be supplied for the slot
when the fact is asserted.

CLIPS> (clear)

CLIPS>

(deftemplate example

(slot a)

(slot b (default ?NONE)))
CLIPS> (assert (example))
[TMPLTRHS1] Slot b requires a value because of its
(default ?NONE) attribute.
CLIPS> (assert (example (b 1)))
<Fact-0>

CLIPS> (facts)

-0 (example (a nil) (b 1))

For a total of 1 fact.

CLIPS>

ThAa DNAfA 1+ ++vrilh i+
111 LUJCTIAdUlL LLITVULC

N
M\

 An example using expressions with the default attribute:
CLIPS> (clear)
CLIPS>
(deftemplate example
(slot a (default 3))
(slot b (default (+ 3 4)))
(multi slot c (default a b ¢))
(multr slot d (default (+ 1 2) (+ 3 4))))
CLIPS> (assert (example))

<Fact-0>
CLIPS> (facts)
-0 (example (@ 3) (b7) (cabc) (d37))

For a total of 1 fact.
CLIPS>

TL‘\’\ nI\FFI 1V 'Y e PI\V\(“
111C UCTI Ull CUILIO

~4 +ri 1~
IUTICL Ll L

C

* New functions are defined using the deffunction construct.
* The general format of a deffunction is:

(deffunction <deffunction-name> [<optional-comment>]
(regular-parameter>* [<wildcard-parameter>])
<expression>¥*)

— Where <regular-parameter> is a single-field variable and <wildcard-
parameter> is a multifield variable.

— The name of the deffunction, <deffunction-name>, must be distinct.

— The body of the deffunction, represented by <expression>*, is a series of
expressions similar to the RHS of a rule that are executed in order when the
deffunction is called.

— Unlike predefined functions, deffunctions can be deleted and the watch
command can be used to trace their execution.

TL‘\’\ nI\FFI 1V 'Y e PI\V\(“
111C UCTI Ull CUILIO

~4 +ri 1~
IUTICL Ll L

C

— The <regular-parameter> and <wildcard-parameter> declarations
— Specify the arguments that will be passed into the deffunction when it is
called.
* A deffunction can return values.
— The return value is that value of the last expression evaluated within the body
of the deffunction.
 E.g
(deffunction hypotenuse-length (?a ?b)
CG* (+ (* ?2a?a) (* ?b ?b)) 0.5))
e Where the **function with its second argument of 0.5

— compute the square root

— (** <numeric-expression> <numeric-expression>) is the first argument raised
to the power of the second argument

TL‘\’\ nI\FFI 1V 'Y e PI\V\(“
111C UCTI Ull CUILIOS

~4 +ri 1~
IUTICL Ll L

C

— It can be called from the command prompt:
CLIPS> (hypotenuse-length 3 4)
5.0
CLIPS>
— In a more readable format:
(deffunction hypotenuse-length (?a ?b)
(bind ?temp (+ (* ?2a ?a) (* ?b ?b)))
(* ?temp 0.5))

TL‘\’\ nI\FFI 1V 'Y e PI\V\(“
111C UCTI Ull CUILIO

~4 +ri 1~
IUTICL Ll L

C

e The Return Function

— It allows the currently executing deffunction to be terminated.
— Its syntax for use with deffunctions:
(return [<expression>])

— If <expression> is specified, the result of its evaluation is used as the return
value.

— E.g.

(deffunction hypotenuse-length (?a ?b)
(bind ?temp (+ (* ?a ?a) (* ?b ?b)))
(return (** ?temp 0.5)))

OR

(deffunction hypotenuse-length (?a ?b)
(bind ?temp (+ (* ?a ?a) (* ?b ?b)))
(bind ?c (** ?temp 0.5))

(return ?c))

TL‘\’\ nI\FFI 1V 'Y e PI\V\(“
111C UCTI Ull CUILIO

~4 +ri 1~
IUTICL Ll L

C

 Watching Deffunctions
— When deffunctions are watched using watch command, an informational
message is printed whenever a deffuction begins or ends execution.

