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Introduction

Reasoning under uncertainty using probability theory
Dealing with uncertainty is one of the main advantages of an expertDealing with uncertainty is one of the main advantages of an expert 
system over a simple algorithm in which all the facts must be known 
to achieve an outcome
By understanding the advantages and disadvantages of each 
approach to uncertainty, you will create an expert system that is best 
for the particular expertise being modeled

SEEM 5750 2



Uncertainty

Uncertainty can be considered as the lack of adequate 
information to make a decisioninformation to make a decision. 
Uncertainty may prevent us from making the best decision 
and may even cause a bad decision to be made. y
A number of theories have been devised to deal with 
uncertainty:

l i l b bilit B i b bilit H tl th b dclassical probability, Bayesian probability, Hartley theory based on 
classical sets, Shannon theory based on probability, Dempster-
Shafer theory, Markov Models, and Zadeh’s fuzzy theory.

Bayesian theory is popular in many diverse areas such as 
biology, psychology, music, and physics.
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Uncertainty

The deductive method of reasoning is called exact reasoning
because it deals with exact facts and the exact conclusions that 
follow from those factsfollow from those facts

the conclusion must be true
Many expert systems applications require inexact reasoning
because the facts or knowledge itself is not known preciselybecause the facts or knowledge itself is not known precisely

E.g. In medical business or expert systems, there may be uncertain 
facts, rules, or both

Classic examples of successful expert systems that dealt withClassic examples of successful expert systems that dealt with 
uncertainty are 

MYCIN for medical diagnosis
PROSPECTOR for mineral exploration p
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Classical probability
A classical probability considers games such as dice cards coinsA classical probability considers games such as dice, cards, coins, 
etc, as ideal systems that do not become worn out
Sample spaces

The result of a trial is a sample point and the set of all possible 
sample points defines a sample space
An event is a subset of the sample space For example theAn event is a subset of the sample space. For example, the 
event { 1 } occurs if the die comes up with a 1
A simple event has only one element and a compound event has 

thmore than one 
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Theory of probability
A formal theory of probability can be made using three axioms:

A t i t i i d b bilit 1 d i ibl t i i dA certain event is assigned probability 1 and an impossible event is assigned  
probability 0

This axiom states that the sum of all events that do not affect each other, 
called mutually exclusive events, is 1. Mutually exclusive events have no y y
sample point in common 
As a corollary of this axiom:

P(E) + P(E’) = 1P(E) + P(E )  1
where E' is the complement of event E
This corollary means that the occurrence and nonoccurrence of an event is a 
mutually exclusive and complete sample space
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Theory of probability

where E1 and E2 are mutually exclusive events.
This axiom means that if E1 and E2 cannot both occur 
simultaneously (mutually exclusive events) then the probability 
of one or the other occurring is the sum of their probabilities

From these axioms theorems can be deduced concerning theFrom these axioms, theorems can be deduced concerning the 
calculation of probabilities under other situations, such as non-
mutually exclusive events, these axioms form the basis for a theory 
of probabilityof probability
These axioms put probability on a sound theoretical basis
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Compound probabilities

The probabilities of compound events can be computed from their 
sample spaces. 
For example, consider the probability of rolling a die such that the 
outcome is an even number and a number divisible by three 

A = { 2, 4, 6 }    B = { 3, 6 }
in the sample space of the die
the intersection of the sets A and B is: 

The compound probability of rolling an even number and a number 
divisible by three is:

where n is the number of elements in the sets and S is the sample 
space
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Compound probabilities
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Compound probabilities

Events that do not affect each other in any way are called independent 
events. 

F t i d d t t A d B th b bilit i i l th d t f thFor two independent events A and B, the probability is simply the product of the 
individual probabilities. 
Events A and B are said to be pairwise independent:

Two events are called stochastically independent events if and only if the 
above formula is true
For three events you might assume that independence is:

Th f l f th t l i d d f N t i th t 2NThe formula for the mutual independence of N events requires that 2N

equations be satisfied:
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Compound probabilities

For three events, the above equation for mutual independence 
requires that all the following equations be satisfied:requires that all the following equations be satisfied:
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Conditional Probabilities
E t th t t t ll l i i fl thEvents that are not mutually exclusive influence one another
Multiplicative Law

Conditional Probability 
Th b bilit f t A i th t t B dThe probability of an event A, given that event B occurred:

The probability P(B) is the a priori or prior probability
it is sometimes called the unconditional probability or an absolute probability.

