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ABSTRACT
Graph clustering is a fundamental data mining task that clusters

vertices into different groups. The structural graph clustering al-

gorithm (𝑆𝐶𝐴𝑁 ) is a widely used graph clustering algorithm that

derives not only clustering results, but also special roles of vertices

like hubs and outliers. In this paper, we consider structural graph

clustering on dynamic graphs under Jaccard similarity. The state-

of-the-art index-based solution focuses on static graphs and incurs

prohibitive update costs to maintain indices. Lately, an efficient

approximate dynamic structural graph clustering algorithm Dyn-

StrClu under Jaccard similarity is proposed. However, their solution

needs to fix input parameters while parameter settings of SCAN

usually need to be fine-tuned to achieve good clustering results.

Motivated by these limitations, we present a study on devising

effective index structures for SCAN algorithm on dynamic graphs.

Similar to the state-of-the-art dynamic scheme, our main idea to

reduce the time complexity is still by bringing approximation to

clustering results. However, our solution does not need to fix the

input parameters. To achieve this, our solution includes two key

components. The first is to maintain a bottom-𝑘 sketch for each

vertex so that the similarities of affected vertices can be easily

updated. The second key is a bucketing strategy that allows us

to update clustering results and roles of vertices efficiently. Our

theoretical analysis shows that our proposed algorithm achieves

𝑂 (log𝑛 · log
𝑀+𝑚
𝑝𝑓
) expected update cost and guarantees to return

approximate clustering results with probability 1−𝑝 𝑓 after up to𝑀

updates. Extensive experiments show that our solution is up to two

orders of magnitude faster than the state-of-the-art index-based

solution while still achieving high-quality clustering results.
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1 INTRODUCTION
Graph is a fundamental type of data structure to represent objects

and their relationships. Much real-world data can be represented

as graphs such as online social networks, the Web network, protein
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interaction networks, and road networks. Graph clustering is one

of the most important tasks on graph data analysis, which aims to

divide the vertices into different groups where vertices within a

group are densely connected while vertices in different groups are

sparsely connected. Graph clustering finds many real-world appli-

cations, such as finding functional modules in metabolic networks

[14], identifying communities on social networks [13], detecting

research groups across collaborating networks [39], to name a few.

Structural graph clustering [35] is one of the well-known ap-

proaches to graph clustering and Xu et al. [35] present the first

algorithm SCAN to solve this problem. The main idea of SCAN

is that if two vertices are similar enough in terms of their neigh-

borhood, then the two vertices tend to belong to the same cluster.

Unlike other graph clustering algorithms that only find the cluster-

ing results, SCAN further finds the special roles of different vertices.

For instance, it identifies hub vertices that connect different clusters

and outliers that lack strong ties to any cluster. Given an undirected

graph 𝐺 = ⟨𝑉 , 𝐸⟩ with 𝑛 vertices and𝑚 edges and a set similarity

measure 𝜎 , e.g., the Jaccard similarity, the SCAN algorithm takes

two input parameters: a similarity threshold 𝜖 and an integer 𝜇. If

𝑣 is a neighbor of vertex 𝑢 (i.e., there exists an edge between 𝑢 and

𝑣) and they have a similarity score 𝜎 (𝑢, 𝑣) no smaller than 𝜖 , then

𝑣 is called an 𝜖-neighbor of vertex 𝑢. If the number of 𝜖-neighbors

of vertex 𝑢 is no smaller than 𝜇, 𝑢 is called a core vertex. Then, con-
sidering only the edges among core vertices with similarity above

the threshold 𝜖 , we can construct different connected components,

resulting in different clusters. For a vertex 𝑣 that is not a core vertex

but an 𝜖-neighbor of core vertex(s), it is assigned to the cluster(s) of

its 𝜖-neighbor(s) that is/are core vertex(s). Hub vertices and outliers
are further defined for unclustered vertices, depending on whether

the vertex connects to multiple clusters. Different roles enrich the

structural information and help us better understand networks.

It is shown that SCAN can help findmeaningful clustering results

in biological data [12, 18, 20, 21], web data [17, 22, 23, 26, 28, 29],

and social networks [16, 24]. It can also be used for community

detection [24], image segmentation [25], and fraud detection on

blockchain data [7]. Due to its important applications, it attracts

a plethora of research studies, e.g., [6, 30, 33], on improving the

efficiency of the SCAN algorithm. As the SCAN algorithm needs

to calculate the similarity among all neighbor vertex pairs, some

existing research focuses on reducing the costs of similarity com-

putations via pruning unnecessary pairs [6, 8, 30] or exploiting

parallelism [8, 9, 19, 31, 32, 37, 38]. In the meantime, it is also pin-

pointed in existing research studies [5, 15, 34] that input parameters

𝜖 and 𝜇 need to be fine-tuned so as to achieve good clustering re-

sults. Thus, another direction is to devise effective indices, e.g.,

GS-Index [33, 34], so that clustering results and different roles of

vertices can be more efficiently derived for different choices of 𝜖

and 𝜇. Nevertheless, all these research works mainly consider static

graphs while real-life graphs, like web graphs and social graphs, are
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dynamically changing. It is possible to compute the exact GS-Index

[34] from scratch with multi-core parallelization [33]. However,

the 𝑂 (𝑚1.5) construction cost is still prohibitive on huge graphs,

resulting in unnecessarily long waiting time for clustering analysis.

