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Given a graph 𝐺 , a cost associated with each node, and a budget 𝐵, the budgeted influence maximization

(BIM) aims to find the optimal set 𝑆 of seed nodes that maximizes the influence among all possible sets such

that the total cost of nodes in 𝑆 is no larger than 𝐵. Existing solutions mainly follow the non-adaptive idea,

i.e., determining all the seeds before observing any actual diffusion. Due to the absence of actual diffusion

information, they may result in unsatisfactory influence spread. Motivated by the limitation of existing

solutions, in this paper, we make the first attempt to solve the BIM problem under the adaptive setting, where

seed nodes are iteratively selected after observing the diffusion result of the previous seeds. We design the

first practical algorithm which achieves an expected approximation guarantee by probabilistically adopting a

cost-aware greedy idea or a single influential node. Further, we develop an optimized version to improve its

practical performance in terms of influence spread.

Besides, the scalability issues of the adaptive IM-related problems still remain open. It is because they

usually involve multiple rounds (e.g., equal to the number of seeds) and in each round, they have to construct

sufficient new reverse-reachable set (RR-set) samples such that the claimed approximation guarantee can

actually hold. However, this incurs prohibitive computation, imposing limitations on real applications. To

solve this dilemma, we propose an incremental update approach. Specifically, it maintains extra construction

information when building RR-sets, and then it can quickly correct a problematic RR-set from the very step

where it is first affected. As a result, we recycle the RR-sets at a small computational cost, while still providing

correctness guarantee. Finally, extensive experiments on large-scale real graphs demonstrate the superiority

of our algorithms over baselines in terms of both influence spread and running time.
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1 INTRODUCTION
With the massive proliferation of social networks, viral marketing has become one of the most

effective strategies in information dissemination, product promotion, and ideology formation, etc.,

by mining the network value of users [10]. In applications, it is a common wish that the influence

spread could be maximized when recruiting only a small subset of users as the seeds. In response

to this practical demand, Kempe et al. first formalize the influence maximization (IM) problem in

[27] and have thereafter inspired a plethora of research in this field [2, 4, 5, 14, 21, 31, 38, 39, 52].

The above efforts mainly belong to the non-adaptive category, where seed users are selected

all at once, implying that the marketing company has to determine all the seed users before

observing any diffusion results. In practice, some seeds, such as fake influencers [13], may fall

significantly short of the expected spread. Hence, companies tend to adopt the adaptive approach

that alternates between seed selection and influence diffusion. Let us consider a case study released

by the influencer marketing agency IZEA, where the famous fashion company Guess engaged them

to raise awareness of their eyewear collection on Instagram in 2019 [24]. To accomplish this task,

IZEA progressively recruited 31 influencers over a span of at least 45 days. For instance, Virginia

Varinelli (with 484k followers) posted her content on October 1, followed by André Hamann (with

990k followers) on October 9, Nadya Hasan (with 323k followers) on October 20, and Anita Místico

(with 90k followers) on October 30. Further, Rocío Camacho (with 820k followers) was invited

to enhance the influence on November 15. As promoted on IZEA’s website, their team provides

detailed analytics and reports that help understand how the campaign is performing and make

adjustments to ensure the best possible results.

In addition, in real-world scenarios, the costs to invite influencers are often different from one

another. Typically, the cost is measured by the number of followers an influencer has. It is reported

that a nano influencer (1000–10,000 followers) on Instagram costs $10–$100 for each post, while a

mega influencer (1,000,000+ followers) costs over $10,000 for each post [40]. Accordingly, clients are

usually recommended to determine their budget for the influencer marketing campaign, depending

on their marketing objectives [25]. This is also reflected in the case studies released by IZEA. For

example, Visit Tampa Bay, the official tourism organization for the city of Tampa, Florida, launched

an influencer marketing campaign to attract more visitors to the Bay via IZEA. As shown in [26], the

campaign is carefully conducted under a tight budget of $66,250 provided by Visit Tampa Bay. Other

influencer marketing agencies, such as Flaminijoy [12] and Linqia [32], also invite their clients to

detrmine the budget for campaign. This naturally motivates us to study the influence maximization

problem under the budgeted adaptive setting (i.e. the budgeted adaptive IM problem, BAIM), aiming

to provide efficient algorithms for practical viral marketing with theoretical guarantees.

To maximize the spread under a budget constraint, an intuitive greedy strategy may be considered

for solution, which adaptively selects the node with maximum influence per unit cost as the seed.

However, such a seemingly promising strategy provides no constant approximation guarantee. To

illustrate, let us consider the case where a graph consists of node 𝑢1 with influence 2 · 𝜖 and cost 𝜖 ,

node 𝑢2 with influence 1 and cost 1, and all the other nodes with costs larger than 1. Given budget

𝐵 = 1, according to the greedy strategy, we should select 𝑢1 first, and then no other node can be

taken in any more. It is clear that the optimal solution should be node 𝑢2 with influence spread 1.

Since 𝜖 can be an arbitrarily small value, we know that the greedy strategy achieves no constant

approximation guarantee. To solve this problem, we develop the first practical framework MAPLE
1

for the BAIM problem in Section 3, which achieves an expected approximation guarantee by

probabilistically adopting one of two sub-policies (i.e., CaGreedy and MIS). To improve the practical

performance, we further propose an optimized version of MAPLE by providing the bounds for the

1
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expected influence of the two sub-policies and selecting the better one for execution. Especially,

the bound for CaGreedy is derived by drawing support from another non-adaptive policy, since it

is intricate to directly calculate a bound for an adaptive policy.

The scalability issues of the adaptive IM-related problems also deserve our efforts, as pinpointed

in [22, 36]. The mechanism of adaptivity naturally asks the algorithm to work in a round-wise

fashion: select the seeds one by one, each followed a diffusion observation. In each round of seed

selection, to ensure the quality of the selected seed, it has to generate sufficient new RR-sets,

instead of directly reusing the old ones in the previous rounds, to avoid estimation biases (which

we will explain in Section 4.1). Typically, the number of the seeding rounds can be as large as

several hundred [16, 18, 22], which incurs prohibitive computational costs. For example, with the

state-of-the-art RR-set sampling technique [16, 17], it still takes about 1.8 × 104 seconds to find out

500 seeds under the uniform cost setting for the medium-scale dataset Livejournal with 4.8 million

nodes. In Section 4, we manage to fill this gap by developing an incremental update approach.

Specifically, we keep the unaffected RR-sets unchanged, and revise the affected RR-sets by resuming

the sampling process from the very first activated node. In this way, we could recycle the RR-sets

inherited from the previous rounds for influence estimation. Further theoretical analyses also

validate the correctness of our technique.

We summarize our main contributions as follows.

• We design the first practical algorithm MAPLE that provides expected approximation guarantee

for the BAIM problem. To achieve this, we develop the CASE
2
algorithm which selects a seed

node with desirable guarantees in each seeding round.

• To improve the practical performance of MAPLE, we propose an optimized version, which

attempts to compare the influence of its two sub-policies and adopt the larger one for execution.

• We further devise an incremental update approach such that we could recycle the old RR-sets to

improve efficiency. This update approach can be easily extended to other adaptive IM-related

problems, addressing the open problem of scalability.

• Finally, extensive experiments are carried out to evaluate the performance of our algorithms. The

results show that our algorithms achieve significantly larger influence spread than the baselines

and the incremental update method can reduce the running time by up to 50x.

2 PRELIMINARIES
The social network is denoted as a directed graph 𝐺 = (𝑉 , 𝐸), where the users and relationships

are encoded by 𝑉 and 𝐸 respectively with |𝑉 | = 𝑛 and |𝐸 | =𝑚. Each edge 𝑒 = (𝑢, 𝑣) is associated
with some probability 𝑝 (𝑒) ∈ [0, 1] and each node is associated with a cost 𝑐 (𝑣). We use the

notation 𝑉𝐵 to represent the set of nodes where each node has a cost no greater than 𝐵, namely

𝑉𝐵 = {𝑣 ∈ 𝑉 |𝑐 (𝑣) ≤ 𝐵}. Further, for each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, we say node 𝑢 is the in-neighbor of

node 𝑣 , and node 𝑣 is the out-neighbor of node 𝑢. Let 𝑁in (𝑢) be the set of in-neighbors of node 𝑢,
and 𝑁in (𝑢, 𝑖) be the 𝑖-th in-neighbor of node 𝑢. The order of the in-neighbors does not affect the

influence spread or the running time. Therefore, to facilitate the explanation of our algorithm, we

assume that the in-neighbors of each node are sorted in the ascending order of node IDs.

2.1 Influence Propagation and Realization
Influence Propagation. In IM research, two diffusion models, i.e., the independent cascade (IC) and
linear threshold (LT) model [27], are widely adopted to depict the influence propagation process,

and thus are taken into account by our work. For ease of exposition, we will mainly focus on the

IC model like [22, 42], while our results could be easily extended to the LT model. Specifically, in

2
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the IC model, given a set of seed nodes 𝑆 , the diffusion process expands in discrete steps as follows.

Initially, at step 0, only the seed nodes in 𝑆 are activated and the remaining nodes are inactivated.

Then, at each step 𝑖 > 0, each node (e.g., 𝑢) that is newly activated in step 𝑖 − 1 has a single chance
to activate its inactive out-neighbors (e.g., 𝑣), succeeding with probability 𝑝 (𝑢, 𝑣). After that, the
node 𝑢 could not make another attempt anymore. And the process continues until no node could

be further activated. When the diffusion terminates, the total number of users activated, denoted

by 𝜎 (𝑆), is referred to as the influence spread of the seed set 𝑆 .

Realization. Next, we introduce the concept of realization under the IC model. To elaborate, for

each edge 𝑒 = (𝑢, 𝑣) with probability 𝑝 (𝑒), we independently flip a biased coin which shows the

head with probability 𝑝 (𝑒), to determine the state of edge 𝑒 (namely, live or blocked). If it is head,
then edge 𝑒 is live, indicating node 𝑢 will influence 𝑣 once 𝑢 becomes activated; otherwise, edge

𝑒 is blocked. A realization 𝜙 is the set of states of all edges in the graph. We use 𝜙 (𝑒) = 1 (resp.

𝜙 (𝑒) = 0) to represent an edge 𝑒 is live (resp. blocked) under a realization 𝜙 . Then, we know that

given a realization 𝜙 , the influence spread 𝜎 (𝑆, 𝜙) of a seed set 𝑆 is the number of nodes that are

reachable from 𝑆 through the live edges in 𝜙 . Note that, the probability that 𝜙 happens is

𝑝𝜙 =
∏

𝑒 :𝜙 (𝑒 )=1
𝑝 (𝑒)

∏
𝑒 :𝜙 (𝑒 )=0

(1 − 𝑝 (𝑒)).

Then, let Φ be a random realization. We could define the expected influence spread of seed set 𝑆 as

𝜎avg (𝑆) := EΦ [𝜎 (𝑆,Φ)] =
∑︁
𝜙

𝑝𝜙 · 𝜎 (𝑆, 𝜙).

