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Propositional Logic 
and Methods of 
Inference
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Logic
 Knowledge can also be represented by the 

symbols of logic, which is the study of the rules 
of exact reasoning.

 Logic is also of primary importance in expert 
systems in which the inference engine reasons 
from facts to conclusions.

 A descriptive term for logic programming and 
expert systems is automated reasoning systems.
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Propositional logic
 Formal logic is concerned with the syntax of statements, not their 

semantics
 An example of formal logic, consider the following clauses with 

nonsense words squeeg and moof
Premise: All squeegs are moofs 
Premise: John is a squeeg 
Conclusion: John is a moof

 The argument is valid no matter what words are used
Premise: All X are Y 
Premise: Z is a X 
Conclusion: Z is a Y 

is valid no matter what is substituted for X, Y, and Z
 Separating the form from the semantics, the validity of an argument 

can be considered objectively, without prejudice caused by the 
semantic
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Propositional logic

 Propositional logic is a symbolic logic for manipulating propositions
 propositional logic deals with the manipulation of logical variables, which 

represent propositions 
 Propositional logic is concerned with the subset of declarative 

sentences that can be classified as either true or false
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Propositional logic
 A sentence whose truth value can be determined is called a 

statement or proposition 
 A statement is also called a closed sentence because its truth value is 

not open to question 
 Statements that cannot be answered absolutely are called open 

sentences
 A compound statement is formed by using logical connectives on 

individual statements
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Propositional logic
 The conditional is analogous to the arrow of production rules in that 

it is expressed as an IF-THEN form. For example:
if it is raining then carry an umbrella
p  q

where
p = it is raining
q = carry an umbrella

 The bi-conditional, p ↔ q, is equivalent to: 
(p  q) ^ (q  p)

 and has the following meanings:
 p if and only if q 
 q if and only if p
 if p then q, and if q then p
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Propositional logic
 A tautology is a compound statement that is always true.
 A contradiction is a compound statement that is always false
 A contingent statement is one that is neither a tautology nor a 

contradiction
 For example, the truth table of p v ~p shows it is a tautology. while 

p ^ ~p is a contradiction
 If a conditional is also a tautology, then it is called an implication 

and has the symbol => in place of →
 A bi-conditional that is also a tautology is called a logical 

equivalence or material equivalence and is symbolized by either  
 or  ≡
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Propositional logic
 In logic, the conditional is defined by its truth table, 

 e.g. p → q
where p and q are any statements, this can be translated as:

 p implies q 
 if p then q
 p, only if 
 q if p 
 p is necessary for p

 For example, let p represent “you are 18 or older” and q represents 
“you can vote”

you are 18 or older implies you can vote
if you are 18 or older then you can vote
you are 18 or older, only if you can vote
you are 18 or older is sufficient for you can vote 
you can vote if you are 18 or older
you can vote is necessary for you are 18 or older
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Propositional logic
 A set of logical connectives is adequate if every truth function can be 

represented using only the connectives from the adequate set. 
 Examples of adequate sets are

 The" | " operator is called a stroke or alternative denial. It is used to 
deny that both p and q are true.
 p | q affirms that at least one of the statements p or q is true

 The joint denial operator, “↓”, denies that either p or q is true
 p↓q affirms that both p and q are false
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Propositional logic
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Propositional logic
p q p → q ~p ~p v q 
T T T F T
T F F F F
F T T T T
F F T T T

Note that p → q is equivalent to ~p v q
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Rules of inference

 In a formal way,
A = There is power
B = The computer will work

A  B
A____
:. B

 A general schema:
p  q
p____
:. q

where p and q are logical variables that can represent any statements 
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Rules of inference
 The use of logical variables in propositional logic allows more 

complex types. 
 Inference schema of this propositional form is called by a variety of 

names: 
 direct reasoning, modus ponens, law of detachment, and assuming the 

antecedent
 This modus ponens schema could also have been written with 

differently named logical variables as:
r  s
r___
:. s

 Another notation for this schema is:
r, r  s;    :. s

 A more general form of an argument is:
P1, P2, … PN ;   :. C

 where the uppercase letters Pi represent premises such as r, r  s, 
and C is the conclusion 
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Rules of inference
 An analogous argument for production rules can be written in the 

general form:

 if the premises and conclusion are all schemata, the argument:
P1, P2, … PN; :. C

is a formally valid deductive argument if and only if:
is a tautology.

 is a tautology, 
as it is true for any values of p and q
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Rules of inference
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Rules of inference

 A shorter method of determining a valid argument is to consider only 
those rows of the truth table in which the premises are all true

 For modus ponens, the p  q premise and p premise are both true 
only in the first row, and so is the conclusion. 