Most recently, Ruan et al. [27] present a dynamic scheme DynStr-
Clu for SCAN with the popular Jaccard similarity as the underlying

set similarity measure. The expected update cost of DynStrClu is

𝑂

(
log

2 𝑛 + log𝑛 · log
𝑀+𝑚
𝑝𝑓

)
, which guarantees that the returned

clustering result satisfies the approximation definition with prob-

ability 1 − 𝑝 𝑓 after up to 𝑀 updates. However, the main issue of

DynStrClu is that it needs to fix the two input parameters and

only maintains the clustering result for such a fixed set of input

parameters. It is difficult for DynStrClu to help us find good clus-

tering results when inputting different parameters 𝜖 and 𝜇. If we

simply apply DynStrClu with various settings of 𝜖 and 𝜇, the space

consumption will explode as there are too many such combinations.

Motivated by limitations of existing solutions, we present an

effective indexing scheme BOTBIN (Bottom-𝑘 and bucket indexing)
for the SCAN algorithm on dynamic graphs under Jaccard simi-

larity that are insensitive to the input parameters. Following the

previous work [27], we consider the case when the updates are edge

insertions/deletions as vertex insertion/deletions can be mapped to

a series of edge insertions/deletions. Following [27], we consider

unweighted graphs and focus on the Jaccard similarity, which is a

widely adopted similarity for unweighted sets. As shown in [34], de-

riving an exact dynamic scheme to SCAN incurs𝑂 (min{𝑑2

𝑚𝑎𝑥 ,𝑚} ·
log𝑛) update cost. To reduce the time complexity, we turn to ap-

proximate solutions, which relax the definition of 𝜖-neighbors,

and show that we can update the index with an expected cost

of𝑂 (log𝑛 · log
𝑀+𝑚
𝑝𝑓
) for each edge update. The returned clustering

result satisfies the approximation definition with probability 1− 𝑝 𝑓
after up to 𝑀 edge updates. Note that this result is non-trivial as

our BOTBIN reduces a term of log
2 𝑛 in update cost compared to

the state-of-the-art dynamic scheme DynStrClu, while at the same

time it supports different choices of 𝜇 and 𝜖 .

To achieve above goals, our solution includes two key compo-

nents. The first is a similarity index that can support efficient main-

tenance of similarity scores on dynamic graphs. Our similarity

index includes a bottom-𝑘 sketch for each vertex so that we can

derive the estimated similarities with approximation guarantees

between neighboring vertices by inspecting the sketches of two

vertices. We note that using bottom-𝑘 sketch to estimate Jaccard

similarity is not a new idea. Our key contribution here is to dy-

namically maintain the bottom-𝑘 sketch after graph updates with

bounded cost. The key observation is that the larger the number of

neighborhood a vertex 𝑢 has, the smaller the chance is that an edge

update to (𝑢, 𝑣) will affect the bottom-𝑘 sketch of vertex 𝑢. To the

best of our knowledge, we are the first to make full use of this obser-

vation and combine it with the bottom-𝑘 sketch to reduce the time

complexity of dynamic graph clustering algorithms. It may further

inspire other research works to improve the time complexity of

graph clustering or dynamic graph algorithms with similar issues.

We show that the update cost can be bounded with 𝑂 (𝑘2) where
𝑘 = 𝑂 (log

𝑀+𝑚
𝑝𝑓
) is the size of the bottom-𝑘 sketch of each vertex

and is independent of the degree of vertex 𝑢. Further observing

that the update of an edge (𝑢, 𝑣) affects at most two entries of the

bottom-𝑘 sketch of vertex 𝑢, we present optimization techniques

to reduce the update cost to 𝑂 (𝑘 log𝑘).
The second key component of our BOTBIN is an effective clus-

tering index that helps return the clustering result given the input

parameters 𝜖 and 𝜇. Notice that even if we can efficiently maintain

and update the similarity scores with a cost independent of the

degree, it may still incur high update cost if we want to report

the clustering results with a cost proportional to the size of the

cluster subgraph (Ref. to Definition 6). For example, with the state-

of-the-art GS-Index, even if we only change the similarity score

of one vertex pair, it still incurs up to 𝑂 (𝑑𝑚𝑎𝑥 · log𝑛) update cost
(reasons explained in Section 2.2), where 𝑑𝑚𝑎𝑥 is the maximum