The probabilities can be calculated as the ratios of the number of events, 
( ) ( ) (S)n(A) or n(B), to the total number in the sample space n(S)
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Conditional Probabilities

If event B has occurred, the reduced sample space is just that of B:
n(B)=6( )
And only the events in A that are associated with B are considered:

In terms of probabilities: 
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Conditional Probabilities
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Conditional Probabilities

Interior probabilities represent the intersections of events. 
The sum of the rows and columns are displayed as Totals and are 

ll d i l b biliti b th li th i f thcalled marginal probabilities because they lie on the margin of the 
table
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Conditional Probabilities
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Conditional Probabilities
1. The probability of a crash for both Brand X and not Brand X (the sample space) is

P(C) = 0.7
2. The probability of no crash for the sample space is:

P(C’) = 0.3
3. The probability of using Brand X is:

P(X) = 0.8
4 The probability of not using Brand X is:4. The probability of not using Brand X is:

P(X’) = 0.2
5. The probability of a crash and using Brand X is:

P(C ∩ X) = 0.6
6. The probability of a crash, given that Brand X is used, is:

7. The probability of a crash, given that Brand X is not used, is:
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Conditional Probabilities

The meaning of the intersection, (5), P(C ∩ X), is the following:
If a disk drive is picked randomly then 0 6 of the time it will beIf a disk drive is picked randomly, then 0.6 of the time it will be 
Brand X and have crashed

The meaning of the conditional probability (6), P(C | X), is very 
different:different: 

If a Brand X drive is picked, then 0.75 of the time it will have 
crashed

If any of the following equations are true, then events A and B are 
independent:

P(A | B) = P(A) or ( | ) ( )
P(B | A) = P(B) or
P(A ∩ B) = P(A) P(B)
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Bayes’ Theorem
The inverse problem is to find the inverse probability, which states the 
probability of an earlier event given that a later one occurred

The solution to this problem is Bayes' TheoremThe solution to this problem is Bayes  Theorem
Bayesian theory is extensively used today in many applications
an example: disk drive crashes

The inverse question is suppose you have a drive and don't know its brandThe inverse question is, suppose you have a drive and don t know its brand, 
what is the probability that if it crashes, it is Brand X? Non-Brand X?
Given that a drive crashed, the probability of it being Brand X can be stated using 
conditional probability and the results (1), (5):

Alternatively, using the Multiplicative Law on the numerator, and (1), (3), (6): 
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Bayes’ Theorem

The probability P(X | C) is the inverse or a posteriori probability, 
which states that if the drive crashed, it was Brand Xwhich states that if the drive crashed, it was Brand X
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Bayes’ Theorem

The general form of Bayes' Theorem

SEEM 5750 21



Hypothetical reasoning andHypothetical reasoning and 
backward induction

Bayes’ Theorem is commonly used for decision analysis 
of business and the social sciencesof business and the social sciences
Many decision analysis problems can be handled.

Decision Analysis Examples 
Problem Formulation
Decision Table and Decision Tree
Decision Making with Probabilities
Expected Value of Perfect Information
Decision Analysis with Sample Information
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Hypothetical reasoning backward induction and

Managers often must make decisions in environments that 

Hypothetical reasoning, backward induction and 
Decision Analysis

Managers often must make decisions in environments that 
are fraught with uncertainty.
Some Examplesp

A manufacturer introducing a new product into the 
marketplace

Wh t ill b  th  ti  f t ti l t ?What will be the reaction of potential customers?
How much should be produced?
Should the product be test-marketed?p
How much advertising is needed?