2.2 Budgeted Adaptive Influence Maximization
Different from non-adaptive influence maximization that decides the seed set ahead of propagation,

adaptive IM selects seeds in an iterative fashion: in each round, based on previous diffusion results

which have been observed, a seed is selected according to some strategy, and then we make

an observation of influence diffusion on the graph after activating the seed. Here we adopt the

full-adoption feedback model [15]. Given realization 𝜙 , the activation state of node 𝑢, denoted as

𝜙 (𝑢), is the statuses (i.e., live or blocked) of all edges that would be explored after we activate

𝑢. Mathematically, we model 𝜙 (𝑢) as a function 𝜙𝑢 : 𝐸 → {0, 1, ?}, where 𝜙𝑢 (𝑒) = 0, 𝜙𝑢 (𝑒) = 1,

and 𝜙𝑢 (𝑒) = ? means the state of edge 𝑒 ∈ 𝐸 is revealed to be blocked, live and still unknown

respectively, due to the activation of 𝑢 [15]. In addition, the set of all possible activation states in

the graph is denoted as 𝑂 .

Partial Realization. Next, we introduce the concept of partial realization 𝜓 which represents the

observations that we have made so far. It is a relation 𝜓 ⊆ 𝑉 × 𝑂 such that {(𝑢, 𝑜) : 𝜓(𝑢) = 𝑜}.
Furthermore, we use dom(𝜓) to denote the domain of 𝜓, namely dom(𝜓) = {𝑢 : ∃𝑜, (𝑢, 𝑜) ∈ 𝜓}.
We say a partial realization 𝜓 is consistent with a realization 𝜙 (denoted as 𝜙 ∼ 𝜓) if for any node

𝑢 ∈ dom(𝜓), we always have 𝜓(𝑢) = 𝜙 (𝑢). Furthermore, we say 𝜓 is a subrealization of 𝜓′ (denoted
as 𝜓 ⊆ 𝜓′) if dom(𝜓) ⊆ dom(𝜓′) and there exists at least one realization 𝜙 such that both 𝜓 and

𝜓′ are consistent with 𝜙 .
Further, we introduce the concept of residual graph. Given a partial realization𝜓, we can construct

a subgraph of𝐺 , called residual graph, by removing all activated nodes in 𝜓 as well as their incident

(incoming and outgoing) edges from graph 𝐺 .

Policy. In general, the strategy for selecting the next seed in the adaptive IM problem is called a

policy, denoted as 𝜋 . Let 𝜋 (𝜓) be the node selected by 𝜋 under partial realization 𝜓, and E(𝜋, 𝜙)
be the set of seed nodes selected by 𝜋 under realization 𝜙 . Then, we know the influence spread

of policy 𝜋 under realization 𝜙 is 𝜎 (E(𝜋, 𝜙), 𝜙), i.e., the total number of nodes reachable from
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(a) Graph 𝐺 (b) Partial realization (c) Residual graph

Fig. 1. Example of a policy and the partial realization.

the seeds E(𝜋, 𝜙). By taking the expectation with respect to the distribution of 𝜙 , the expected

influence spread of policy 𝜋 is defined as

𝜎avg (𝜋) := EΦ [𝜎 (E(𝜋,Φ),Φ)] .
Given the same partial realization, a policy 𝜋 is deterministic, if it always selects the same seed

node; while a randomized policy may return nodes following certain distribution. Like [22], we use

𝜔 to represent all possible randomness brought by the randomized policy. When we write down

𝜋 (𝜔), it represents a randomized policy. According to [22], we know that a deterministic policy is

a special randomized policy without randomness, and any randomized policy can be constructed

by a convex combination of deterministic policies. Therefore, the following conclusion holds [22]:

for any randomized policy 𝜋 (𝜔) and any deterministic policy 𝜋 ′,

max

𝜋
E𝜔

[
𝜎avg (𝜋 (𝜔))

]
= max

𝜋 ′
𝜎avg (𝜋 ′) .

BAIM. In the classic IM problem, all nodes have a uniform cost, which, however, as discussed in

Section 1, may be unable to reflect real-world situations. Motivated by this, we define the budgeted

adaptive influence maximization (BAIM) problem as follows:

Definition 2.1 (BAIM). Given an input graph𝐺 = (𝑉 , 𝐸), a budget constraint 𝐵, and a cost function
𝑐 : 𝑉 → Q+, where Q+ is the set of positive rational numbers, BAIM aims to find a policy that

maximizes the expected influence spread within budget 𝐵. Formally,

max 𝜎avg (𝜋)

s.t.

∑︁
𝑣∈E (𝜋,𝜙 )

𝑐 (𝑣) ≤ 𝐵, for all 𝜙.

Example 2.2. To illustrate, let us consider Fig. 1 as an example. Given the graph 𝐺 = (𝑉 , 𝐸), with
each edge of the same probability 0.5 and each node of the same cost 1, we aim to maximize the

influence spread with an adaptive policy 𝜋 . Suppose the budget constraint is 𝐵 = 2. In the first

round, the partial realization is obviously 𝜓0 = ∅. By invoking 𝜋 , we select the influential node

𝜋 (∅) = 𝑣1 as the first seed. After diffusion, assume (𝑣1, 𝑣2) and (𝑣2, 𝑣4) are live while (𝑣1, 𝑣3), (𝑣1, 𝑣5),
(𝑣2, 𝑣3) and (𝑣4, 𝑣5) are blocked. Thus, nodes 𝑣2 and 𝑣4 are activated. Then, the resultant observation
of edges and nodes forms a partial realization 𝜓1, as shown in Fig. 1(b). In the second round, we

only need to consider the subgraph in Fig. 1(c) induced by the inactivated nodes 𝑣3 and 𝑣5. Clearly,

the policy would reasonably yield 𝜋 (𝜓1) = 𝑣3 as the seed to maximize the influence. Finally, the

budget is used up and the policy terminates.

Adaptive Monotonicity & Adaptive Submodularity. Given arbitrary partial realization (i.e.,

observation) 𝜓, to select a seed node, we often need to evaluate the influence increment that each

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 207. Publication date: September 2023.
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Algorithm 1: SelectAndVerify
Input: 𝐺 = (𝑉 , 𝐸), approximation ratio 𝛼 .

Output: A seed set 𝑆 .

1 Compute the initial number 𝑟0 and maximal number 𝑟max of RR-sets;

2 R1 ← ∅,R2 ← ∅, 𝑟 ← 𝑟0;

3 do
4 Insert new random RR-sets into R1 and R2 respectively until |R1 | = |R2 | = 𝑟 ;
5 𝑟 ← 2𝑟 ;

6 Select a seed set 𝑆 ⊆ 𝑉 based on R1;

7 Compute a lower bound 𝑄𝑙 (𝑆) of the quality score of 𝑆 based on R2;

8 Compute an upper bound 𝑄𝑢 (𝑆𝑜 ) of the quality score of the optimal solution 𝑆𝑜 based

on R2 (or R1);

9 while
(
𝑄𝑙 (𝑆) < 𝛼 ·𝑄𝑢 (𝑆𝑜 ) and 𝑟 ≤ 𝑟max

)
;

10 return 𝑆 ;

node (e.g., 𝑣) could bring about in expectation, i.e., the conditional marginal benefit of 𝑣 , which is

formally defined as

Δ(𝑣 | 𝜓) := EΦ∼𝜓 [𝜎 (dom(𝜓) ∪ {𝑣},Φ) − 𝜎 (dom(𝜓),Φ)] .

Similarly, the conditional marginal benefit of a policy 𝜋 based on 𝜓 could be written as

Δ(𝜋 | 𝜓) := EΦ∼𝜓 [𝜎 (dom(𝜓) ∪ E(𝜋,Φ),Φ) − 𝜎 (dom(𝜓),Φ)] .

On this basis, we could define the adaptive monotonicity and adaptive submodularity as follows.

Definition 2.3. Given realization distribution 𝑝𝜙 , a function 𝜎 (·) is said to be adaptive monotone,

if for any 𝜓 and 𝑣 ∈ 𝑉 \ dom(𝜓), we have the inequality that Δ(𝑣 | 𝜓) ≥ 0. Further, the function

𝜎 (·) is said to be adaptive submodular, if for any 𝜓 ⊆ 𝜓′ and 𝑣 ∈ 𝑉 \dom(𝜓′), it holds that
Δ(𝑣 | 𝜓) ≥ Δ(𝑣 | 𝜓′).

By Lemma 2.4, we see that the influence function 𝜎 (·) possesses the adaptive monotonicity and

adaptive submodularity.

Lemma 2.4. [15] The influence function 𝜎 (·) is adaptive monotone and adaptive submodular.

2.3 Existing Solutions
Reverse-Reachable Sets. Since the seminal work of Borgs et al. [7], reverse-reachable sets (RR-

sets) have been playing an essential role in influence spread estimation. To generate a random

RR-set under the IC model, we need to follow two steps: (i) sample a node 𝑣 uniformly at random

from 𝑉 ; (ii) perform a stochastic BFS (i.e., Breadth First Search) from 𝑣 in the reverse directions of

edges. Specifically, for each frontier node 𝑢 in the BFS process, it can successfully discover (namely,

reversely activate) its in-neighbor 𝑤 with probability 𝑝 (𝑤,𝑢), where 𝑝 (𝑤,𝑢) is the propagation
probability of edge (𝑤,𝑢); otherwise we ignore𝑤 . The set of all discovered nodes forms an RR-set,

denoted as 𝑅. Node 𝑣 is called the target node of 𝑅. Further, Borgs et al. establish the following

lemma that acts as the cornerstone of influence estimation.

Lemma 2.5. [7] Let 𝑆 be a seed set and 𝑅 be a random RR-set, then

𝜎avg (𝑆) = 𝑛 · P[𝑆 ∩ 𝑅 ≠ ∅] .

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 207. Publication date: September 2023.
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We say a seed set 𝑆 covers an RR set 𝑅 if 𝑆 ∩ 𝑅 ≠ ∅, and the coverage of 𝑆 in a collection R of

RR-sets is the number of RR-sets covered by 𝑆 (denoted as ΛR (𝑆)). Then, according to Lemma 2.5,

we see that 𝑛 · ΛR (𝑆 )|R | is an unbiased estimation of seed set 𝑆 ’s influence.

Based on the above idea, a number of estimation techniques are proposed [23, 43–45], among

which the SelectAndVerify framework (see Alg. 1) exhibits the superior performance and is thus

widely applied in IM problems [6, 16, 17, 22, 43]. Specifically, SelectAndVerify maintains two

collections of random RR-sets, R1 and R2. Then, in each iteration R1 is applied to select a seed

set 𝑆 , and R2 is then applied to verify the quality of 𝑆 . Once 𝑆 satisfies the desired approximation

ratio, the algorithm stops immediately; otherwise, it doubles the size of R1 and R2, and repeats

the above process until the stop condition is met. In the adaptive/non-adaptive IM problem under

the uniform cost setting, the quality score of a seed set 𝑆 is measured by the coverage of 𝑆 on the

collection of random RR-sets. It can be explained by Lemma 2.5: the higher influence spread a seed

set has, the more RR-sets it tends to cover.

It should be pointed out that the seed sets returned by an RR-set-based algorithmmay be different

if we invoke it multiple times (all of the seed sets satisfy the desired approximation guarantee).

Budgeted Non-adaptive IM. The state-of-the-art solution for the budgeted IM problem under the

non-adaptive setting is IMAGE, proposed by Bian et al. [6]. IMAGE follows the aforementioned

SelectAndVerify framework, and improve its efficiency by applying a tighter bound for the upper

bound 𝑄𝑢 (𝑆𝑜 ) (see Line 8 in Alg. 1). To explain, recall that in the SelectAndVerify framework, the

algorithm can terminate as soon as 𝑄𝑙 (𝑆) ≥ 𝛼 ·𝑄𝑢 (𝑆𝑜 ), which indicates that at this moment, the

expected influence of the selected seed set 𝑆 has reached the desired approximation ratio 𝛼 . Thus,

given the same 𝑄𝑙 (𝑆), a tighter (i.e., smaller) bound 𝑄𝑢 (𝑆𝑜 ) could stop the algorithm earlier (with

fewer iterations), saving the computational cost. IMAGE further accelerates the seed selection

phase by utilizing a threshold greedy strategy [3], which takes 𝑑max · (1 − b)𝑖 (where 𝑑max is the

maximum influence-to-cost ratio, and b is the error parameter) as the threshold in the 𝑖-th iteration,

and then includes the nodes whose marginal influence-to-cost ratio is greater than the threshold.