CLIPS> (watch deffucntions)
CLIPS> (unwatch deffunctions)

— Watch specific deffucntions
CLIPS> (watch deffucntions hypotenuse-length)
CLIPS>

e Wildcard parameter

— If the last parameter declared in a deffunction is a multifield variable, which is
referred to as a wildcard parameter, then the deffunction can be called with
more arguments than are specified in the parameter list.

TL‘\’\ nI\FFI 1V 'Y e PI\V\(“
111C UCTI Ull CUILIO

~4 +ri 1~
IUTICL Ll L

C

Deffunction commands

— Display the text representations of a deffunction:
(ppdeffunction <deffunction-name>)

— Delete a deffunction:
(undeffunction <deffunction-name>)

— Display the list of deffunctions defined:
(list-deffunctions [<module-name>])

— Returns a multifield value containning the list of deffucntions.
(get-deffunction-list [<xmodule-name>])

@Y

' onai Lons

A NAafal P
1€ UETEI tt b

C

e Global variables:

— CLIPS allows one to define variables that retain their values outside the scope
of a construct
— Local variables:
(defrule example-1
(data-1 ?x)
=>
(printout t “?x =" ?x crlf))
(defrule example-1
(data-2 ?x)
=>
(printout t “?x =" ?x crlf))

e The value of ?x in rule example-1 does not constrain in any way the value of ?x in
rule example-2.

@Y

11 uidl CUIL IO

~ r\lr\J:rrI vy~
IT UCIE | L

C

* The general format of a defglobal is:
(defglobal [<defmodule-name>] <global-assignment>*)

— Where <global-assignment> is:
<global-variable> = <expression>
— And <global-variable> is:
?*<symbol>*
— Global variable names begin and end with the * character.
e ?xis alocal variable
e ?*x*is aglobal variable.
* E.g
CLIPS> (defglobal ?*x* = 3
?2*y* = (+ ?*x* 1))
CLIPS> ?*x*
3
CLIPS> ?*y*
4
CLIPS>

@Y

T ~hAal CAnctvi i ~F
11 UiJdl CUILISDLUI UL L

IT UCTIEI

e Example:
CLIPS> (defrule area

(radius ?r)

=>
(bind ?area (* ?2*pi* ?*pi* ?r))
(printout t "Area = ' ?area crlif))

CLIPS> (deffacts area circle (radius 4))
CLIPS> (reset)

CLIPS> (run)

Area = 39.47841751413609

CLIPS>
e The value of a defglobal can be changed using the bind command.

@Y

I 7\ el o\
1HICTTILC

CA
Jd

CLIPS provides two explicit techniques for controlling the execution of
rules: salience and modules.

The use of the keyword salience allows the priority of rules to be explicitly
specified.
Normally the agenda acts like a stack.

— the most recent activation placed on the agenda is the first to fire.

Salience allows more important rules to stay at the top of the agenda,
regardless of when the rules were added.

Salience is set using a numeric value ranging from the smallest value of
-10,000 to the highest of 10,000.

— If arule has no salience explicitly assigned by the programmer, CLIPS
assumes a salience of 0.

A newly activated rule is placed on the agenda before all rules with equal
or lesser salience and after all rules with greater salience.

°
1 [

C"\I 7\ el o\
JAIICTI]ICC

No salience values are declared:
(defrule fTire-first

(priority first)

=>

(printout t "Print first" crif))
(defrule fire-second

(priority second)

=>

(printout t "Print second" crlif))
(defrule fire-third

(priority third)

=>

(printout t "Print third" crif))

@Y

I 7\ el o\
1HICTTILC

CA
Jd

Produce the output shown below:
CLIPS> (unwatch all)
CLIPS> (reset)
CLIPS> (assert (priority Tirst))
<Fact-1>
CLIPS> (assert (priority second))
<Fact-2>
CLIPS> (assert (priority third))
<Fact-3>
CLIPS> (run)
Print third
Print second
Print first
CLIPS>

°
1 [

C"\I 7\ el o\
JAIICTI]ICC

e By declaring salience values:
(defrule fTire-fTirst
(declare (salience 30))
(priority first)
=>
(printout t "Print first" crif))
(defrule fire-second
(declare (salience 20))
(priority second)
=>
(printout t "Print second”™ crli¥f))
(defrule fire-third
(declare (salience 10))
(priority third)
=>
(printout t "Print third" crif))

@Y

JAIICTI]ICC

 Produce the following output:

CLIPS> (reset)

CLIPS> (assert (priority second)
(priority first)
(priority third))

<Fact-3>

CLIPS> (agenda)

30f1re-first: -2

20f1re-second: -1

10 fire-third: -3

For a total of 3 activations.