A financial firm investing in securities
Which are the market sectors and individual securities with the 
best prospects?
Where is the economy headed?y
How about interest rates?
How should these factors affect the investment decisions? 23



Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Problem Formulation
A decision problem is characterized by decision p y
alternatives, states of nature, and resulting payoffs.
The decision alternatives are the different possible 

i h d i i k lstrategies the decision maker can employ.
The states of nature refer to future events, not under 
the control of the decision maker which may occurthe control of the decision maker, which may occur.  
States of nature should be defined so that they are 
mutually exclusive and collectively exhaustive.
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Payoff Tables
The consequence resulting from a specificThe consequence resulting from a specific 
combination of a decision alternative and a 
state of nature is a payoffstate of nature is a payoff.
A table showing payoffs for all combinations 
of decision alternatives and states of natureof decision alternatives and states of nature 
is a payoff table.
P ff b d i t f fitPayoffs can be expressed in terms of profit, 
cost, time, distance or any other appropriate 
measure.
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Economic Outlook
Decision alternatives

States of nature

Maintained (S1) Improving (S2) Getting worse (S3)
CLP (d1) 4 Millions 4 Millions -2 Millions

Decision alternatives

TRACKER FUND (d2) 0 Million 3 Millions -1 Million
HSBC (d3) 1 Million 5 Millions -3 Millions

Payoff (Profit)

Increasing (S1) Stable / Decreasing (S2)
Price of Oil

Payoff (Profit)

Product A (d1) HK$20 HK$10
Product B (d2) HK$18 HK$17

No (S ) Yes (S )
Traffic Jam

Payoff (Cost)

No (S1) Yes (S2)
Bus (d1) 1 hr. 2 hr.
MTR (d ) 45 i 45 iMTR (d2) 45 min. 45 min.

Payoff (Time) 26



Hypothetical reasoning, backward induction

Expected Value Approach

Hypothetical reasoning, backward induction 
and Decision Analysis

Expected Value Approach
The decision maker generally will have some 
information about the relative likelihood of the 
possible states of nature. These are referred to as 
the prior probabilities.
If b bili ti i f ti di h t t fIf probabilistic information regarding he states of 
nature is available, one may use the expected 
value (EV) approach.   ( ) pp
Here the expected return for each decision is 
calculated by summing the products of the payoff 

d h t t f t d th b bilit funder each state of nature and the probability of 
the respective state of nature occurring.  
The decision yielding the best expectedThe decision yielding the best expected 
return is chosen.
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H th ti l i b k d i d tiHypothetical reasoning, backward induction 
and Decision Analysis

The expected value of a decision alternative is the sum 
of weighted payoffs for the decision alternativeof weighted payoffs for the decision alternative.
The expected value (EV) of decision alternative di is 
defined as: Ndefined as:

∑
=

=
N

j
ijji )VP(s)EV(d

1

where:      N = the number of states of nature
P(sj ) = the probability of state of nature sjP(sj )  the probability of state of nature sj

Vij = the payoff corresponding to decision 
alternative di and state of nature sji j
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Hypothetical reasoning, backward induction 

Example: Burger Prince

yp g
and Decision Analysis

Example: Burger Prince
Burger Prince Restaurant is contemplating opening a new 
restaurant on Main Street.  It has three different models, each restaurant on Main Street.  It has three different models, each 
with a different seating capacity.  Burger Prince estimates that 
the average number of customers per hour will be 80, 100, or 
120   Th  ff t bl  f  th  th  d l  i   f ll            120.  The payoff table for the three models is as follows:           

Average Number of Customers Per Hour
s1 = 80     s2 = 100     s3 = 120

Model A        $10,000     $15,000      $14,000
Model B         $ 8,000     $18,000      $12,000
Model C         $ 6,000     $16,000      $21,000
Probability       0.4 0.2 0.4
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Expected Value Approach
Calculate the expected value for each decision.  
The  decision tree on the slide 32 can assist in 
this calculation.  Here d1, d2, d3 represent the 
decision alternatives of models A, B, C, and s1, 
s2, s3 represent the states of nature of 80, 100, 
and 120.
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Decision Trees
A decision tree is a chronological (sequential)A decision tree is a chronological (sequential) 
representation of the decision problem.
Each decision tree has two types of nodes; round nodesEach decision tree has two types of nodes;  round nodes 
correspond to the states of nature while square nodes 
correspond to the decision alternatives.  
The branches leaving each round node represent the 
different states of nature while the branches leaving each 
square node represent the different decision alternativessquare node represent the different decision alternatives.
At the end of each limb of a tree are the payoffs attained 
from the series of branches making up that limb.  
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Hypothetical reasoning, backward induction 