As a result, IMAGE could add more than one node in a single iteration, thus improving its efficiency.

Although IMAGE is highly efficient such that it can answer the budgeted IM problem on billion-scale

graphs within half an hour, under the non-adaptive setting the seed nodes are selected all at once

before making any observation on the actual influence spread. Such a fixed strategy fails to take

advantage of the previous spreading results when selecting the next seed node and thus is inferior

in maximizing the total influence spread.

Adaptive IMwith UniformCost. The adaptive uniform-cost IM problem aims to find 𝑘 seed nodes

in an adaptive manner to maximize the expected influence spread. It is a special case of our BAIM

problem, by associating each nodewith a unit cost, and the budget as𝐵 = 𝑘 . Huang et al. [22] propose

the first practical framework, AdaptGreedy, providing a user-specified approximation guarantee.

They prove that if in each round the selected seed node satisfies the expected 𝛼-approximate

guarantee, then the final solution will achieve an expected approximate guarantee of (1 − 𝑒−𝛼 ).
Then, they adopt the SelectAndVerify framework to develop an algorithm EPIC, which returns a

seed node with expected approximate guarantee. The instantiation of AdaptGreedy with EPIC is

called EptAIM according to [22].

However, there exist two main drawbacks in EptAIM. First, the setting of all nodes have an

equal cost is unrealistic. In social networks, it usually costs more to invite users with hundreds of

thousands of followers than invite users with dozens of followers to join the campaign. Thus, the

cost-aware setting should be considered for real applications. Second, as EptAIM takes 𝑘 rounds to

select 𝑘 seed nodes and in each round, it needs to sample new RR-sets from scratch, as discussed in
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the introduction, which incurs huge computational cost. By [22], we know the scalability of the

adaptive IM is still an open problem, deserving our attention.

3 OUR SOLUTION
Before presenting our solution, we introduce some useful concepts. The first one is Expected
Approximate Cost-aware Greedy Policy:

Definition 3.1 (Expected Approximate Cost-aware Greedy Policy). A randomized policy 𝜋 is an

expected 𝛼-approximate cost-aware greedy policy if for any partial realization 𝜓, the selected node

𝜋 (𝜔,𝜓) always satisfies:

E𝜔

[
Δ(𝜋 (𝜔,𝜓) | 𝜓)
𝑐 (𝜋 (𝜔,𝜓))

]
≥ 𝛼 ·max

𝑢

Δ(𝑢 | 𝜓)
𝑐 (𝑢) .

Then, we define two types of policy truncation operations, which would be applied when

analyzing our solution. Given a policy 𝜋 , let 𝑣 (𝑖 ) be the 𝑖-th node selected by 𝜋 , and the accumulated

cost of the first 𝑘 nodes be 𝑐 (𝜋, 𝑘) = ∑𝑘
𝑖=1 𝑐 (𝑣 (𝑖 ) ). Then we can give definitions of Strict Policy

Truncation and Probabilistic-rounding Policy Truncation as follows.

Definition 3.2 (Strict Policy Truncation). The strict truncation of policy 𝜋 to budget 𝑡 , denoted as

𝜋≤𝑡 , is a policy that performs exactly the same as 𝜋 , except that 𝜋≤𝑡 only selects the first 𝑘 nodes

where 𝑘 satisfies 𝑐 (𝜋, 𝑘) ≤ 𝑡 and 𝑐 (𝜋, 𝑘 + 1) > 𝑡 .

Definition 3.3 (Probabilistic-rounding Policy Truncation ). The probabilistic-rounding truncation
of policy 𝜋 to budget 𝑡 , denoted as 𝜋𝑡 , is a randomized policy that performs exactly the same as 𝜋 ,

except that 𝜋𝑡 selects the first 𝑘 nodes for certainty, and includes the (𝑘 + 1)-th node independently

with probability
𝑡−𝑐 (𝜋,𝑘 )
𝑐 (𝑣(𝑘+1) ) , where 𝑘 satisfies 𝑐 (𝜋, 𝑘) ≤ 𝑡 and 𝑐 (𝜋, 𝑘 + 1) > 𝑡 .

From the above definitions, we know that the total cost of the strict truncation 𝜋≤𝐵 (resp.,

probabilistic-rounding truncation 𝜋𝐵) of a policy 𝜋 is not larger than (resp., equal to) budget 𝐵.

3.1 The MAPLE Framework
Under the budgeted setting, at first glance, we could greedily select those nodes with a high

influence-to-cost ratio. However, as discussed in the introduction, in the worst case, the last node,

which happens to be highly influential at a heavy cost, might be excluded to avoid exceeding the

budget, resulting in no approximation guarantee. To tackle this issue, we integrate the ratio-first

(i.e. influence-to-cost) strategy with the influence-first strategy, such that the mixed algorithm

could provide expected approximation guarantee.

Specifically, our MAPLE framework follows a randomized structure that probabilistically adopts

one of two sub-policies: cost-aware greedy (CaGreedy) andmaximum-influence singleton (MIS). The

pseudo-code of MAPLE is summarized in Alg. 2. To elaborate, given the approximation parameters 𝛼

and 𝛽 , we specify the probability to run CaGreedy and MIS as 𝑝 =
𝛽

1+𝛽 and 1−𝑝 = 1

1+𝛽 , respectively.

By comparing 𝑝 with a random number 𝑟 which is uniformly sampled from the interval [0, 1], we
determine which policy to adopt.

Suppose 𝑝 > 𝑟 , then the MAPLE framework invokes CaGreedy, which is based on the cost-aware

greedy idea. It runs in a round-wise manner: in each round, a node 𝑢∗, whose influence per unit
cost on the current residual graph𝐺𝑖 is at least 𝛼 times that of the maximum one, is selected as the

next seed. This is achieved by our CASE algorithm, which will be presented in Section 3.2. Then, we

check whether the total cost would exceed 𝐵 if 𝑢∗ is added to the seed set 𝑆 . If the answer is no, then
we can safely insert 𝑢∗ into 𝑆 without violating the budget constraint, otherwise, we drop it out
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Algorithm 2:MAPLE

Input: Graph 𝐺 = (𝑉 , 𝐸), approximation parameters 𝛼 and 𝛽 , budget 𝐵.

Output: A seed set 𝑆 .

1 𝑝 ← 𝛽

1+𝛽 ;

2 𝑟 ← rand(0, 1);
3 if 𝑝 ≥ 𝑟 then
4 𝑆 ← CaGreedy(𝐺, 𝛼, 𝐵);

5 else
6 𝑆 ←MIS(𝐺, 𝛽, 𝐵);
7 end
8 return 𝑆 ;

Procedure CaGreedy(𝐺, 𝛼, 𝐵)
1 𝑆 ← ∅;
2 𝐺1 ← 𝐺 ;

3 for 𝑖 = 1, 2, 3, . . . do
4 𝑢∗ ← 𝐶𝐴𝑆𝐸 (𝐺𝑖 , 𝛼, 𝐵);
5 if 𝑐 (𝑆) + 𝑐 (𝑢∗) ≤ 𝐵 then
6 𝑆 ← 𝑆 ∪ {𝑢∗};
7 else
8 O

9 end
10 bserve an influence spread from 𝑢∗ in 𝐺𝑖 ;

11 Remove the newly activated nodes from 𝐺𝑖 and obtain the residual graph 𝐺𝑖+1;

12 end

Procedure MIS(𝐺, 𝛽, 𝐵)

1 Find a node 𝑣 ∈ 𝑉𝐵 such that

2 E𝜔
(
𝜎avg ({𝑣})

)
≥ 𝛽 ·max𝑢∈𝑉𝐵

𝜎 (𝑢);
3 return {𝑣};

and terminate the algorithm. As 𝑢∗ is included as a seed node, we then observe the influence spread

starting from 𝑢∗ in 𝐺𝑖 , namely, the nodes reachable via live edges in 𝐺𝑖 . To maximize the influence

spread, it is not beneficial to repeatedly reach the same activated nodes in subsequent rounds.

Therefore, at the end of each round, the newly activated nodes are removed from𝐺𝑖 , creating a new

residual graph𝐺𝑖+1. The algorithm repeats until we meet a node returned by CASE that exceeds

the budget constraint. From the above discussion, we know CaGreedy is a strict truncation of the

expected 𝛼-approximate cost-aware greedy policy.

If 𝑝 ≤ 𝑟 , the MAPLE framework would execute the policy MIS which selects at most one seed.

First, we do not need to consider the nodes whose cost is larger than 𝐵, since it is meaningless

to take any node that violates the budget constraint. If 𝑉𝐵 (recall that 𝑉𝐵 = {𝑣 ∈ 𝑉 |𝑐 (𝑣) ≤ 𝐵}) is
not empty, then we try to find a node 𝑣 ∈ 𝑉𝐵 such that in expectation (with respect to 𝜔) 𝑣 has an

expected influence spread at least 𝛽 times that of the optimal node. To achieve this end, we could

directly invoke the algorithm EptAIM [22] by setting 𝑘 = 1, where the implementation details are
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omitted to save space. Finally, node 𝑣 is returned. Note that when 𝑘 = 1, EptAIM is a non-adaptive

algorithm with expected approximation guarantee.

In the following, we will provide a theoretical analysis for the MAPLE framework. Before that,

we present a useful conclusion for the expected approximate cost-aware greedy policy.

Theorem 3.4. Given 𝛼 ∈ [0, 1], budget 𝐵 ∈ Q+ , where Q+ is the set of positive rational numbers,
and cost function 𝑐 : 𝑉 → Q+ , let 𝜋𝑐 (𝜔) be an expected 𝛼-approximate cost-aware greedy policy,
and 𝜋∗ (𝜔) be any policy. For any 0 ≤ 𝑡 ≤ 𝐵 (𝑡 ∈ Q+), we have

E𝜔
[
𝜎avg

(
𝜋𝑐𝑡 (𝜔)

) ]
≥

(
1 − 𝑒−𝛼𝑡/𝐵

)
· E𝜔

[
𝜎avg

(
𝜋∗𝐵 (𝜔)

) ]
.

The main idea of the proof for the above theorem is as follows: we first utilize the adaptive

submodularity to derive that for two arbitrary policies 𝜋∗
𝐵
and 𝜋𝑡 , it holds that 𝜎avg

(
𝜋∗
𝐵

)
−𝜎avg (𝜋𝑡 ) ≤

𝐵 · EΦ
[
max𝑣

Δ(𝑣 |Ψ(𝜋𝑡 ,Φ) )
𝑐 (𝑣)

]
, where the r.h.s term is budget 𝐵 times the expectation of the maximum

influence-to-cost ratio under the partial realization of 𝜋𝑡 . Then, by the definition of cost-aware

greedy policy, its gain for each unit cost is derived as: E𝜔
[
𝜎avg

(
𝜋𝑐𝑡+1 (𝜔)

) ]
− E𝜔

[
𝜎avg

(
𝜋𝑐𝑡 (𝜔)

) ]
≥

𝛼
𝐵
·
[
E𝜔

[
𝜎avg (𝜋∗𝐵 (𝜔))

]
− E𝜔

[
𝜎avg (𝜋𝑐𝑡 (𝜔))

] ]
. Further, rewriting the above inequality as a recurrence

relation, and using the fact 1 − 𝑥 ≤ 𝑒−𝑥 for any 𝑥 > 0, we prove the theorem.