degree of the graph. To tackle this issue, the second key of BOT-

BIN is a bucketing strategy that maintains different buckets where

each bucket is associated with a range and maintains a list of edges

whose incident vertex pairs have a similarity score falling inside

the associated range. When similarity scores are updated, it only

needs to update edges to the correct bucket, which significantly

reduces the maintaining overhead. We further present a detailed

theoretical analysis and show that our index scheme can achieve

an update cost of 𝑂 (log𝑛 · log
𝑀+𝑚
𝑝𝑓
), independent of 𝑑𝑚𝑎𝑥 .

To summarize, our main contributions are as follows.

• We present effective similarity index and efficient update algo-

rithms to dynamically maintain the estimated similarity scores.

• We propose an effective clustering index and efficient update

algorithms to return clustering results with a cost proportional

to the cluster subgraph given different input parameters 𝜇 and 𝜖 .

• Theoretical analysis shows that our dynamic index scheme achieves

a cost of 𝑂 (log𝑛 · log
𝑀+𝑚
𝑝𝑓
) after each edge update and at the

same supports different input parameters of 𝜇 and 𝜖 .

• Extensive experiments on real-world graphs with up to 3.9 billion

edges show that our proposed scheme BOTBIN achieves up to

two orders of magnitude improvement over the existing state-

of-the-art solution without compromising the clustering quality.

2 PRELIMINARIES
2.1 Problem Definition
Notations in graphs. We consider an unweighted and undirected

graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of

edges in the graph. We use 𝑛 to indicate the number of vertices and

𝑚 to indicate the number of edges. An edge 𝑒 connecting vertex 𝑢

and 𝑣 is denoted as an unordered pair of vertices, (𝑢, 𝑣) or (𝑣,𝑢), and
𝑢 and 𝑣 are called a neighbor of each other or simply neighboring

vertices. For a vertex 𝑢 ∈ 𝑉 , the neighborhood 𝑁 [𝑢] consists of (i)
the set of nodes who are neighbors of node 𝑢 and (ii) 𝑢 itself. The

degree 𝑑𝑢 of vertex 𝑢 is defined as the number of neighbors of 𝑢.

Terminologies in SCAN. Given two neighboring vertices 𝑢 and 𝑣 ,

the similarity 𝜎 (𝑢, 𝑣) between𝑢 and 𝑣 is defined as the set similarity

between𝑁 [𝑢] and𝑁 [𝑣]. We focus on the case when the elements in

the set are equally weighted. In such a scenario, Jaccard similarity

is adopted as the set similarity measure in existing studies, e.g.,

[6, 27, 33, 36]. The definition of Jaccard similarity is as follows.

Definition 1 (Jaccard Similarity). Given two sets 𝑋 and 𝑌 ,
the Jaccard similarity between these two sets is defined as |𝑋∩𝑌 ||𝑋∪𝑌 | .



In other words, given two neighboring vertices 𝑢 and 𝑣 , their

similarity 𝜎 (𝑢, 𝑣) = |𝑁 [𝑢] ∩𝑁 [𝑣] |/|𝑁 [𝑢] ∪𝑁 [𝑣] |. If𝑢 and 𝑣 are not

neighbors, their similarity is 0. In SCAN, the first input parameter is

a threshold 𝜖 , which identifies the 𝜖-neighbors, defined as follows.

Definition 2 (𝜖-neighbor). Given a threshold 𝜖 ∈ (0, 1] of the
similarity, 𝑣 is called an 𝜖-neighbor of𝑢 if 𝑣 ∈ 𝑁 [𝑢] and the similarity
𝜎 (𝑢, 𝑣) between 𝑢 and 𝑣 is no smaller than 𝜖 . The 𝜖-neighbor set
𝑁𝜖 [𝑢] is defined as the set of 𝜖-neighbors of node 𝑢, i.e., 𝑁𝜖 [𝑢] =
{𝑣 ∈ 𝑁 [𝑢] |𝜎 (𝑢, 𝑣) ≥ 𝜖}.

Given the definition of 𝜖-neighbors, the second input parameter

is an integer threshold 𝜇 ≥ 2, which is used to define core vertices.

Definition 3 (core vertex). A vertex 𝑢 ∈ 𝑉 is a core vertex if 𝑢
has at least a number 𝜇 of 𝜖-neighbors, i.e., |𝑁𝜖 [𝑢] | ≥ 𝜇.