Example: Burger Prince 4
Payoffs

yp g
and Decision Analysis

Example: Burger Prince
Decision Tree .2

.4

4

s1

s2
s3

10,000

15,0002 .4

.4

d1

d2
s1

s3

14,000

8,000
1 .2

.4

d2

d3

s2
s3

18,000

12 000

3

.4

.2
s1

s2

12,000

6,000
4

.4s3
16,000

21,000

4
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Hypothetical reasoning, backward induction 

Expected Value For Each Decision
and Decision Analysis

d1

EMV = .4(10,000) + .2(15,000) + .4(14,000)
= $12,600

Model AA

22

33
d2 EMV = .4(8,000) + .2(18,000) + .4(12,000)

= $11,600

Model AA

Model BModel B
11 33

d3

  $11,600

Model C

11

EMV = .4(6,000) + .2(16,000) + .4(21,000)
= $14,00044

Choose the model with largest EV,  Model C.
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Expected Value of Perfect Information
Frequently information is available which can improve the Frequently information is available which can improve the 
probability estimates for the states of nature.  
The expected value of perfect information (EVPI) is the The expected value of perfect information (EVPI) is the 
increase in the expected profit that would result if one knew 
with certainty which state of nature would occur.  
The EVPI provides an upper bound on the expected value of 
any sample or survey information.  
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

EVPI Calculation
Step 1:Step 1:
Determine the optimal return corresponding to each 
state of naturestate of nature.
Step 2:
Compute the expected value of these optimal returns.
Step 3:Step 3
Subtract the EV of the optimal decision from the amount 
determined in step (2)determined in step (2).
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Example: Burger Prince
Expected Value of Perfect Informationp
Calculate the expected value for the optimum payoff for 
each state of nature and subtract the EV of the optimal each state of nature and subtract the EV of the optimal 
decision.

EVPI  4(10 000)+ 2(18 000)+ 4(21 000) 14 000  $2 000EVPI= .4(10,000)+.2(18,000)+.4(21,000) - 14,000 = $2,000

EV of the optimal decision 
(P.33)

It is also called EV without

The expected value for the optimum payoff for 
each state of nature

It is also called EPPI (Expected Payoff with 
perfect information) It is also called EV without 

perfect information
perfect information)
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Spreadsheet for Expected Value of Perfect 
A B C D E F

1
2

PAYOFF TABLE

Information2
3 Decision Expected Recommended
4 Alternative s1 = 80 s2 = 100 s3 = 120 Value Decision

State of Nature

5 d1 = Model A 10,000 15,000 14,000 12600
6 d2 = Model B 8,000 18,000 12,000 11600
7 d3 = Model C 6,000 16,000 21,000 14000 d3 = Model C
8 Probability 0.4 0.2 0.4
9 14000
10

Maximum Expected Value
10
11 EPPI EVPI
12 10,000 18,000 21,000 16000 2000

Maximum Payoff
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Knowledge of sample or survey information can be used to 
revise the probability estimates for the states of nature.  
Prior to obtaining this information, the probability estimates for 
the states of nature are called prior probabilities. 
With knowledge of conditional probabilities for the outcomes or 
indicators of the sample or survey information, these prior 

b biliti   b  i d b  l i  B ' Th   probabilities can be revised by employing Bayes' Theorem.  
The results of this analysis are called posterior probabilities or 
branch probabilities for decision treesbranch probabilities for decision trees.

(See the example on Slides 43 44)(See the example on Slides 43-44)
38SEEM 5750



Hypothetical reasoning backward induction

Branch (Posterior) Probabilities Calculation            

Hypothetical reasoning, backward induction 
and Decision Analysis
Branch (Posterior) Probabilities Calculation            

Step 1:
For each state of nature  multiply the prior probability by its For each state of nature, multiply the prior probability by its 
conditional probability for the indicator (outcome)-- this 
gives the joint probabilities for the states and indicator 
(outcome).
Step 2:    
S  th  j i t b biliti   ll t t  thi  i  th  Sum these joint probabilities over all states -- this gives the 
marginal probability for the indicator (outcome).
Step 3:    Step 3:    
For each state, divide its joint probability by the marginal 
probability for the indicator (outcome) -- this gives the 
posterior probability distribution.