Theorem 3.5. The MAPLE framework 𝜋≤𝐵 (𝜔) achieves an approximation ratio of 𝛽

1+𝛽 · (1 − 𝑒
−𝛼 ).

That is,

E𝜔
[
𝜎avg (𝜋≤𝐵 (𝜔))

]
≥ 𝛽

1 + 𝛽 · (1 − 𝑒
−𝛼 ) · 𝜎avg (𝜋𝑜≤𝐵).

where 𝜋𝑜≤𝐵 = argmax𝜋 ′≤𝐵
𝜎avg (𝜋 ′≤𝐵) is the optimal policy.

Proof. It is obvious that 𝜋𝑜≤𝐵 does not contain any node whose cost is greater than 𝐵, since 𝜋𝑜≤𝐵
should be a feasible solution. Then, without loss of generality, we assume the cost of each node

𝑣 ∈ 𝑉 satisfies 𝑐 (𝑣) ≤ 𝐵.
Let 𝜋𝑐 (𝜔) be an expected 𝛼-approximate cost-aware greedy policy. Note that policy CaGreedy is

the strict truncation of 𝜋𝑐 (𝜔), and thus could be denoted as 𝜋𝑐≤𝐵 (𝜔). Let 𝜋
𝑐
𝐵
(𝜔) be the probabilistic-

rounding truncation of 𝜋𝑐 (𝜔). From the definitions of policy truncation, for any fixed 𝜔 , the

only difference between 𝜋𝑐≤𝐵 (𝜔) and 𝜋
𝑐
𝐵
(𝜔) lies in that 𝜋𝑐

𝐵
(𝜔) may admit the last node with some

probability. Therefore, by the adaptive submodularity, we have

𝜎avg (𝜋𝑐𝐵 (𝜔)) ≤ 𝜎avg
(
𝜋𝑐≤𝐵 (𝜔)

)
+max

𝑢
𝜎avg ({𝑢}) .

Then, by taking the expectation over the randomness of 𝜔 in both sides, we could derive

E𝜔
[
𝜎avg (𝜋𝑐𝐵 (𝜔))

]
≤ E𝜔

[
𝜎avg (𝜋𝑐≤𝐵 (𝜔))

]
+max

𝑢
𝜎avg ({𝑢}) . (1)

On the other hand, according to Theorem 3.4 , by setting 𝑡 = 𝐵, policy 𝜋𝑐
𝐵
(𝜔) achieves an

approximation of (1 − 𝑒−𝛼 ):
E𝜔

[
𝜎avg

(
𝜋𝑐𝐵 (𝜔)

) ]
≥ (1 − 𝑒−𝛼 ) ·max

𝜋 ′
𝐵

𝜎avg
(
𝜋 ′𝐵

)
≥ (1 − 𝑒−𝛼 ) ·max

𝜋 ′≤𝐵
𝜎avg

(
𝜋 ′≤𝐵

)
(2)

where the second inequality is due to that for any policy 𝜋 , its probabilistic-rounding truncation 𝜋𝑡
admits the last node with some probability, and thus its expected influence will be not smaller than

that of the strictly truncated policy 𝜋≤𝑡 .
Let 𝜋𝑠 (𝜔) be policy MIS. From the pseudo-code, we have

E𝜔
[
𝜎avg (𝜋𝑠 (𝜔))

]
≥ 𝛽 ·max

𝑢
𝜎avg ({𝑢}) . (3)
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From inequalities (1) and (3), we obtain

E𝜔
[
𝜎avg

(
𝜋𝑐𝐵 (𝜔)

) ]
≤ E𝜔

[
𝜎avg

(
𝜋𝑐≤𝐵 (𝜔)

) ]
+
E𝜔

[
𝜎avg (𝜋𝑠 (𝜔))

]
𝛽

=
1 + 𝛽
𝛽
·
(
𝛽

1 + 𝛽 · E𝜔
[
𝜎avg

(
𝜋𝑐≤𝐵 (𝜔)

) ]
+ 1

1 + 𝛽 · E𝜔
[
𝜎avg (𝜋𝑠 (𝜔))

] )
=
1 + 𝛽
𝛽
· E𝜔 [𝜋≤𝐵 (𝜔)] (4)

where the second equality holds since Alg. 2 runs CaGreedy with probability
𝛽

1+𝛽 , and runs MIS

with probability
1

1+𝛽 . Finally, combining inequalities (2) and (4), we prove

E𝜔 [𝜋≤𝐵 (𝜔)] ≥
𝛽

1 + 𝛽 · E𝜔
[
𝜎avg

(
𝜋𝑐𝐵 (𝜔)

) ]
≥ 𝛽

1 + 𝛽 · (1 − 𝑒
−𝛼 ) ·max

𝜋 ′≤𝐵
𝜎avg

(
𝜋 ′≤𝐵

)
.

□

3.2 CASE Algorithm
Recap that policy CaGreedy needs to find a seed node whose influence per unit cost in expectation

is at least 𝛼 times the maximum one. To achieve this end, we develop the CASE algorithm which

returns a seed node satisfying the desired expected approximation guarantee. The pseudo-code of

CASE is shown in Alg. 3.

At a high level, CASE follows the SelectAndVerify framework. In Lines 1-3, we first initialize a

few parameters such that the correctness of the output could be guaranteed (please refer to the

proof of Lemma 3.6). Then we begin to generate RR-sets for seed selection with a while loop. In

each round, we first select the node 𝑢∗ whose coverage (in R1) per unit cost is the largest one as the

candidate (see Line 7). Then, to verify the quality of the candidate 𝑢∗, we compute a lower bound

𝑄𝑙 (𝑢∗) (see Line 9) for its expected influence-to-cost ratio, namely E𝜔

[
𝜎avg ({𝑢∗ })

𝑐 (𝑢∗ )

]
. Meanwhile, an

upper bound 𝑄𝑢 (𝑣𝑜 ) of the optimal node 𝑣𝑜 ’s influence-to-cost ratio is further calculated (see Line

10). If the quality of 𝑢∗ is good enough such that the approximation satisfies 𝑄𝑙 (𝑢∗) ≥ 𝛼 ·𝑄𝑢 (𝑣𝑜 ),
then the algorithm terminates immediately; otherwise, it will double the size of R1 and R2 (unless

reaching the maximum size 𝑟max).

By Lemma 3.6, we show the CASE algorithm can achieve an expected 𝛼-approximate guarantee.

Lemma 3.6. Given residual graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ), approximation parameter 𝛼 ∈ [0, 1) and budget 𝐵,
the CASE algorithm could return a seed node 𝑢∗ such that it satisfies

E𝜔

[
𝜎avg ({𝑢∗})
𝑐 (𝑢∗)

]
≥ 𝛼 ·max

𝑣∈𝑉𝐵

𝜎avg ({𝑣})
𝑐 (𝑣) , (5)

where 𝑉𝐵 = {𝑣 ∈ 𝑉𝑖 | 𝑐 (𝑣) ≤ 𝐵}.

Let 𝑣𝑜 = argmax𝑣∈𝑉𝐵

𝜎avg ({𝑣})
𝑐 (𝑣) . Intuitively, as CASE terminates due to 𝑄𝑙 (𝑢∗) ≥ 𝛼 · 𝑄𝑢 (𝑣𝑜 ), by

taking the expectation with respect to the randomness of 𝜔 , we have

E𝜔

[
𝜎avg (𝑢∗)
𝑐 (𝑢∗)

]
≥ E𝜔

[
𝑄𝑙 (𝑢∗)

]
≥ E𝜔 [𝛼 ·𝑄𝑢 (𝑣𝑜 )]

≥ 𝛼 · E𝜔
[
ΛR2 (𝑣𝑜 )
𝑐 (𝑣𝑜 ) ·

𝑛𝑖

𝑟

]
= 𝛼 ·

𝜎avg (𝑣𝑜 )
𝑐 (𝑣𝑜 )
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Algorithm 3: CASE
Input: 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ), approximation parameter 𝛼 , budget 𝐵.

Output: A seed node 𝑢∗

1 R1 ← ∅, R2 ← ∅;
2 𝛿 ← 1

𝑛𝑖
, 𝜖𝑎 ← 1−𝛿

𝛼
− 1, 𝑟max ←

⌈
(2+2𝜖𝑎/3)𝑛𝑖

𝜖2𝑎
· ln 𝑛𝑖

𝛿

⌉
+ 1;

3 𝑟 ← 1

2
· ln 𝑛𝑖

𝛿
, 𝑎 ← ln

1

𝛿
;

4 do
5 𝑟 ← 2 · 𝑟 ;
6 Insert new random RR-sets into R1 and R2 respectively until |R1 | = |R2 | = 𝑟 ;
7 𝑢∗ ← argmax𝑣∈𝑉𝐵

ΛR
1
(𝑣)

𝑐 (𝑣) ;

8 Λ𝑙
R2 (𝑢

∗) ←
(√︃

ΛR2 (𝑢∗) + 2𝑎
9
−
√︁

𝑎
2

)
2

− 𝑎
18
;

9 𝑄𝑙 (𝑢∗) ← Λ𝑙
R2 (𝑢

∗) · 𝑛𝑖
𝑟 ·𝑐 (𝑢∗ ) − 𝛿 ·

𝑛𝑖
𝑐 (𝑢∗ ) ;

10 𝑄𝑢 (𝑣𝑜 ) ← max𝑣∈𝑉𝐵

ΛR
2
(𝑣)

𝑐 (𝑣) ·
𝑛𝑖
𝑟
;

11 while
(
𝑄𝑙 (𝑢∗) < 𝛼 ·𝑄𝑢 (𝑣𝑜 ) and 𝑟 < 𝑟max

)
;

12 return 𝑢∗;

where the first inequality is due to the Chernoff concentration bound, the second inequality is

due to the stopping condition, the third inequality is due to the definition of 𝑄𝑢 (𝑣𝑜 ), and the last

equality is due to the fact E𝜔

[
ΛR

2
(𝑣𝑜 )

𝑐 (𝑣𝑜 ) ·
𝑛𝑖
𝑟

]
=

𝜎avg ({𝑣𝑜 })
𝑐 (𝑣𝑜 ) . On the other hand, as the influence of each

node is at least one (i.e., itself), by concentration bounds, we can estimate the expected influence of

each node with approximation guarantee when 𝑟 ≥ 𝑟max. Further, we prove that in this case, the

selected 𝑢∗ satisfies inequality (5).