Definition 4 (Core graph). Given the set 𝑉𝑐𝑜𝑟𝑒 of core vertices,
the core graph𝐺𝑐𝑜𝑟𝑒 consists of𝑉𝑐𝑜𝑟𝑒 and 𝐸𝑐𝑜𝑟𝑒 , where 𝐸𝑐𝑜𝑟𝑒 includes
an edge (𝑢, 𝑣) if and only if (i) (𝑢, 𝑣) ∈ 𝐸, (ii) 𝑢, 𝑣 ∈ 𝑉𝑐𝑜𝑟𝑒 , (iii) 𝑢 and
𝑣 are 𝜖-neighbors.

Definition 5 (cluster). Each connected component of 𝐺𝑐𝑜𝑟𝑒

corresponds to a cluster. For a vertex 𝑣 that is not a core vertex, if
it is an 𝜖-neighbor of a core vertex 𝑢, then it belongs to the cluster
containing𝑢. Notice that the non-core vertex 𝑣 might be the 𝜖-neighbor
of multiple core vertices, then 𝑣 will be assigned to multiple clusters.

Definition 6 (Cluster Subgraph). Given a clustering result C,
the cluster subgraph is a subgraph𝐺C = (𝑉C, 𝐸C) of the input graph
𝐺 where 𝑣 ∈ 𝑉C iff (i) 𝑣 is a core vertex or 𝜖-neighbor of a core vertex;
(ii) an edge (𝑢, 𝑣) ∈ 𝐸C iff 𝑢, 𝑣 ∈ 𝑉C and at least one is a core vertex.

Definition 7 (Hubs and outliers). For a vertex 𝑣 that is not in
any clusters, if it has neighbors belonging to multiple clusters, then it
is a hub vertex. Otherwise, it is an outlier.

Example 1. Figure 1 shows the clustering result of the input

graph 𝐺1 when 𝜖 = 0.5 and 𝜇 = 5. The similarity for every pair of

adjacent vertices is shown close to each edge. Vertices 𝑣3 and 𝑣8 are

core vertices, which are filledwith black colors. The core-graph then

consists of only two isolated vertices 𝑣3 and 𝑣8. The clustering result

C = {𝐶1,𝐶2} consists of two clusters where 𝐶1 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}
and 𝐶2 = {𝑣6, 𝑣7, 𝑣8, 𝑣9, 𝑣10}, as 𝑣1, 𝑣2, 𝑣4, 𝑣5 are the 𝜖-neighbors of

𝑣1 and 𝑣6, 𝑣7, 𝑣8, 𝑣9 are the 𝜖-neighbors of 𝑣8. The cluster subgraph

𝐺C = (𝑉C, 𝐸C) then includes 𝑣1 to 𝑣10, i.e., 𝑉C = {𝑣1, 𝑣2, · · · , 𝑣10}
as they are either core vertices or the 𝜖-neighbors of core ver-

tices. The edge set 𝐸C = {(𝑣1, 𝑣3), (𝑣2, 𝑣3), (𝑣4, 𝑣3), (𝑣5, 𝑣3), (𝑣6, 𝑣8),
(𝑣7, 𝑣8), (𝑣9, 𝑣8), (𝑣10, 𝑣8)} as at least one of the vertices in an edge

must include a core vertex and both vertices of an edge must belong

to𝑉C . There are four un-clustered vertices where 𝑣11 is a hub vertex

as it has neighbors in different clusters, while vertices 𝑣12, 𝑣13, and

𝑣14 are outliers according to the definition. □

As mentioned in Section 1, it is important to tune the two input

parameters to find good clustering results. Therefore, some existing

studies, e.g. [34], present effective index structures which output

the clustering results with a cost proportional to the size of result

subgraphs. However, such solutions cannot handle index updates

efficiently on dynamic graphs. To tackle this issue, we will bring 𝜌-

approximation into the clustering results where 𝜌 is used to balance

the trade-off between the update efficiency and clustering quality.

𝝆-approximate SCAN. Following previous work [33], we consider
𝜌-approximate SCAN where we relax the definition of 𝜖-neighbor.

In particular, we define the (𝜖, 𝜌)-neighbor as follows.

Definition 8 ((𝜖, 𝜌)-neighbor). Given an error parameter 𝜌 and
two vertices 𝑢 and 𝑣 ,

• if 𝜎 (𝑢, 𝑣) > 𝜖 + 𝜌 , 𝑢 must be an (𝜖, 𝜌)-neighbor of node 𝑣 ;
• if 𝜎 (𝑢, 𝑣) < 𝜖 − 𝜌 , 𝑢 must not be an (𝜖, 𝜌)-neighbor of node 𝑣 ;
• otherwise, it does not matter. In other words, 𝑢 is allowed to be

either an (𝜖, 𝜌)-neighbor of 𝑣 or not.