CLIPS>

n-|-r

~ | CAar~d+e
UlIL 1 I

I nAd O
U C adallo

n - - M\

riia>co dil U

 For programs involving hundreds or thousands of rules, the intermixing of
domain knowledge and control knowledge makes development and

maintenance a major problem.

 As an example, consider the problem of performing fault detection,
isolation, and recovery of a system such as an electronic device.

— Different Phases for Fault Detection, Isolation, and Recovery Problem

l" '

Fanlt detection — process of e cogrizing that sormething is not wodsing, properhy

'

Lolation — detentinings what cotporwetts have cansed the problas

|

Fecotrery — detennivirg what steps are hecessary to comect the problan

l :

DlhacAac anA CAntr
FridoTo dliiU o Ll

~ |
Ul l

UL
Q)
O
~t
n

O

* To use salience to organize the rules,
— Assignment of salience for different phases

A

Detection

Isolation Salience

Recovery

— two major drawbacks are:
* control knowledge is still being embedded into the rules using salience.
e does not guarantee the correct order of execution.

* Better approach in controlling the flow of execution is to separate the
control knowledge from the domain knowledge, as shown in the following
figure.

— each rule is given a control pattern that indicates its applicable phase.
— Control rules are then written to transfer control between the different phases

DlhhacAac ~anA CAntraAal CA~t+e
F1iIdoTO dliIU CUILILIVUI TdULO

Separation of Expert Knowledge from Control Knowledge

Expert Knowiedge

Detection Rules Recovery Rules

Isclation Rules

Control Knowledge

Control Rules

nl'\"\l"f\f' -
riidoco dlil

e Control rules:
(defrule detection-to-i1solation

(declare (salience -10))
?phase <- (phase detection)

=>
(retract 7?phase)
(assert (phase i1solation)))

(defrule i1solation-to-recovery
(declare (salience -10))
?phase <- (phase isolation)
=>
(retract 7?phase)

(assert (phase recovery)))

(defrule recovery-to-detection
(declare (salience -10))
?phase <- (phase recovery)

=>
(retract 7?phase)
(assert (phase detection)))

nAd C
U C©

O

r

4~
Ll

O

| C
1T

dC

4
L

S

I nAd C
U C

DihAacAac A mntr
ridsosSo dlil Ll

~ Al CAar~+e
Ul Ul T dULD

* Each of the rules applicable for a particular phase is then given a control
pattern.
(defrule find-fault-location-and-recovery
(phase recovery)
(recovery-solution switch-device
?replacement on)
=>
(printout t "Switch device" ?replacement "on"
crif))

* Asalience hierarchy is a description of the salience values used by an
expert system.

— Each level in a salience hierarchy corresponds to a specific set of rules whose
members are all given the same salience.

DlhhacAac ~anA CAntraAal CA~t+e
F1iIdoTO dliIU CUILILIVUI TdULO

 While the fact (phase detection) is in the fact list, the detection-to-
isolation rule will be on the agenda.

— Since it has a lower salience than the detection rules, it will not fire until all of
the detection rules have had an opportunity to fire.

Salience Hierarchy Using Expert and Control Rules

A

!
_! Expert Rules] |

Lo

Salience

Control Rules 1

>

B
Q)
(0p)

UL

5
Q.
O
Q)
O

M
(0p)
!_1)
@)
=)
—t
)
o

Four-Level Salience Hierarchy

~t
n

!

Constraint Rules]

L Expert Rules

Salience

Query Rules]

Control Rules j

\V/
A'A

11 A'F I 'Y aVYala
Ul 1ICTTILC

o o N C"\
SOUSC Jd

e OQOveruse of salience results in a poorly coded program.
— A main advantage of a rule-based program is that the programmer
does not have to worry about controlling execution.
e Salience should primarily be used as a mechanism for
determining the order in which rules fire.

— Salience should not be used as a method for selecting a single rule
from a group of rules when patterns can be used to express the
criteria for selection