(See the example on Slides 43-46) 39SEEM 5750



Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

The expected value of sample informationThe expected value of sample information
(EVSI) is the additional expected profit 
possible through knowledge of the sample or possible through knowledge of the sample or 
survey information.  
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

EVSI Calculation
Step 1: (See the example on slides 47-49)
Determine the optimal decision and its expected return for 
the possible outcomes of the sample or survey using the 
posterior probabilities for the states of nature. 
Step 2: (See the example on slide 50)
Compute the expected value of these optimal returns.
Step 3: (See the example on slide 50)
Subtract the EV of the optimal decision obtained without 
using the sample information from the amount determined in 
step (2)step (2).
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Hypothetical reasoning, backward induction yp g
and Decision Analysis

Efficiency of sample information measure the value of 
the market research information.
Is the ratio of EVSI to EVPI. 
As the EVPI provides an upper bound for the EVSI, As the EVPI provides an upper bound for the EVSI, 
efficiency is always a number between 0 and 1.

%*
EVPI
EVSI  ninformatio sample of Efficency 100=

(See the example on Slides 52)

EVPI

( p )

42



H th ti l i b k d i d tiHypothetical reasoning, backward induction 
and Decision Analysis

Example: Burger Prince
B  P i  t d id  h th   t t  h   Burger Prince must decide whether or not to purchase a 
marketing survey from Stanton Marketing for $1,000.  The 
results of the survey (outcomes) are "favorable" or results of the survey (outcomes) are favorable  or 
"unfavorable".  The conditional probabilities are:

P(favorable |   80 customers per hour)  = .2P(favorable |   80 customers per hour)   .2
P(favorable | 100 customers per hour)  = .5  
P(favorable | 120 customers per hour)  = .9    P(favorable | 120 customers per hour)   .9    

Should Burger Prince have the survey performed by Stanton Should Burger Prince have the survey performed by Stanton 
Marketing?
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H th ti l i b k d i d tiHypothetical reasoning, backward induction 
and Decision Analysis

Avg. NumberMarketMarketLegend:
D i i vg. Nu be

of Customers
Per Hour

Ma ketMa ket
SurveySurvey
ResultsResults

Decision
Chance
ConsequenceConsequence

RestaurantRestaurant
SizeSize ProfitMarketMarket

SurveySurveyyy
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Posterior Probabilities
P(80 | Favorable)

Favorable
State Prior Conditional Joint Posterior
80         .4                .2             .08          .148 

100         2                5             10          185100         .2                .5             .10          .185
120         .4                .9             .36 .667

Total   .54        1.000
P(favorable) = .54( )
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Posterior Probabilities
P(80 | Unfavorable)

Unfavorable
State Prior Conditional Joint Posterior

80         .4                .8             .32          .696
100         2                5             10          217100         .2                .5             .10          .217
120         .4                .1             .04 .087

Total    .46        1.000
P(unfavorable) = .46( )
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Hypothetical reasoning backward induction

Example: Burger Prince ss ( 148)( 148)

Hypothetical reasoning, backward induction 
and Decision Analysis

Example: Burger Prince
Decision Tree (top half)

ss1 1 (.148)(.148)

ss22 (.185)(.185)
ss ( 667)( 667)

$10,000$10,000

$15,000$15,000
dd

44

ss11 (.148)(.148)

ss33 (.667)(.667)
$14,000$14,000

$8,000$8,000

dd11

dd ss22 (.185)(.185)
ss33 (.667)(.667) $18,000$18,000

$12,000$12,000II

dd22

dd33

22 55

ss11 (.148)(.148)

ss22 (.185)(.185)
( 667)( 667)

$ ,$ ,
$6,000$6,000

$16,000$16,000

II11
(.54)(.54)

33

66
ss3 3 (.667)(.667)

$ ,$ ,

$21,000$21,00011
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Hypothetical reasoning, backward induction 

Decision Tree (bottom half)

yp g
and Decision Analysis

Decision Tree (bottom half)
ss11 (.696)(.696)

ss ( 217)( 217)
$10,000$10,00011

( 696)( 696)

ss22 (.217)(.217)
ss33 (.087)(.087)