Notice that, the definition here uses the 𝜌-absolute error. How-

ever, it is easy to convert it to 𝜌 ′-relative error by setting 𝜌 = 𝜖 · 𝜌 ′.
In 𝜌-approximate SCAN, the core vertices are defined according

to the number of (𝜖, 𝜌)-neighbors. It is worth noting that the clus-

tering results in 𝜌-approximate SCAN are not unique due to the

uncertainty of the "does not matter" cases in the definition of (𝜖, 𝜌)-
neighbors. However, when 𝜌 is small enough, the 𝜖-neighbors and

(𝜖, 𝜌)-neighbors of the same node usually do not differ much. More-

over, assume that we have the clustering result C𝜖+𝜌,𝜇 of SCAN

with similarity threshold to be 𝜖 +𝜌 and the clustering result C𝜖−𝜌,𝜇
with similarity threshold to be 𝜖−𝜌 . Then the 𝜌-approximate SCAN

clustering results, dubbed as C𝜌𝜖,𝜇 , have the following guarantee.

Theorem 1 (Guarantee of 𝜌-approximate SCAN). For any
clustering result C𝜌𝜖,𝜇 outputted by 𝜌-approximate SCAN, we have: (i)
For every cluster 𝐶𝜖+𝜌 ∈ C𝜖+𝜌,𝜇 , there exists a cluster 𝐶 ∈ C𝜌𝜖,𝜇 such
that 𝐶𝜖+𝜌 ⊆ 𝐶 ; (ii) For every cluster 𝐶 ∈ C𝜌𝜖,𝜇 , there exists a cluster
𝐶𝜖−𝜌 ∈ C𝜖−𝜌,𝜇 such that 𝐶 ⊆ 𝐶𝜖−𝜌 .

The proof of the above theorem is omitted as it directly follows

from the definitions of C𝜖+𝜌,𝜇 , C𝜖−𝜌,𝜇 , and C𝜌𝜖,𝜇 .
SCAN on dynamic graphs. We consider dynamic graphs where

the input graph is updated with edge insertions/deletions. Note

that node insertions/deletions can be converted to a series of edge

insertions/deletions. In dynamic graph setting, we aim to maintain

an indexing scheme so that we can return the clustering result with

a cost proportional to the size of the cluster subgraph. However,

even with the state-of-the-art indexing scheme for the exact so-

lution, it still takes 𝑂 (min{𝑑2

𝑚𝑎𝑥 ,𝑚} · log𝑛) update cost for each
edge insertion/deletion. Thus, we focus on maintaining effective

index structures for 𝜌-approximate SCAN, defined as follows.

Problem definition. Given a number𝑀 = 𝑂 (𝑚) of edge updates,
the dynamic indexing scheme aims to maintain an effective index

with 𝑂 (𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛)) cost for each edge update and can output the

clustering result (with a cost bounded by the size of the cluster

subgraph) satisfying the definition of 𝜌-approximate SCAN with

probability 1−𝑝 𝑓 , where 𝑝 𝑓 is used to bound the failure probability.

2.2 Existing Solutions Revisited
SCAN and pSCAN. The problem of structural graph clustering is

first presented in [35], where the authors propose the SCAN algo-

rithm to solve this problem. The main idea of SCAN is to calculate

the similarity 𝜎 (𝑢, 𝑣) of each edge(𝑢, 𝑣) and then scan all vertices

in 𝐺 to obtain the correct clustering results for the given input

parameters 𝜖 and 𝜇. The time complexity of the SCAN algorithm is

𝑂 (𝛼𝑚), where 𝛼 is the arboricity of graph 𝐺 , which is also equal
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Figure 1: Clustering result with 𝜖 = 0.5, 𝜇 = 5 for graph 𝐺1

to the minimum number of forests that needs to cover all edges of

graph 𝐺 . The worst case running time is 𝑂 (𝑚1.5).
The major cost of SCAN is the computation of set similarities

between neighbors. Chang et al. [6] propose pSCAN to reduce

the cost of calculating the set similarity between neighbors with

pruning techniques on identifying 𝜖-neighbors and core vertices.

With these pruning strategies, pSCAN returns exact results much

faster than SCAN, but still has 𝑂 (𝑚1.5) worst-case running time.

GS-Index. The above solutions focus on online calculations for all

clusters given the two input parameters 𝜖 and 𝜇. However, as we

mentioned, the two input parameter settings of SCAN usually need

to be fine-tuned to achieve good clustering results. Thus, we may

need to process SCAN multiple times with different input parame-

ters. It is observed that when we fix one parameter and decrease

the other parameter, the new clustering result must be included in

the previous clustering result. Based on this observation, Wen et

al. [34] propose GS-Index, an index-based method that quickly re-

turns query results by maintaining a neighbor-order and a core-order
index. In the neighbor-order index, each node 𝑣 maintains a list

𝐿[𝑣] of neighbors sorted in decreasing order of the similarity score.