In this paper, the upper bound 𝑄𝑢 (𝑣𝑜 ) only needs to satisfy 𝑄𝑢 (𝑣𝑜 ) ≥ ΛR
2
(𝑣𝑜 )

𝑐 (𝑣𝑜 ) ·
𝑛𝑖
𝑟
. By taking

the expectation, we can guarantee that E𝜔 [𝑄𝑢 (𝑣𝑜 )] ≥ E𝜔
[
ΛR

2
(𝑣𝑜 )

𝑐 (𝑣𝑜 ) ·
𝑛𝑖
𝑟

]
=

𝜎avg ({𝑣𝑜 })
𝑐 (𝑣𝑜 ) . Therefore, it

is sufficient to provide an expected approximation guarantee. As to 𝑄𝑙 (𝑢∗), since we may select

different 𝑢∗, we must ensure that 𝑄𝑙 (𝑢∗) ≤ 𝜎avg ({𝑢∗ })
𝑐 (𝑢∗ ) holds, such that after taking the expectation,

we can derive E𝜔
[
𝑄𝑙 (𝑢∗)

]
≤ E𝜔

[
𝜎avg ({𝑢∗ })

𝑐 (𝑢∗ )

]
. This is why the concentration bound is still utilized

in the expression of 𝑄𝑙 (𝑢∗).
Let 𝑐max = max𝑣∈𝑉 𝑐 (𝑣) and 𝑐min = min𝑣∈𝑉 𝑐 (𝑣). Then we derive the time complexity of CASE.

Lemma 3.7. The algorithm CASE runs in 𝑂
(
𝑐max

𝑐min

· log𝑛𝑖 · (𝑛𝑖+𝑚𝑖 )
(1−𝛼 )2

)
expected time.

By the fact that we select at most 𝐵/𝑐min seed nodes, we derive that the time complexity of

CaGreedy is𝑂

(
𝐵

𝑐min

· 𝑐max

𝑐min

· log𝑛 · (𝑛+𝑚)(1−𝛼 )2
)
with Lemma 3.7. According to [22], given the approximation

parameter 𝛽 , as we run only one round, the time complexity of MIS is𝑂

(
𝑚+𝑛
(1−𝛽 )2 · log𝑛

)
. Recall that

MAPLE probabilistically adopts CaGreedy or MIS. The time complexity of MAPLE is dominated by

CaGreedy, and thus is 𝑂

(
𝐵

𝑐min

· 𝑐max

𝑐min

· log𝑛 · (𝑛+𝑚)(1−𝛼 )2
)
if we set 𝛼 ≈ 𝛽 .

3.3 Improve Practical Influence Spread
In Section 3.1, we develop the algorithm MAPLE, which manages to provide the expected approx-

imation guarantee. However, the practical performance may not be that satisfactory due to the
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probabilistic execution strategy. To explain, as 𝛽 ∈ (0, 1), the probability 1

1+𝛽 of invoking procedure

MIS will be greater than 1/2. Therefore, the practical performance of MAPLE largely depends on

MIS. However, MIS only selects at most one node, thus likely to produce an influence spread much

smaller than CaGreedy which could select numerous seed nodes with a high influence-to-cost ratio.

To overcome the above deficiency, we find it encouraging to compare the influences of the two

policies before performing probabilistic execution. When CaGreedy is expected to have a larger

influence than MIS, we could execute CaGreedy with absolute certainty to improve the practical

influence spread. Otherwise, we continue to adopt the two policies probabilistically. In practice,

it is relatively easy to estimate the influence of MIS, which could be realized by applying the

RR-set technique. However, it is almost unrealistic to estimate the influence of CaGreedy 𝜋𝑐≤𝐵 (𝜔)
in advance since due to its adaptive nature, the seed nodes are selected one by one according to the

propagation results of the previous seed set.

To circumvent this hurdle, we could resort to a non-adaptive policy 𝜋na
as a bridge. That is, with

𝜋na
, we establish a lower bound for the expected influence of 𝜋𝑐≤𝐵 (𝜔). Let 𝑆na denote the seed set

returned by 𝜋na
, and 𝜎𝑙 (𝑆na) be a lower bound of its expected influence spread. Further, let 𝑣𝑜 still

be the node with maximum influence spread, and 𝜎𝑢 ({𝑣𝑜 }) be an upper bound of its influence

spread. The relationship between 𝑆na and 𝜋
𝑐
≤𝐵 (𝜔) is given by Lemma 3.8.

Lemma 3.8. Given approximation parameter 𝛼 , 𝜋𝑐≤𝐵 (𝜔) satisfies

E𝜔
[
𝜎avg

(
𝜋𝑐≤𝐵 (𝜔)

) ]
≥ (1 − 𝑒−𝛼 ) · 𝜎𝑙 (𝑆na) − 𝜎𝑢 ({𝑣𝑜 }).

At a high level, Lemma 3.8 can be proved by Theorem 3.4 (let 𝜋∗
𝐵
be a non-adaptive policy returning

seeds 𝑆na) and the fact that for any policy, the spread difference between its strictly truncated

version and probabilistic-rounding version is at most 𝜎avg ({𝑣𝑜 }).
Then, Theorem 3.9 shows that if the non-adaptive proxy is better than MIS by a constant factor,

the approximation performance of MAPLE could be elevated to
1

2
· (1 − 𝑒−𝛼 ).

Theorem 3.9. If 𝑆na satisfies (1 − 𝑒−𝛼 ) · 𝜎𝑙 (𝑆na) ≥ 2𝜎𝑢 ({𝑣𝑜 }), then by running CaGreedy with
probability one, it holds for MAPLE

E𝜔
[
𝜎avg (𝜋≤𝐵 (𝜔))

]
≥ 1

2

(1 − 𝑒−𝛼 ) · 𝜎avg (𝜋𝑜≤𝐵),

where 𝜋𝑜≤𝐵 is the optimal policy.

Note that Lemma 3.8 indicates that to find a tight lower bound for CaGreedy, we should find a

seed set 𝑆na with as high expected influence as possible. To this end, we can utilize the existing

algorithm IMAGE [6] designed for the budgeted non-adaptive IM problem. Furthermore, to calculate

the bounds 𝜎𝑙 (𝑆na) and 𝜎𝑢 ({𝑣𝑜 }), we make use of sufficient RR-sets to obtain a probabilistic result.

That is, the bounds 𝜎𝑙 (𝑆na) and 𝜎𝑢 ({𝑣𝑜 }) hold with high probability (say 1 − 1

𝑛
). Therefore, we can

summarize the optimized MAPLE (denoted as MAPLE+) as follows:

(i) Invoke IMAGE to get a seed set 𝑆na and calculate 𝜎𝑙 (𝑆na) and 𝜎𝑢 ({𝑣𝑜 }) with high probability;

(ii) If (1−𝑒−𝛼 ) ·𝜎𝑙 (𝑆na) ≥ 2𝜎𝑢 ({𝑣𝑜 }), execute CaGreedy with probability one; if 𝜎𝑙 (𝑆na) ≥ 𝜎𝑢 ({𝑣𝑜 }),
execute CaGreedy with probability

𝛽

1+𝛽 , and return 𝑆na with
1

1+𝛽 ; otherwise, run CaGreedy with

probability
𝛽

1+𝛽 , and run MIS with
1

1+𝛽 .

From the proof of Theorem 3.5, we can realize that the optimized version MAPLE+ has the same

expected approximation guarantee as the basic version MAPLE with high probability.

Time Complexity. Note that MAPLE+ needs to first run IMAGE and MIS and relies on their output

to make a decision about which algorithm to invoke. According to [6], given the approximation
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Fig. 2. Example of estimation biases.

parameter 𝛼 , the time complexity of IMAGE is𝑂

(
𝑛+𝑚
(1−𝛼 )2 · (log𝑛 +

𝐵
𝑐min

)
)
. From the time complexity

of IMAGE, MIS, and MAPLE, we can immediately know that in spite of extra costs, MAPLE+ still

has the same complexity as MAPLE, namely 𝑂

(
𝐵

𝑐min

· 𝑐max

𝑐min

· log𝑛 · (𝑛+𝑚)(1−𝛼 )2
)
.

4 INCREMENTAL UPDATES ON RR-SETS
4.1 Estimation Biases
In Section 3.1, we have developed the MAPLE framework to solve the BAIM problem. Recall

that MAPLE involves multi-round seed selection, and in each round, it has to generate sufficient

RR-sets to guarantee the quality of the selected seed node, which incurs huge computational costs.

To improve efficiency, one may consider a strategy of reusing RR-sets. Specifically, at the very

beginning, a collection R of random RR-sets is generated, and we select the first seed node 𝑢 (1)
based on R. Then by making an observation starting from 𝑢 (1) , we remove from R those RR-sets

that contain any activated node and use the remaining RR-sets in R to select the second seed node

𝑢 (2) . With such a strategy, those RR-sets that are not covered by the active nodes (observed so far)

are left to be reused in the subsequent rounds, thus, saving computational costs of re-generating

them from scratch and improving efficiency.

At first glance, such an idea is promising for efficiency. However, it will cause estimation biases.

To illustrate, let us consider a simple example in Figure 2. Given the toy graph𝐺 = (𝑉 , 𝐸) consisting
of three nodes 𝑣1, 𝑣2, 𝑣3 and three edges (𝑣1, 𝑣2), (𝑣1, 𝑣3), (𝑣2, 𝑣3), with each edge associated with

equal probability 0.5, we attempt to estimate the probability of 𝑣1 and 𝑣2 influencing 𝑣3. To this end,

we reverse all the edges and select 𝑣3 as the target node to perform reverse propagation. Then, it is

easy to enumerate all possible propagation patterns and calculate the corresponding occurrence

probabilities. As shown in Figure 2(b), there are six propagation results, leading to four types of

RR-sets, that is, 𝑅1 = {𝑣3}, 𝑅2 = {𝑣3, 𝑣2}, 𝑅3 = {𝑣3, 𝑣1} and 𝑅4 = {𝑣3, 𝑣2, 𝑣1}, each existing with

probability 0.25, 0.125, 0.25, 0.375 respectively. Then, according to the rationale of RR-sets, the

probability of 𝑣1 influencing 𝑣3 is equal to the frequency that 𝑣1 exists in the RR-sets generated

from 𝑣3, which is 0.25 + 0.375 = 0.625 due to 𝑅3 and 𝑅4. Similarly, we could derive the probability 𝑣2
influencing 𝑣3 to be 0.5. After a simple verification, we can find that the estimation so far is correct.

Next, assume node 𝑣1 is selected as the seed and we further assume only 𝑣1 itself is activated. Then

we delete RR-sets 𝑅3 and 𝑅4, since they are covered by 𝑣1, leaving a quarter of RR-sets being 𝑅1
type and an eighth of RR-sets being 𝑅2 type. On this basis, we further estimate the probability of 𝑣2
influencing 𝑣3 which would be

0.125
0.25+0.125 = 1

3
, contradicting with the actual probability 0.5.

Thus, we can see that the naive idea of deleting intersected RR-sets would incur evident biases

in adaptive influence estimation. Currently, there exists no approach to correct such estimation

biases [22]. To tackle this problem, a redeeming method is to reconstruct all the RR-sets in each

round, which however would incur prohibitive time consumption, especially in large graphs.
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Algorithm 4: RR-Set-Gene
Input: Graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ), target node 𝑣 .
Output: RR-set 𝑅 (in an array) and predecessor array 𝐻 .