 Hence, modus ponens is a valid argument
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Rules of inference
 Arguments can be deceptive

If there are no bugs, then the program compiles
There are no bugs
:. The program compiles

If there are no bugs, then the program compiles 
The program compiles
:. There are no bugs

 Is this a valid argument? 
 The schema for arguments of this type is

p  q
q____
:. p
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Rules of inference

 The argument is not valid
 The third row shows that if the premises are true, the conclusion is false

 This particular fallacious argument is called the fallacy of the 
converse. The converse is defined in Table 3.9



SEEM 5750 19

Rules of inference
 Another example:

p  q
~q____
:. ~p

is valid

 This particular schema is called by a variety of names: indirect 
reasoning, modus tollens, and law of contraposition
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Rules of inference
 The rules of inference can be applied to arguments with more than two 

premises 
Chip prices rise only if the yen rises. 
The yen rises only if the dollar falls and

if the dollar falls then the yen rises.
Since chip prices have risen,

the dollar must have fallen
 Let the propositions be: The argument:

C = chip prices rise 
Y = yen rises
D = dollar falls
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Rules of inference

 If the conditional p  q and its converse q  p are both true, then 
p and q are equivalent
 p  q ^ q  p is equivalent to the biconditional p ↔ q or equivalence 

p≡ q
 The argument becomes:

 Since Y and D are equivalent from (2), we can substitute D for Y in (1) 
to yield (4)

(4)  C D
(3)  C____
:.  D

Hence the argument is valid
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Rules of inference

 The rule of substitution 
 the substitution of one variable that is equivalent to another is a rule of 

inference called the rule of substitution
 The rules of modus ponens and substitution are two basic rules of 

deductive logic 
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Resolution

 Resolution makes automatic theorem provers practical tools for 
solving problems.

 Before resolution can be applied, the well-formed formulas (wffs) 
must be in a normal or standard form. 
 The three main types of normal forms are conjunctive normal form, 

clausal form, and its Horn clause subset
 The basic idea of normal form is to express wffs in a standard form 

that uses only the ^, v, and possibly ~
 The resolution method is then applied to normal form wffs in which all 

other connectives and quantifiers have been eliminated
 Resolution is an operation on pairs of disjuncts, which produces new 

disjuncts, which simplifies the wff
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Resolution
 A wff in conjunctive normal form 

 Terms such as Pi, must be literals, which mean that they contain 
no logical connectives such as the conditional and biconditional, 
or quantifiers

 A literal is an atomic formula or a negated atomic formula

 For example, the following wff is in conjunctive normal 
form:

 The terms within parentheses are clauses: 
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Resolution
 The full clausal form can express any predicate logic formula but may 

not be as natural or readable for a person 
 A full clausal form expression is generally written in a special form called 

Kowalski clausal form:

A1, A2, … AN B1, B2, … BM 
 if all the subgoals A1, A2, … AN are true, then one or more of B1, or B2, … or BM  

are true also
 This clause, written in standard logical notation, is:
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Resolution

 This can be expressed in disjunctive form as the disjunction of literals 
using the equivalence:
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Resolution

 The problem with trying to prove a theorem directly 
 the difficulty of deducing it using only the rules of inference and axioms 

of the system
 To prove a theorem is true the classical method of reductio ad 

absurdum, or method of contradiction, is used
 We try to prove the negated wff is a theorem.
 If a contradiction results, then the original non-negated wff is a theorem.

 The basic goal of resolution is to infer a new clause, the resolvent, 
from two other clauses called parent clauses

 By continuing the process of resolution, eventually a contradiction 
will be obtained or the process is terminated because no progress is 
being made
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Resolution

 A simple example of resolution – consider the following two clauses:

 by writing the premises as:

 One of the Axioms of Distribution is:

 Applying this to the premises gives:
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Resolution
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Resolution systems and 
deduction
 Given wffs A1, A2, … AN and a logical conclusion or theorem C, we 

know:
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Resolution systems and 
deduction
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Resolution systems and 
deduction

 if (1) is valid, then its negation (2) must be invalid. 
 if (1) is a tautology then (2) must be a contradiction. 

 Formulas (1) and (2) represent two equivalent ways of proving that a 
formula C is a theorem. 
 Formula (1) can be used to prove a theorem by checking to see if it is true 

in all cases. 
 Formula (2) can be used to prove a theorem by showing (2) leads to a 

contradiction.
 Proving a theorem by showing its negation leads to a contradiction 

is proof by reductio ad absurdum. 
 The primary part of this type of proof is the refutation. 