Clearly, the neighbor-order index takes 𝑂 (𝑚 + 𝑛) space cost. By
maintaining the neighbor-order index, given an arbitrary similarity

threshold 𝜖 , each node can quickly identify 𝜖-neighbors by scan-

ning 𝐿[𝑣] and stop as soon as it reaches a neighboring node with

similarity score smaller than 𝜖 . For the core-order index, it main-

tains 𝑑𝑚𝑎𝑥 ordered set 𝐶 [2], · · · ,𝐶 [𝑑𝑚𝑎𝑥 + 1] where 𝑑𝑚𝑎𝑥 is the

maximum degree in the input graph. For each vertex 𝑣 , it appears

in 𝐶 [2],𝐶 [3], · · · ,𝐶 [𝑑𝑣 + 1]. More specifically, a pair (𝑣, 𝜖𝑖 ) is in
ordered set𝐶 [𝑖] where 2 ≤ 𝑖 ≤ 𝑑𝑣 + 1 and 𝜖𝑖 is the largest threshold

such that 𝑣 has 𝑖 𝜖-neighbors. This can be derived by computing

the similarity scores between 𝑣 and vertices in its neighborhood

𝑁 [𝑣] and then taking the 𝑖-th largest similarity score. The pairs in

the ordered set 𝐶 [𝑖] are then sorted in descending order of their 𝜖𝑖
thresholds. It is easy to verify that the core-order index still takes

𝑂 (𝑚 + 𝑛) space. Given the GS-Index and input parameters 𝜖 and 𝜇,

it outputs clusters as follows. Firstly, it goes through the ordered set

𝐶 [𝜇] in the core-order index and returns the set of vertices whose

𝜖𝜇 score is no smaller than 𝜖 . These vertices are the core vertices.

Then, it scans the neighbor-order index of each core vertex, and

includes all neighboring vertices with a similarity score no smaller

than 𝜖 . This can be bounded with a running time proportional to

the size of the cluster subgraph (Ref. to Definition 6).

GS-Index also supports dynamic updates. Given an edge update

to (𝑢, 𝑣), it incurs an update cost of 𝑂

(
|𝐸

2ℎ𝑜𝑝 (𝑢) | + |𝐸2ℎ𝑜𝑝 (𝑣) |
)
,

where 𝐸
2ℎ𝑜𝑝 (𝑥) is the set of edges that both ends of vertices in

the edge belong to the vertex set 𝑉
2ℎ𝑜𝑝 (𝑥), consisting of vertices

with distance to 𝑥 no larger than 2. In the worst case, this incurs

𝑂 (min{𝑑2

𝑚𝑎𝑥 ,𝑚} · log𝑛) running cost for each update. On one hand,
it needs to handle the updates of the similarity scores due to the in-

sertion/deletion of an edge (𝑢, 𝑣), which affects the similarity score

of up to 𝑑𝑢 + 𝑑𝑣 neighboring vertex pairs. This incurs 𝑂 (𝑑𝑚𝑎𝑥 )
update cost if it takes 𝑂 (1) cost to check if 𝑢 (resp. 𝑣) exists in the

neighbor of vertex𝑤 , where𝑤 is a neighbor of 𝑣 (resp. 𝑢). On the

other hand, it needs to update the neighbor-order and core-order to

support efficient clustering for arbitrary input parameters. When

the similarity of 𝑢 and one of its neighbors is changed due to the

insertion of an edge, it may change up to 𝑂 (𝑑𝑢 ) ordered sets in

the core-order index. There are 𝑑𝑚𝑎𝑥 updates to each ordered set

in the core-index in the worst case. To support efficient update to

the ordered sets of the core-index, a binary search tree is main-

tained [34]. This incurs 𝑂 (𝑑𝑚𝑎𝑥 · log𝑛) running cost to update the

core-index for each affected similarity score. Thus, GS-Index takes

𝑂 (min{𝑑2

𝑚𝑎𝑥 ,𝑚} · log𝑛) cost to update the index in the worst case.