1 𝑅 ← ∅, 𝐻 ← ∅; 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑢] ← 𝑓 𝑎𝑙𝑠𝑒 , ∀𝑢 ∈ 𝑉𝑖 ;
2 𝑅.append(𝑣); /* append 𝑣 to the end of 𝑅 */

3 𝐻 .append(−1); /* root node */

4 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑣] ← 𝑡𝑟𝑢𝑒;

5 𝑘 ← 0;

6 while 𝑘 < |𝑅 | do
7 𝑓 ← 𝑅 [𝑘]; /* the frontier of BFS */

8 Probe(𝑓 , 𝑘, 𝑅, 𝐻, 0);

9 𝑘 ← 𝑘 + 1;
10 end

Procedure Probe(𝑓 , 𝑘, 𝑅, 𝐻, 𝑝𝑜𝑠)
1 for 𝑙 = 𝑝𝑜𝑠, 𝑝𝑜𝑠 + 1, . . . , |𝑁in (𝑓 ) | − 1 do
2 𝑤 ← 𝑁in (𝑓 , 𝑙); /* the 𝑙-th in-neighbor */

3 if 𝑟𝑎𝑛𝑑 () ≤ 𝑝 (𝑤, 𝑓 ) and 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑤] ≠ 𝑡𝑟𝑢𝑒 then
4 𝑅.append(𝑤);
5 𝐻 .append(𝑘);

6 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑤] ← 𝑡𝑟𝑢𝑒;

7 end
8 end

4.2 Incremental Approach
Our goal is to find an efficient way to maintain the index of RR-sets, such that it can be still used for

influence estimation without biases in the subsequent rounds, thus saving computational costs. To

this end, we propose an incremental update approach. We say an RR-set is polluted if it contains at

least one activated node. At a high level, we revise those polluted RR-sets to make them clean again,

such that the integration of newly updated RR-sets and unpolluted ones can accurately estimate

the influence spread. In the following, we first present the new RR-set generation method, and then

we demonstrate how to update a polluted RR-set.

RR-Set Generation. Recalling Section 2.3, we know that an RR-set 𝑅 is generated by first selecting

a target node 𝑣 , then performing a stochastic BFS from 𝑣 along reversed edges and finally taking the

activated nodes as 𝑅. Naturally, the nodes in 𝑅 form a BFS tree where each parent-child relationship

indicates the child node is activated by the parent node. To help identify which nodes are affected

by the newly active node, we would like to keep track of the activation relationships, and thus

associate with each 𝑅 a predecessor array 𝐻 , which records the parent information of each node in

𝑅. We use an array to store 𝑅, where the elements are ordered according to when it is discovered.

Further, without loss of generality, we assume the traversal of neighbors during BFS follows a fixed

order (e.g., ascending order of node IDs).

The pseudo-code of our RR-set generation process is presented in Alg. 4. After invoking the

generation algorithm, we obtain an array-formatted RR-set 𝑅 and an 𝐻 , where 𝑅 [𝑖] is the 𝑖-th
discovered node, and it is first discovered by node 𝑅 [𝐻 [𝑖]]. To help comprehension, we further

present example 4.1 for a vivid explanation.
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Fig. 3. An example of RR-set generation and update.

Example 4.1. Let us consider the toy graph in Fig. 3(a). First, we need to reverse all the edge

directions to facilitate RR-set derivation. A possible RR-set is illustrated in Fig. 3(b), where a

blacked (resp. hollow) circle represents an activated (resp. unactivated) node. A solid line is used to

represent a successful activation attempt. In contrast, if an activation attempt fails, we remove the

corresponding edge. The generation procedure of the RR-set is as follows: First, node 𝑣1 is selected

as the target node. Accordingly, we have 𝑅 = {𝑣1}, 𝐻 = {−1} and only 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑣1] = 𝑡𝑟𝑢𝑒 . To
start the stochastic BFS, we explore the in-neighbors of 𝑣1 in the ascending order of node ID, that is

{𝑣2, 𝑣4, 𝑣5}. Assume 𝑣2 and 𝑣4 are successfully activated in sequence, while 𝑣5 is not activated. Then,

the RR-set is updated as 𝑅 = {𝑣1, 𝑣2, 𝑣4} and the corresponding 𝐻 = {−1, 0, 0}, since both 𝑣2 and 𝑣4
are activated by 𝑣1 and the index of 𝑣1 in 𝑅 is 0. In addition, 𝑣2 and 𝑣4 are labeled as discovered.

In the next round, we take out 𝑅 [1] = 𝑣2 to probe its neighbors 𝑣3 and later 𝑣6 which are both

activated. Accordingly, we have 𝑅 = {𝑣1, 𝑣2, 𝑣4, 𝑣3, 𝑣6} and 𝐻 = {−1, 0, 0, 1, 1}, since the index of

their trigger node 𝑣2 is 1 in 𝑅. Also, the labels of 𝑣2 and 𝑣4 become 𝑡𝑟𝑢𝑒 . To proceed, we attempt

to probe the neighbors of 𝑣4 but to find 𝑣3 and 𝑣6 both have been discovered. Thus, we skip the

subsequent two rounds. Meanwhile, all nodes in 𝑅 have been probed and the generation process

hence terminates. Resultantly, we obtain the corresponding BFS tree in Fig. 3(c), where each edge

embodies the activation relationship.

RR-Set Update. Let us consider an RR-set 𝑅 newly polluted in some round. By recalling the

stochastic BFS process that generates 𝑅, we could see that the nodes discovered after newly

activated nodes (e.g., 𝑣) are not guaranteed to be active in the new residual graph without 𝑣 , while

the nodes discovered before 𝑣 are actually not affected. Motivated by this observation, we strive to

design an update mechanism that consists of three steps: (i) find out the first node (say 𝑣) that is

newly active in the polluted RR-set 𝑅; (ii) find out the node (say 𝑢) that reversely discovers 𝑣 ; (iii)

then skip edge (𝑢, 𝑣) and redo the subsequent BFS process based on the current residual graph.

The detailed pseudo-code could be found in Alg. 5. To begin with, we attempt to find out the

first node that becomes active in 𝑅 (i.e., the active node with minimal index), from which the

RR-set begins to be contaminated. Let it be 𝑅 [𝑘]. If 𝑅 [𝑘] is exactly the first node in 𝑅, then we just

invoke RR-Set-Gene to generate a fresh new RR-set as a replacement. Otherwise, we continue.

By recalling the BFS process that induces 𝑅, we could note that the probing on nodes added to 𝑅

before 𝑅 [𝑘] are actually not affected. Thus, we could simply reserve these nodes and assign the

first 𝑘 − 1 elements in 𝑅 and 𝐻 to 𝑅′ and 𝐻 ′ directly. Accordingly, the first 𝑘 − 1 nodes in 𝑅′ are
marked as discovered. Next, the treatment of the 𝑘-th node is a little more sophisticated. Let the
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𝑘-th node 𝑅 [𝑘] be 𝑣 . From the procedure RR-set-Gene, we know it is 𝑅 [𝐻 [𝑘]] that first activates 𝑣
during the BFS process. Let this node be 𝑢 (see Line 11). Then, we find the position of 𝑣 (i.e., 𝑝𝑜𝑠) in

the in-neighbors of 𝑢, and continue to probe 𝑢’s neighbors from the starting point 𝑝𝑜𝑠 + 1 (i.e., the
in-neighbor of 𝑢 exactly after 𝑣), since previous neighbors are not affected and have been added to

𝑅′. After the subsequent neighbors have been probed, the discovered ones are added to 𝑅′. Then,
we take out 𝑅′ [ 𝑗 + 1] to continue probing and updating, until all nodes in 𝑅′ have been probed.

Example 4.2. As shown in Fig. 3(d), node 𝑣3 becomes active in some round (to illustrate, we mark

𝑣3 with a gray color and represent its incident edges (𝑣3, 𝑣2) and (𝑣3, 𝑣4) with dotted lines.), yielding

the residual graph 𝐺 ′. Then, the previous RR-set 𝑅 = {𝑣1, 𝑣2, 𝑣4, 𝑣3, 𝑣6} and 𝐻 = {−1, 0, 0, 1, 1}
obtained on 𝐺 are polluted by 𝑣3. Note that 𝑣3 is also the first active node in 𝑅, resulting in 𝑘 = 3.

Thus, we initialize 𝑅′ as {𝑣1, 𝑣2, 𝑣4} and 𝐻 ′ as {−1, 0, 0}. Meanwhile, the labels of nodes in 𝑅′ are set
to be 𝑡𝑟𝑢𝑒 . By looking up 𝐻 , we know it is 𝑣2 (i.e., 𝑅 [𝐻 [3]]) that discovers 𝑣3. Then, we locate the
position of 𝑣3 in 𝑁in (𝑣2) = {𝑣3, 𝑣6} as 𝑝𝑜𝑠 = 0. We skip 𝑣3 and probe the next neighbor 𝑣6 = 𝑁in (𝑣2, 1)
again. Assume 𝑣6 is not discovered by the probing, then no element needs to be added to 𝑅′ and
𝐻 ′. After finishing probing 𝑣2’s neighbors, we continue with the node right behind 𝑣2 (i.e., node

𝑣4 = 𝑅
′ [𝐻 [3]+1] = 𝑅′ [2]) whose neighbors 𝑣5 and 𝑣6 have not been probed in the residual graph yet.

Assume both 𝑣5 and 𝑣6 are reversely activated. Then, the RR-set is updated as 𝑅′ = {𝑣1, 𝑣2, 𝑣4, 𝑣5, 𝑣6}
and the corresponding predecessor array is 𝐻 ′ = {−1, 0, 0, 2, 2}. The labels of 𝑣5 and 𝑣6 also become

𝑡𝑟𝑢𝑒 . Finally, since all nodes have been discovered, no more probing will be carried out. Thus 𝑅 is

updated as 𝑅′ = {𝑣1, 𝑣2, 𝑣4, 𝑣5, 𝑣6}.

Complexity. In Alg. 5, in the worst case, we scan the RR-set array 𝑅, and wemay redo the stochastic

BFS process at the first node. Therefore, the update has the same average cost of generating a new

random RR-set. As to space consumption, we store the extra predecessor array, whose length is

exactly the same as that of the RR-set array. Therefore, we need twice space of the vanilla version.

4.3 Correctness Analysis
In this section, we first give a theoretical analysis of the correctness of our update strategy and

then discuss how to integrate it into the SelectAndVerify framework to improve efficiency.

Let R be a collection of random RR-sets obtained from the initial graph 𝐺 = (𝑉 , 𝐸). We further

assume that R is independent of both the selected seed set and the subsequent realization observa-

tion. Given the current residual graph 𝐺 ′ = (𝑉 ′, 𝐸′) in some round, we apply our update method

(i.e., Alg. 5) to revise those polluted RR-sets in R, leaving the clean RR-sets unchanged. The revised

collection of RR-sets is denoted as R′. We also generate a collection of fresh random RR-sets R′′
directly based on graph 𝐺 ′, with |R′′ | = |R′ |. Lemma 4.3 indicates that the revised collection of

RR-sets R′ actually obtains the same distribution as a fresh collection of RR-sets R′′.

Lemma 4.3. The set of RR-sets R′ has the same distribution as R′′.

Example 4.4. To further demonstrate the correctness of the update technique, we may consider

again the example of Fig. 2, trying to correct the estimation biases. Likewise 𝑣1 is assumed to be

activated, thus leaving RR-sets 𝑅3 and 𝑅4 polluted, while 𝑅1 and 𝑅2 are still clean and could be

directly reused. To revise, let us first consider 𝑅3 which exists with probability 0.25 and holds the

predecessor array 𝐻3 = {−1, 0}. Observing that 𝑣1 = 𝑅3 [1] is the first active node, we preserve
𝑅3 [0] and re-probe its next neighbor 𝑣2 = 𝑁in (𝑅 [𝐻 [0]], 1), following an ascending order of node

indexes. With equal probability, the RR-set 𝑅3 becomes 𝑅1 = {𝑣3} or 𝑅2 = {𝑣3, 𝑣2}, thus raising the
probability of 𝑅1 to 0.375 and 𝑅2 to 0.25 respectively.