 Resolution is a sound rule of inference that is also refutation 
complete
 because the empty clause will always be the eventual result if there is 

a contradiction in the set of clauses. 
 Resolution refutation will terminate in a finite number of steps if 

there is a contradiction 
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Resolution systems and 
deduction
 As a simple example of proof by resolution refutation, consider the 

argument:
A  B
B  C
C  D
:. A  D

 To prove that the conclusion A  D is a theorem by resolution 
refutation, 

 first convert it to disjunctive form using the equivalence:
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Resolution systems and 
deduction

 and its negation is:

 The conjunction of the disjunctive forms of the premises and the 
negated conclusion gives the conjunctive normal form suitable for 
resolution refutation
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Shallow and causal reasoning
 Resolution systems and production rule systems are two popular 

paradigms for proving theorems
 Consider an expert system that uses an inference chain 

 a longer chain represents more causal or deep knowledge
 shallow reasoning commonly uses a single rule or a few inferences

 The quality of knowledge in the rules is also a major factor in 
determining deep and shallow reasoning

 The conclusion of an inference chain is a theorem because it is 
proven by the chain of inference, as demonstrated by the previous 
example:

 Expert systems that use an inference chain to establish a conclusion 
are really using theorems
 Instead, expert systems would be restricted to shallow inferences of single rules 

with no chaining
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Shallow and causal reasoning
 Consider the following rule

(1) IF a car has
a good battery 
good sparkplugs 
gas
good tires

THEN the car can move
 Explanation facility:

 if the user asked how the car can move, the expert system could respond by 
listing its conditional elements:

a good battery 
good sparkplugs 
gas
good tires
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Shallow and causal reasoning

 This rule is also an example of shallow reasoning
 there is little or no understanding of cause and effect in shallow 

reasoning because there is little or no inference chain
 In shallow reasoning 

 there is little or no causal chain of cause and effect from one rule to 
another. 

 In the simplest case, the cause and effect are contained in one with no 
relationship to any other rule 

 The advantage of shallow reasoning compared to causal reasoning:
 the ease of programming

 Frame are useful for causal or deep reasoning 
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Shallow and causal reasoning
 We can add simple causal reasoning to our rule by defining 

additional rules such as:
(2) IF the battery is good

THEN there is electricity
(3) IF there is electricity and the sparkplugs are good 

THEN the sparkplugs will fire
(4) IF the sparkplugs fire and there is gas

THEN the engine will run
(5) IF the engine runs and there are good tires

THEN the car will move
 with causal reasoning, the explanation facility can give a good 

explanation of what each car component does since each element is 
specified by a rule
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Shallow and causal reasoning

 Causal reasoning can be used to construct a model of the real 
system that behaves in all respects like the real system

 However, causal models are neither always necessary nor 
desirable.
 For example, the classic MUD expert system serves as a consultant to 

drilling fluid or mud engineers 
 A causal system would not be of much use because the drilling engineer 

cannot normally observe the causal chain of events occurring far below the 
ground 

 The situation is very different in medicine where physicians have a wide range of 
diagnostic tests that can be used to verify intermediate events

 Another reason for not using causal reasoning in MUD is that there are a 
limited number of diagnostic possibilities and symptoms  
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Shallow and causal reasoning

 Because of the increased requirements for causal reasoning, it may 
become necessary to combine certain rules into a shallow reasoning 
one. 
 The resolution method with refutation can be used to prove that a single 

rule is a true conclusion of multiple rules
 Suppose to prove that rule (1) is a logical conclusion of rules (2) - (5)

 Using the following propositional definitions
B = battery is good
E = there is electricity 
G = there is gas
S = sparkplugs are good

C = car will move
F = sparkplugs will fire 
R = engine will run
T = there are good tires
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Shallow and causal reasoning

 The first step in applying resolution refutation is to negate the 
conclusion or goal rule:

 Now each of the other rules is expressed in disjunctive form using 
equivalences such as:
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Shallow and causal reasoning

 to yield the following new versions of (2) - (5):
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Shallow and causal reasoning
 Starting at the top of the tree, the clauses are represented as nodes, which are 

resolved to produce the resolvent below. For example

 are resolved to infer:
 which is then resolved with:

 Since the root of the tree is nil, this is a contradiction. By refutation,

 is a theorem since its negation leads to a contradiction. 
 Thus rule (1) does logically follow from rules (2) - (5).