DynStrClu. The dynamic property of real-world graph data brings

new challenges to structural graph clustering. To reduce the update

cost, Ruan et al. [27] propose DynStrClu, an approximate solu-

tion that relax the definition of 𝜖-neighbors to (𝜖, 𝜌)-neighbors
(Ref. to Definition 8) and reduce the amortized update cost to

𝑂

(
log

2 𝑛 + log𝑛 · log
𝑀+𝑚
𝑝𝑓

)
for each update. It guarantees that

clustering results fulfill the approximation definition with a proba-

bility of 1−𝑝 𝑓 after up to𝑀 updates. DynStrClu considers the case

that two input parameters 𝜖 and 𝜇 are fixed. When an edge (𝑢, 𝑣) is
updated, we only need to check if (i) 𝑢 and 𝑣 are (𝜖, 𝜌)-neighbors,
(ii) if the (𝜖, 𝜌)-neighbor relationships between the neighbors of

𝑢 (resp. 𝑣) and 𝑢 (resp. 𝑣) have changed. The impact of an inser-

tion/deletion of one edge on the similarity 𝜎 (𝑢, 𝑣) of other edges
can be limited to 1/𝑑𝑚𝑎𝑥 (𝑢, 𝑣), where 𝑑𝑚𝑎𝑥 (𝑢, 𝑣) = 𝑚𝑎𝑥 {𝑑𝑢 , 𝑑𝑣}.
Combining with the definition of (𝜖, 𝜌)-neighbors, DynStrClu in-

cludes a lazy update mechanism that can afford multiple updates

for each edge as long as their (𝜖, 𝜌)-neighbor relationship does not

change. When the (𝜖, 𝜌)-neighbor relationship of an edge (𝑢, 𝑣) is
unclear given the bounds, DynStrClu recalculates the similarity

𝜎 (𝑢, 𝑣) with a sampling-based method. Combining both techniques,

DynStrClu achieves the improved time complexity.

A major issue with DynStrClu is that it can only maintain clus-

tering results under fixed parameters of 𝜖 and 𝜇, but cannot return

clustering results under new input parameters.

3 OUR SOLUTION
Next, we present our proposed index scheme BOTBIN in details.

There are two main challenges in maintaining an effective index

structure to support dynamic (approximate) structural graph clus-

tering. The first main challenge is the insertion/deletion of an edge

(𝑢, 𝑣) will result in the change of similarity scores of up to 𝑑𝑢 + 𝑑𝑣
neighbor pairs. To tackle this issue, we maintain a bottom-𝑘 sketch

for each vertex. The rough idea is that we generate a random

number for each node, and then for each vertex 𝑢, we maintain

the 𝑘 min values of the neighbors of vertex 𝑢. We then use these

bottom-𝑘 sketches of two vertices 𝑢 and 𝑣 to calculate the approxi-

mate similarity score. The advantage of our design is that, an edge

insertion/deletion will affect the bottom-𝑘 sketch with bounded

probability. We show that our solution can update the affected



similarity scores with 𝑂 (𝑘 · log𝑘) expected running time, where

𝑘 = 𝑂 ( 1

𝜌2
· log

𝑚+𝑀
𝑝𝑓
), independent of the degree of 𝑢 and 𝑣 .

Another challenge is to maintain an effective index structure on

dynamic graphs so that it can return the clustering results with a

cost proportional to the size of the cluster subgraph. Recap that

given an updated similarity score, GS-Index will result in the change

of all the ordered sets in the core-index in the worst case. To tackle

this issue, we present the bucket index, which is built with a bucket-

ing approachwhichmaintains 𝛿 evenly split buckets. The discussion

of 𝛿 will be elaborated more in Section 3.1. In bucket 𝑖 (1 ≤ 𝑖 ≤ 𝛿),
it maintains an ordered set 𝐵 [𝑖] which consists of a set of pairs

(𝑢, |𝑁
1−𝑖/𝛿,𝜌 [𝑢] |), where 𝑁1−𝑖/𝛿,𝜌 [𝑢] is the set of (𝜖, 𝜌)-neighbors

of 𝑢 when 𝜖 = 1 − 𝑖/𝛿 . In each ordered set 𝐵 [𝑖], it is sorted based

on the number of (𝜖, 𝜌)-neighbors of each node when 𝜖 = 1 − 𝑖/𝛿 .
Then, given an updated similarity score, it will affect at most 𝑂 (𝛿)
ordered list, which can be regarded as a constant that is indepen-

dent of the graph parameter. Moreover, given an edge update (𝑢, 𝑣),
we can further bound the probability that the similarity score be-

tween𝑢 and a neighbor of𝑢 gets affected. This together reduces the

expected update cost of our bucketing index to 𝑂 (log𝑛 · log
𝑚+𝑀
𝑝𝑓
).

Next, we first present our BOTBIN index scheme in Section 3.1.

Then, we show how to build the index and handle query processing

with BOTBIN in Section 3.2. We will present how to update the

index when the graph dynamically changes in Section 4.