Regarding 𝑅4, note that our technique asks the traversal of neighbors and the resultant RR-sets

to be ordered. Thus, the previous RR-set 𝑅4 actually includes two sub-categories: 𝑅4𝑎 = {𝑣3, 𝑣2, 𝑣1}

Proc. ACM Manag. Data, Vol. 1, No. 3 (SIGMOD), Article 207. Publication date: September 2023.



207:18 Qintian Guo et al.

Algorithm 5: RR-Set-Update
Input: Residual graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖 ), RR-set 𝑅, observation 𝜓𝑖 , corresponding predecessor

array 𝐻 .

Output: Revised RR set 𝑅′ and corresponding 𝐻 ′.
1 𝑅′ ← ∅; 𝐻 ′ ← ∅; 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑢] ← 𝑓 𝑎𝑙𝑠𝑒 , ∀𝑢 ∈ 𝑉𝑖 ;
2 𝑘 ← argmin

0≤𝑘≤ |𝑅 |𝜓𝑖 (𝑅 [𝑘]) = 1;

3 if 𝑘 = 0 then
4 return RR-Set-Gene(𝐺𝑖 ,UniformSample(𝑉𝑖 ));
5 end
6 𝑅′ ← truncate 𝑅 to length 𝑘 ;

7 𝐻 ′ ← truncate 𝐻 to length 𝑘 ;

8 for𝑤 ∈ 𝑅′ do
9 𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑒𝑑 [𝑤] ← 𝑡𝑟𝑢𝑒;

10 end
11 𝑣 ← 𝑅 [𝑘], 𝑗 ← 𝐻 [𝑘], 𝑢 ← 𝑅 [ 𝑗];
12 𝑝𝑜𝑠 ← find the 𝑝𝑜𝑠 such that 𝑁in (𝑢, 𝑝𝑜𝑠) = 𝑣 ;
13 Probe(𝑢, 𝑗, 𝑅′, 𝐻 ′, 𝑝𝑜𝑠 + 1);
14 𝑗 ← 𝑗 + 1;
15 while 𝑗 < |𝑅′ | do
16 𝑓 ← 𝑅′ [ 𝑗];
17 Probe(𝑓 , 𝑗, 𝑅′, 𝐻 ′, 0);

18 𝑗 ← 𝑗 + 1;
19 end
20 return 𝑅′, 𝐻 ′;

with 𝐻4𝑎 = {−1, 0, 1} and 𝑅4𝑏 = {𝑣3, 𝑣1, 𝑣2} with 𝐻4𝑏 = {−1, 0, 0}. Then, let us update 𝑅4𝑎 first. After

truncating 𝑅4𝑎 at 𝑣1, 𝑅
′
4𝑎 becomes {𝑣3, 𝑣2} (i.e., 𝑅2), which already contains all the nodes in the

residual graph. Thus, no more probing is needed. Next, to revise 𝑅4𝑏 , we begin with 𝑅′
4𝑏

= {𝑣3}
by truncation. By looking up 𝐻4𝑏 , we know that the trigger node of 𝑣1 is 𝑣3 = 𝐻4𝑏 [0]. Then, we
proceed to re-probe 𝑣3’s next neighbor 𝑣2 by the ascending index order, resulting in 𝑅

′
4𝑏

= 𝑅1 = {𝑣3}
and 𝑅′

4𝑏
= 𝑅2 = {𝑣3, 𝑣2} with equal probability. Thus after revision, all 𝑅4𝑎 together with half of 𝑅4𝑏

will be added to 𝑅2, and the other half of 𝑅4𝑏 will be added to 𝑅1.

To summarize, recall that 𝑅4𝑎 and 𝑅4𝑏 exist with probability 0.125 and 0.25 respectively. It is easy

to see that the probabilities of both 𝑅1 = {𝑣3} and 𝑅2 = {𝑣3, 𝑣2} are raised to 0.5. As a result, node 𝑣2
covers all 𝑅2 and thus influences 𝑣3 with probability 0.5, coincident with the activation probability

𝑝 (𝑣2, 𝑣3) = 0.5 in Fig. 2.

Recall that CASE can be viewed as a specific instance of the SelectAndVerify framework by

instantiating the lower/upper bounds. Thus, in the following, we consider the general case of how

to incorporate the update technique (i.e., Alg. 5) into the SelectAndVerify framework. Specifically,

the new SelectAndVerify is as follows:

(i) At the beginning, we invoke Alg. 5 to correct R1 and R2 which just took effect in the previous

round; (ii) Then we use R1 to select a seed set 𝑆 , and R2 to verify 𝑆 ’s quality. If 𝑆 satisfies 𝑄𝑙 (𝑆) ≥
𝛼 ·𝑄𝑢 (𝑆𝑜 ), we can terminate the process; (iii) If 𝑆 fails to satisfy 𝑄𝑙 (𝑆) ≥ 𝛼 ·𝑄𝑢 (𝑆𝑜 ), we generate
new random RR-sets based on the current residual graph such that the size of R1 and R2 is double,

and go back to Step (ii). (iv)When the number of newly generated RR-sets reaches 𝑟max (a parameter
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required by the SelectAndVerify framework), we can select a seed set 𝑆 based on only these new

RR-sets, and then terminate the algorithm with 𝑆 as the final answer.

In the following, we analyze the correctness of the SelectAndVerify framework equipped with our

update approach. Before proceeding, we first analyze the collection R1 as we cannot apply Lemma

4.3. To elaborate, recall that we select the seed set based on the RR-sets in R1. This implies that

the selected seed set is slightly dependent on the RR-sets in R1, which violates the independence

prerequisite in Lemma 4.3. As a result, we are uncertain whether R1 will produce a good 𝑆 . However,

Lemma 4.5 allows us to be optimistic about the quality of the seed set selected by R1 due to the

convergence property it exhibits.

Lemma 4.5. Given a seed set 𝑆 , the estimated influence spread of 𝑆 based on R1 will converge to the
expected influence spread of 𝑆 .

Now, we present the following lemma to conclude the correctness of the SelectAndVerify framework

integrated with our update strategy.

Lemma 4.6. The SelectAndVerify framework integrated with the update algorithm returns a seed set
with the same approximation guarantee as the vanilla SelectAndVerify framework.

Specifically, if SelectAndVerify is instantiated as our CASE, then it achieves the expected 𝛼-

approximation guarantee. Note that the pseudo-code of Alg. 3 (i.e., CASE) does not incorporate the

update strategy. If the update strategy is applied, we need to make some minor modifications to

ensure that up to 𝑟max new RR-sets are generated in the worst-case scenario.

Time Complexity. The new SelectAndVerify framework first updates random RR-sets inherited

from the previous round. As discussed in Section 4.2, the cost of updating an RR-set is bounded

by that of generating a new one. Besides, the maximum number of RR-sets needed is still 𝑟max.

Thus, the worst-case time complexity of our new SelectAndVerify framework only increases by a

constant factor. The analysis for its expected time complexity is deferred to [1].

5 RELATEDWORKS
Domingos and Richardson [10] are pioneers in leveraging the word-of-mouth effect to promote

the purchasing behavior in social networks. Then, Kempe et al. further formalize the well-known

influence maximization problem, and invent the elegant greedy algorithm that provides constant

theoretical guarantee (1−1/𝑒) [27]. Since then, a plethora of research [2, 4, 5, 14, 19, 21, 31, 49, 52, 54]
has been conducted to advance the field from various perspectives.

It is worth noting that the budgeted influence maximization problem has attracted much attention

due to its fine agreement with realistic scenarios. Notably, based on a greedy idea, Kuhller et al.

[28] first establish an approximation ratio of
1

2
(1 − 1/

√
𝑒) for the maximum coverage problem and

claim the ratio could be refined to (1 − 1/
√
𝑒). Further, [33] and [34] attempt to extend the idea to

influence maximization and succeed the approximation ratio. However, a later work [51] refutes the

results in [28] and therefore [33] [34] and revises it to be
1

2
(1− 1/𝑒), which conforms with previous

analysis of Krause and Guestrin [29]. Especially, the recent work [6] elevates the approximation

ratio to (1 − 𝛽) (1 − 1/𝑒) and improves the experimental efficiency by over 10 times. Besides, a line

of research advances traditional IM works by combining the budgeted setting [20] [37] [48] [53].

As one may note, the above studies mainly belong to the non-adaptive category, where seeds

are selected before diffusion. Differently, Golovin and Krause initialize the concept of adaptive

submodularity in [15], where the seed selection is based on the observation of previous diffusion

results, and prove the performance guarantee of adaptive greedy policy to be still (1 − 1/𝑒). Due to
its sensible mechanism, the adaptive idea soon becomes widely applied in the research community
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[11] [22] [41] [46] [50]. Under the uniform cost model (i.e., each node has equal cost), Vaswani et al.

[47] propose a node-level feedback model, different from the edge-level feedback considered in [15].

Vaswani et al. further show that if the time horizon is unbounded, the adaptive greedy strategy can

achieve a (1 − 𝑒−1/𝛼𝛾 ) approximation guarantee. However, as noted in [22], accurately estimating

expected influence as required in [47] is intractable. There is currently no existing algorithm that

can meet the accuracy requirement for evaluating the expected spread.

Under the skewed cost model (i.e., the cost of each node may not be equal), Srinivasan [35] gives

a policy with approximation guarantee, based on a differential analysis technique. However, it

requires that the expected influence of each node can be exactly computed, which is impractical

since it is a #P-hard problem [9]. Chen et al. studies the adaptive IM problem under the expected

budgeted constraint in [8]. However, their algorithms do not offer any approximation guarantee

for the strictly budgeted constraint investigated in this paper.

To be scalable to huge networks, both adaptive and non-adaptive algorithms demand efficient

and precise estimation of user influences. In this regard, the seminal work [27] applies the Monte

Carlo simulations for estimation, which however requires a time complexity of Ω(𝑘𝑚𝑛 · poly(1/𝜖))
to maintain the (1 − 1/𝑒 − 𝜖) approximation ratio. Then, Borgs et al. reduce the time to 𝑂 (𝑘 (𝑚 +
𝑛) log2 𝑛/𝜖3) by proposing the reverse sampling technique in their ground-breaking work [7]. Tang

et al. further present TIM/TIM
+
and IMM in [45] and [44] respectively, improving the running

time to a near optimum of 𝑂 (𝑘 (𝑚 + 𝑛) log𝑛/𝜖2). Thereafter, another milestone is laid by Tang et

al. [43] by proposing OPIM-C, which follows a SelectAndVerify structure and exhibits superior

empirical effectiveness than previous algorithms. Recently, Guo et al. design SUBSIM to ameliorate

the sampling of a single RR-set and the treatment of sizeable RR-sets [16] [17]. However, the

above techniques are mainly devised for non-adaptive algorithms, which if directly applied to the

adaptive case would incur evident estimation bias, as explained in Section 4.1. Thus, we develop

the tailored incremental update technique for adaptive influence estimation, which could act as a

general approach for subsequent research on adaptive IM.

6 EXPERIMENTS
6.1 Experimental Settings

Algorithms.Recall that ourMAPLE (see Alg. 2) is a probabilistic approach, which invokes CaGreedy

with
𝛽

1+𝛽 probability, and MIS with
1

1+𝛽 probability. To measure the expected influence of MAPLE, we

run these two algorithms separately to get their influence spread and then report a weighted sum.