$15,000$15,000

$14,000$14,000

II22
(.46)(.46)

dd11
77

ss11 (.696)(.696)
ss22 (.217)(.217)

ss33 (.087)(.087)
$18,000$18,000

$8,000$8,000dd22
8833

ss11 (.696)(.696)
ss ( 217)( 217)

ss3 3 (.087)(.087)
$12,000$12,000

$6,000$6,000
dd33

ss22 (.217)(.217)
ss33 (.087)(.087)

$16,000$16,000

$21,000$21,000

99

$ ,$ ,
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Hypothetical reasoning, backward induction 

dd11
EMV = .148(10,000) + .185(15,000)EMV = .148(10,000) + .185(15,000)

+ 667(14 000) = $13 593+ 667(14 000) = $13 59344

and Decision Analysis
11

dd22

dd

+ .667(14,000) = $13,593+ .667(14,000) = $13,593

EMV = .148 (8,000) + .185(18,000)EMV = .148 (8,000) + .185(18,000)
+ 667(12 000) = $12 518+ 667(12 000) = $12 518

5522

$17,855$17,855

II1   1   (Favorable)(Favorable)
(.54)(.54)

dd33
+ .667(12,000) = $12,518+ .667(12,000) = $12,518

EMV = .148(6,000) + .185(16,000) +.667(21,000) EMV = .148(6,000) + .185(16,000) +.667(21,000) 
$17 855 (M d l C)$17 855 (M d l C)

66

EMV = 696(10 000) + 217(15 000) + 087(14 000)EMV = 696(10 000) + 217(15 000) + 087(14 000)

= $17,855                 (Model C)= $17,855                 (Model C)

77

11

II2 2 (Unfavorable)(Unfavorable)
(.46)(.46)

dd11

dd22

EMV = .696(10,000) + .217(15,000) +.087(14,000)EMV = .696(10,000) + .217(15,000) +.087(14,000)
= $11,433              = $11,433              (Model A)(Model A)

EMV 696(8 000) + 217(18 000)EMV 696(8 000) + 217(18 000)

77

dd33

EMV = .696(8,000) + .217(18,000)EMV = .696(8,000) + .217(18,000)
+ .087(12,000) = $10,554+ .087(12,000) = $10,554

8833

$11,433$11,433
EMV = .696(6,000) + .217(16,000)EMV = .696(6,000) + .217(16,000)

+.087(21,000) = $9,475+.087(21,000) = $9,475
99
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Hypothetical reasoning, backward induction 

Expected Value of Sample Information
and Decision Analysis

If the outcome of the survey is "favorable" choose Model C.  If 
it is unfavorable, choose model A.

EVSI = .54($17,855) + .46($11,433) - $14,000 = $900.88 

The expected value of The expected value of the optimal decision 
obtained without using information (P 33)

p
these optimum returns

obtained without using information (P.33)

Since this is less than the cost of the survey, the survey should 
not be purchased.
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EMV = .4(10,000) + .2(15,000) + .4(14,000)A l t T Di ( , ) ( , ) ( , )
= $12,600A complete Tree Diagram

EMV = 4(6 000) + 2(16 000) + 

d1

d
$14,000

EMV = 4(8 000) + 2(18 000) + 4(12 000)

EMV = .4(6,000) + .2(16,000) + 
.4(21,000)

= $14,000

d3

d2

A1 No survey
$14,000

d1
EMV = .148(10,000) + .185(15,000)

+ 667(14 000) = $13 593$17 855

EMV = .4(8,000) + .2(18,000) + .4(12,000)
=  $11,600

I1
(.54)

d2
d3

+ .667(14,000) = $13,593
EMV = .148 (8,000) + .185(18,000)

+ .667(12,000) = $12,518
EMV = .148(6,000) + .185(16,000)

$17,855

A2 Survey

I2 d1
EMV = .696(10,000) + .217(15,000)

+ 087(14 000)= $11 433

EMV  .148(6,000)  .185(16,000)
+.667(21,000) = $17,855$14,900

2
(.46) d2

d3

+.087(14,000)= $11,433
EMV = .696(8,000) + .217(18,000)

+ .087(12,000) = $10,554
EMV = 696(6 000) + 217(16 000)

$11,433
EMV = .696(6,000) + .217(16,000)

+.087(21,000) = $9,475
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H th ti l i b k d i d tiHypothetical reasoning, backward induction 
and Decision Analysis

Example: Burger Prince
Efficiency of Sample Information:
The efficiency of the survey:The efficiency of the survey:

EVSI/EVPI  =  ($900.88)/($2000)  =  .4504
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H th ti l i b k d i d tiHypothetical reasoning, backward induction 
and Decision Analysis

Another example of Bayesian decision making under uncertainty, 
The problem of oil exploration: decide what the chances are of finding oilThe problem of oil exploration: decide what the chances are of finding oil

If there is no evidence either for or against oil, we assign the 
subjective prior probabilities for oil, O:

P(O) P(O’) 0 5P(O) = P(O’) = 0.5
If we believe that there is better than a 50-50 chance of finding oil, we 
may set the following: 

P(O) = 0.6 P(O') = 0. 4
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H th ti l i b k d i d tiHypothetical reasoning, backward induction 
and Decision Analysis

Suppose the prior probabilities for oil, O, are 
P(O) = 0 6 P(O’) = 0 4P(O)  0.6 P(O )  0.4

Assume that the past history of the seismic test has given the 
following conditional probabilities, where + means a positive 

t d i ti toutcome and - is a negative outcome

The Addition Law is then used to calculate the total probability of a + 
and a - test. 
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H th ti l i b k d i d tiHypothetical reasoning, backward induction 
and Decision Analysis

The P(+) and P(-) are unconditional probabilities that can now be 
used to calculate the posterior probabilities at the site, as shown inused to calculate the posterior probabilities at the site, as shown in 
Fig. 4.10.

For example, the P(O’| -) is the posterior probability for no oil at the site 
based on a negative testbased on a negative test.
The joint probabilities are then computed.

The joint probabilities of Fig. 4.10 are the same as in Fig. 4.9.
Th i i b biliti i t i d lt hThe revision probabilities is necessary to give good results when 
experimental information, such as the seismic test results, occurs after 
the initial probability estimates (or guess).

$Payoff: $1,000,000 (if there is oil)
Costs: $200,000 (Drilling expense)

$50,000 (Seismic survey cost)
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Posterior Probabilities
P(O | +)

Test result +
State Prior Conditional Joint Posterior
O(Oil)   0.6               0.8           0.48     0.923 = 12/13

O’(No Oil)  0 4               0 1           0 04 0 077 = 1/13O (No Oil)  0.4               0.1           0.04 0.077 = 1/13
Total   0.52       1.000

P(+) = 0.52
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Hypothetical reasoning backward inductionHypothetical reasoning, backward induction 
and Decision Analysis

Posterior Probabilities
P(O | -)

Test result -
State Prior Conditional Joint Posterior
O(Oil)   0.6               0.2           0.12     0.25 = 1/4

O’(No Oil)  0 4               0 9           0 36 0 75 = 3/4O (No Oil)  0.4               0.9           0.36 0.75 = 3/4
Total   0.48       1.000

P(-) = 0.48
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Hypothetical reasoning, backward induction 
and Decision Analysis
TreePlan Academic 0.6

Oil
$500,000.00

Drill $1,000,000.00 $500,000.00

-$500,000.00 $100,000.00 0.4
No Oil

No Test -$500,000.00
1 $0.00 -$500,000.00

$0.00 $100,000.00

Quit
$0.00

$0.00 $0.00

0.923076923
OilOil

$450,000.00
Drill $1,000,000.00 $450,000.00

2
$170,000.00 -$500,000.00 $373,076.92 0.076923077

0.52 No Oil
+ -$550,000.00

1 $0.00 -$550,000.00,
$0.00 $373,076.92

Quit
-$50,000.00

$0.00 -$50,000.00
Test

0.25
-$50,000.00 $170,000.00 Oil

$450,000.00
Drill $1,000,000.00 $450,000.00

-$500,000.00 -$300,000.00 0.75
0.48 No Oil

- -$550,000.00
2 $0 00 $550 000 00
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Hypothetical reasoning, backward induction and y g
Decision Analysis

$500,000 (Drilling expense)
TreePlan Academic 0.6

Oil
$500,000.00

Drill $1,000,000.00 $500,000.00

-$500,000.00 $100,000.00 0.4
No Oil

No Test -$500,000.00$ ,
1 $0.00 -$500,000.00

$0.00 $100,000.00

Quit
$0.00

$0.00 $0.00

0 9230769230.923076923
Oil

$450,000.00
Drill $1,000,000.00 $450,000.00

2
$170,000.00 -$500,000.00 $373,076.92 0.076923077

0.52 No Oil
+ -$550,000.00

1 $0 00 $550 000 001 $0.00 -$550,000.00
$0.00 $373,076.92

Quit
-$50,000.00

$0.00 -$50,000.00
Test

0.25
$1 0 000 00-$50,000.00 $170,000.00 Oil

$450,000.00
Drill $1,000,000.00 $450,000.00

-$500,000.00 -$300,000.00 0.75
0.48 No Oil

- -$550,000.00
2 $0.00 -$550,000.00
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The odds of belief
fPropositions are statements that are true or false

For example, an event may be: 
"The patient is covered with red spots“The patient is covered with red spots

And the proposition is:
"The patient has measles" 

Given that A is a proposition, the conditional probability 
P(A|B) is not necessarily a probability in the classical 
sense if the events and propositions cannot be repeated or 
have a mathematical basis. 
P(A|B) can be interpreted as the degree of belief that A is 
true, given B , g

If P(A|B) = 1, then we believe that A is certainly true. 
If P(A|B) = 0, then we believe A is certainly false
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The odds of belief
C diti l b bilitConditional probability 

is referred to as the likelihood, as in P(H|E), which expresses the 
likelihood of a hypothesis, H, based on some evidence, E

Hypothesis is used for some proposition whose truth or falseness is 
not known for sure on the basis of some evidence 

Likelihood
degree of belief in non-repeatable events

For example, 
Suppose you are 95% sure that your car will start the next time.Suppose you are 95% sure that your car will start the next time. 
One way of interpreting this likelihood is in terms of the odds of a 
bet
The odds on A against B given some event C is:The odds on A against B given some event C is:

If B = A’
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The odds of belief
d fi idefining:

P = P(A|C)
gives:gives:

In terms of gambling odds, P as wins and 1 - P asIn terms of gambling odds, P as wins and 1 P as 
losses:

The likelihood of P = 95% is thus equivalent to:

that you believe the car will start
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The odds of belief

Probabilities are generally used with deductive problems 
in which a number of different events E may occurin which a number of different events, Ei, may occur 
given the same hypothesis

For example, given that a die rolls an even number, there areFor example, given that a die rolls an even number, there are 
three possible events:

P(2|even)
P(4|even)P(4|even) 
P(6|even)
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Sufficiency and necessity
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Sufficiency and necessity

Equation (5) is known as the odds-likelihood form of Bayes’ 
Theorem
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Sufficiency and necessity
f S f ffThe factor LS is also called the likelihood of sufficiency 

Equation (5) can be used to solve for LS as follows:

Now P(H) /P(H’) is some constant, C, and so Equation (6) 
becomes 

If E is logically sufficient for concluding H, then
P(H|E) = 1 and P(H'|E) = 0

if LS th th id E i l i ll ffi i t f
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Sufficiency and necessity

Equation (4) also shows in this case that H is sufficient for E 
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Sufficiency and necessity
The likelihood of necessity LN is defined similarly to LSThe likelihood of necessity, LN, is defined similarly to LS 
as:

If LN = 0, then P(H|E') = 0
This means that H must be false when E' is true
If E is not present then H is false, which means that E is necessary 
for H

The LS factor shows how much the posterior odds are p
changed when the evidence is present
The LN factor shows how much the posterior odds are 
h d h th id i b t
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Sufficiency and necessity
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Sufficiency and necessity
A l i th PROSPECTOR t tAs an example, in the PROSPECTOR expert system 

IF there are quartz-sulfide veinlets
THEN there is a favorable alteration for the potassic zone
The LS and LN values for this rule are: 

LS = 300 
LN = 0.2
hi h th t b ti f t lfid i l t i f blwhich means that observation of quartz-sulfide veinlets is very favorable 

while not observing the veinlets is mildly unfavorable
If LN were < < I, then the absence of quartz-sulfide veinlets would 
strongly suggest the hypothesis is falsestrongly suggest the hypothesis is false

An example is the rule:
IF glassy limonite
THEN best mineralization favorabilityTHEN best mineralization favorability

with:
LS = 1000000 
LN = 0.01
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