Further, we add the prefix “I-” if the incremental update strategy is applied.When implementingMIS,

we make a small modification to help it make full use of the budget. That is, after obtaining a single

qualified node, we continue to select nodes with high influence (based on the maximum coverage

criterion) until the budget runs out. Since the influence spread is monotonic with respect to the

seed set, the performance guarantee of MAPLE still holds with the modified MIS. For comparison,

we also include the state-of-the-art solution IMAGE [6] devised for the non-adaptive BIM problem.

Further, the adaptive solution EptAIM [22] designed for the classic IM problem is also adapted as

a baseline. Besides, for all algorithms, we use the subset sampling technique (SUBSIM) proposed

in [16] to improve their efficiency. We also include the algorithm SAG [8] for comparison, which

returns a seed set with total costs equal to 𝐵 in expectation. Note that SAG possibly provides a seed

set whose cost sum exceeds the budget 𝐵.

Datasets. The algorithms are run on four widely used datasets, available on SNAP [30]. Their

statistic information is shown in Table 1. Especially, Epinions, DBLP, and Livejournal are used in

[22]. The dataset Twitter is the largest one, containing billions of edges. Following [22], we generate

20 random realizations for each dataset and report the average influence spread of each algorithm.
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Table 1. Datasets. (𝐾 = 10
3, 𝑀 = 10

6, 𝐵 = 10
9)

Name 𝒏 𝒎 Avg Degree Type
Epinions 282K 2.3M 13.4 directed

DBLP 655K 2.0M 6.1 undirected

LiveJournal 4.8M 69.0M 28.5 directed

Twitter 41.7M 1.5B 35.3 directed

Cost Model. When evaluating our algorithms under the skewed cost setting, we consider two

types of cost models: degree-based cost model and random cost model.

(i) In the degree-based cost model, all nodes are endowed with a basic cost 𝑐basic = 1 to reflect

these scenarios, where users are often seeded by offering a piece of product in viral marketing.

Following [6], we further impose an extra cost that is linear with the in-degree, to capture the

fact that influential users with more followers (i.e., in-neighbors) tend to demand a higher reward

𝑐 (𝑢) = 𝑐basic + 𝑑in (𝑢) · 𝑐𝑟 , where 𝑐𝑟 mimics the payment for having each follower and 𝑑in (𝑢) is the
in-degree of 𝑢. We set 𝑐𝑟 to be 0.01 just like [6]. The budget 𝐵 is varied from 100 to 500.

(ii) In the random cost model [33], the cost of each node is randomly selected from the range

[1.0, 10.0]. It allows us to explore the performance of our algorithms under scenarios where a

higher expected influence does not necessarily correspond to a higher cost.

Parameter Setting. First, following most existing IMworks [11, 17, 43, 49], the diffusion probability

of each edge (𝑣,𝑢) is set to be
1

𝑑in (𝑢 ) under the IC model. Second, regarding the MAPLE framework,

the approximation parameters 𝛼 for CaGreedy and 𝛽 for MIS are fixed to be 𝛼 = 0.5 and 𝛽 = 0.8.

The ratio 𝛼 is given a relatively smaller value, since CaGreedy runs in a round-wise fashion and

thus a tighter approximation guarantee would incur much higher computational cost. For EptAIM

and SAG, we set their deviation 𝜖 = 0.5. For the non-adaptive solution IMAGE, we set the deviation

to be 𝜖 = 0.5 and the failure probability to be 𝛿 = 1

𝑛
. Recall that IMAGE [6] offers a data-dependent

approximation guarantee. In the worst case, the approximate ratio is at most 0.355. Nonetheless,

IMAGE in practice performs much better as shown in their experiments, where the actual ratio can

be as high as 0.75 across all tested datasets. Thus, we are allowed to set 𝜖 = 0.5.

6.2 Experimental Performance

Influence Spread.We first evaluate the performance of influence spread for each algorithm under

the degree-based cost model. The experimental results are shown in Fig. 4. The first observation

is that MAPLE+ (i.e., the optimized version of MAPLE), and I-MAPLE+ (i.e., the MAPLE+ with

the incremental update method), and SAG provide the best performance in terms of influence

spread over all four datasets. In particular, MAPLE+ achieves around 16% larger spread compared

with the second best algorithm IMAGE on Livejournal. The second observation is that MAPLE

gives an inferior performance than IMAGE. To explain, recall that MAPLE is a weighted sum of

CaGreedy and MIS. When MIS suffers from low influence spread, it would encumber the overall

performance of MAPLE. As for EptAIM, since the seed node is simply selected based on the

maximum influence criterion without considering the actual cost, its influence spread is relatively

smaller just as expected. The third observation from Fig. 4 is that the curves of I-MAPLE+ are

completely overlapped by that of MAPLE+ for all four datasets. It shows that our incremental

update strategy can provide a selected seed set with identical quality, demonstrating its effectiveness.

Finally, we observe that the curves of MAPLE+/I-MAPLE+ are visually consistent with those of

SAG. This is expected as all three methods rely on the cost-aware greedy strategy for seed node

selection. However, SAG lacks any performance guarantee for the strictly budgeted setting. Besides,
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Fig. 4. Varying budget 𝐵: Average influence spread of each algorithm under degree-based cost model.
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Fig. 5. Varying budget 𝐵: Running time of each algorithm under degree-based cost model.

it is likely to return an over-budget solution, where the cost of the seed set exceeds the given budget.

For example, in this set of experiments, SAG returned over-budget results in 43%, 52%, 45%, and

55% invocations on datasets Epinions, DBLP, LiveJournal, and Twitter, respectively.

Running Time. Next, we evaluate the efficiency of each algorithm in terms of running time under

degree-based cost model. The experimental results are shown in Fig. 5. First, we can observe that

all the adaptive algorithms (i.e., MAPLE, MAPLE+, I-MAPLE+, EptAIM, and SAG) take much more

time than the non-adaptive algorithm IMAGE. It can be explained that adaptive algorithms need to

run many rounds and naturally, take much more time to complete. The second observation is that

I-MAPLE+ runs much faster than MAPLE+ over all four datasets, demonstrating the superiority of

our incremental strategy in efficiency. Specifically, on Livejournal (resp. DBLP), I-MAPLE+ achieves

50x (resp. 40x) speedup when budget 𝐵 = 500. Third, as can be seen, in Twitter, the runtime of

EptAIM is close to that of I-MAPLE. It is because EptAIM tends to select the nodes with higher

costs as seeds, and thus may run fewer rounds than I-MAPLE. In addition, compared with SAG,

our I-MAPLE+ also consistently outperforms SAG by up to 60x on LiveJournal with 𝐵 = 500.

Furthermore, for a better illustration of our algorithms, we also report the running time of each

sub-policy (i.e., CaGreedy, I-CaGreedy and MIS) under budget 𝐵 = 200 in Fig. 6(a)-(b), by setting 𝛼

as 0.2 and 0.5 respectively. As we observe, MIS is much more efficient than CaGreedy/I-CaGreedy

when 𝛼 = 0.5, since MIS runs only one round. As 𝛼 becomes 0.2 (smaller than 0.5), both CaGreedy

and I-CaGreedy run faster due to looser approximation requirements.

Random Cost Model. We further evaluate our algorithms under random cost model. The perfor-

mance of our algorithms under this model is similar to that of the degree-based cost model. When

considering influence spread, both our MAPLE+/I-MAPLE+ and the baseline SAG consistently

perform the best on all datasets. As for running time, our I-MAPLE+ algorithm requires signifi-

cantly less running time compared to other adaptive algorithms, demonstrating its effectiveness

and efficiency under the random cost model. Due to space limitation, we only report the results of

running time (shown in Fig. 7). The detailed results are deferred to [1].
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Fig. 7. Varying budget 𝐵: Running time of each algorithm under random cost model.

EptAIMEptAIM I-EptAIMI-EptAIM SUBSIMSUBSIM

 2

 2.5

 3

 3.5

 4

100 200 300 400 500

Influence Spread (× 10
4
)

k

 1

 1.5

 2

 2.5

 3

 3.5

 4

100 200 300 400 500

Influence Spread (× 10
4
)

k

 0.8

 1.2

 1.6

 2

 2.4

100 200 300 400 500

Influence Spread (×10
5
)

k

 1

 1.2

 1.4

 1.6

100 200 300 400 500

Influence Spread (× 10
7
)

k

(a) Epinions (b) DBLP (c) LiveJournal (d) Twitter

Fig. 8. Varying 𝑘 : Average influence spread of each algorithm under uniform cost model.
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Fig. 9. Varying 𝑘 : Average running time of each algorithm under uniform cost model.

Uniform Cost. We also test our incremental update approach in the classic adaptive IM (AIM)

problem, where all nodes have the same cost. As for the solution, we integrate the incremental

update strategy with the state-of-the-art algorithm, EptAIM [22]. The augmented algorithm is

denoted as I-EptAIM, since the incremental update strategy is applied. Following [22], the size of

the seed set 𝑘 varies from 100 to 500 and the approximate ratio 𝜖 is set to be 0.5. For comparison,

under this setting, the non-adaptive solution SUBSIM [16] is also included for evaluation. The
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influence spread and running time are shown in Fig. 8 and Fig. 9 respectively. First, we find from

the two figures that our incremental update strategy could significantly reduce the running time

by up to two orders (see dataset DBLP when 𝑘 = 500), while still providing a seed node with equal

influence spread. Compared with EptAIM/I-EptAIM, the non-adaptive solution SUBSIM is the most

efficient one, which yields a seed set within one second in most cases, at the cost of low influence

spread. On dataset Epinions (resp. Livejournal), EptAIM/I-EptAIM returns a seed set with 23% (resp.

18%) more influence spread than SUBSIM, since adaptive solutions could make wiser seed selection

based on observation of previous diffusion results.

Memory Footprint. We further report the memory footprint of CaGreedy and I-CaGreedy when

budget 𝐵 = 200, shown in Fig. 6 (c). As can be seen, for all datasets, the memory footprint increment

caused by our incremental update strategy is insignificant (less than twice). For example, I-CaGreedy

costs only 5% more memory for dataset Twitter than CaGreedy. It can be explained that in addition

to storing the generated RR-sets, CaGreedy also maintains some necessary information in the

memory, such as the adjacent matrix of the input graph and the activated status of each node. It

exhibits that our incremental update strategy is space-efficient.

Number of RR-sets. Recall that in our update strategy, we first revise the polluted RR-sets, and

then select a seed for quality verification. If the quality is unsatisfactory, we will continue to

generate new RR-sets to further refine the selection quality. As shown in Fig. 6 (d), we report the

total number of polluted RR-sets and the newly generated RR-sets under the setting of budget

𝐵 = 200 in I-CaGreedy. For comparison, we also report the total number of RR-sets generated by

CaGreedy without the incremental update strategy, labeled as vanilla. From the figure, the number

of newly generated RR-sets in I-CaGreedy is at least one order smaller than that in the vanilla

CaGreedy. Besides, the number of polluted RR-sets is also significantly less than that of the newly

generated RR-sets. These observations can visually explain why our incremental update approach

is such efficient in terms of running time.

7 CONCLUSION
In this paper, we make the first attempt to solve the BIM problem under the adaptive setting

and propose the first practical algorithm MAPLE by randomly switching between the cost-aware

greedy selection and the highly influential node. It is proven to achieve an expected approximation

guarantee. Based on RR-set estimation, the CASE algorithm is designed to return a seed node with

approximation guarantee. We also develop an optimized MAPLE+ to further improve its practical

spread performance. Moreover, we propose an incremental update technique to recycle the old

RR-sets generated in the previous rounds, which significantly improves efficiency. Finally, extensive

experiments are conducted to demonstrate that our algorithms outperform the baselines.
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