3.1 Index Scheme
Our BOTBIN includes two indices: the similarity index and the

clustering index. The similarity index is mainly used to derive and

maintain the Jaccard similarity of adjacent vertices efficiently by

exploiting the bottom-𝑘 sketch. The clustering index is mainly

used to maintain the core vertices and 𝜖-neighbors of core vertices

efficiently with the bucketing idea for an arbitrary 𝜖 and 𝜇.

Similarity index. Deriving the approximate similarity score for

adjacent vertex pairs are well studied in the literature. For example,

Tseng et al. [33] propose to explore 𝑘-min hash to estimate the

Jaccard similarity score between adjacent vertex pairs. In particular,

for every vertex 𝑣 ∈ 𝐺 , it first generate a random number 𝑟𝑣 ∈ (0, 1)
as the hash value of 𝑣 . Then, for vertex 𝑣 , it maintains the min hash

value 𝑟𝑚𝑖𝑛 (𝑣) among 𝑁 [𝑣], the neighborhood of vertex 𝑣 . Then,

the Jaccard similarity 𝜎 (𝑢, 𝑣) between adjacent vertices 𝑢 and 𝑣 is:

𝜎 (𝑢, 𝑣) = Pr[𝑟𝑚𝑖𝑛 (𝑢) = 𝑟𝑚𝑖𝑛 (𝑣)] .

Let 𝑋 be an indicator random variable where it takes 1 if 𝑟𝑚𝑖𝑛 (𝑢) =
𝑟𝑚𝑖𝑛 (𝑣) and 0 otherwise. Then, 𝐸 [𝑋 ] = 𝜎 (𝑢, 𝑣). With this unbiased

estimator, we may derive multiple instances of 𝑋 by sampling 𝑘

different hash values for each vertex and generate a variable 𝑋𝑖
according to the 𝑖-th hash value of each vertex. It is shown in [33]

that by setting 𝑘 = 𝑂 (log𝑛/𝜌2), it can provide 𝜌-absolute error to

the similarity score. However, a main deficiency of the 𝑘-min hash-

based solution is that it takes𝑂 (𝑛 ·𝑘) space while 𝑘 is usually much

larger than the average degree of the input graph. For example,

consider a social network Orkut with 3 million nodes and 0.2 billion

edges. To provide an absolute error of 0.05 to the estimation of the

similarity score, it needs to set 𝑘 ≈ 6000 and every vertex needs

to maintain 𝑘 min-hash values. This incurs an additional 90 times

space (of the input graph), which is too expensive for large graphs.

To tackle this issue, we adopt the bottom-𝑘 sketch [10], rather

than the popular 𝑘-min hash-based solution, to estimate the Jaccard

similarity scores. The advantage of the bottom-𝑘 sketch is that,

instead of maintaining 𝑘 values for each vertex 𝑣 , it only needs to

maintain min{𝑘,𝑑𝑣 +1} values. This bounds the space consumption

of the bottom-𝑘 sketch to be the same as that of the input graph,

saving far more space than the 𝑘-min hash-based solution. Next,

we elaborate more details on our bottom-𝑘 sketch-based similarity

index. We first define the bottom-𝑘 sketch as follows.

Definition 9 (Bottom-𝑘 sketch). Let 𝑈 be the universe of the
elements that may appear in a set 𝑆 . Letℎ : 𝑈 → [1 · · · |𝑈 |] be a hash
function that is a random permutation of𝑈 . The bottom-𝑘 sketch of
𝑆 is the set of 𝑘 smallest hash values among elements in 𝑆 . If 𝑘 > |𝑆 |,
it consists of the set of hash values of all elements in 𝑆 .

In our problem, given a vertex 𝑣 , the set 𝑆 = 𝑁 [𝑣] is the neigh-
borhood of node 𝑣 and the universe 𝑈 is equal to 𝑉 , the entire

vertex set in the input graph 𝐺 . The similarity index of a node 𝑣

thus consists of the bottom-𝑘 sketch of its neighborhood 𝑁 [𝑣]. As
shown in the following lemma, the bottom-𝑘 sketch can be further

used as an unbiased estimator of the Jaccard similarity. Notice that

here we assume that 𝑈 is sufficiently large and thus we generate

enough random numbers at the beginning for vertices.

Lemma 1 (Bottom-𝑘 Estimator of Jaccard similarity). Given
two sets𝐴 ⊆ 𝑈 and 𝐵 ⊆ 𝑈 , let 𝑆𝑘 (𝐴) and 𝑆𝑘 (𝐵) denote their bottom-𝑘
sketches, respectively. If |𝐴| ≥ 𝑘 or |𝐵 | ≥ 𝑘 , then,

𝐽 (𝐴, 𝐵) = 𝑆𝑘 (𝐴) ∩ 𝑆𝑘 (𝐵) ∩ 𝑆𝑘 (𝐴 ∪ 𝐵)
𝑘

(1)

is an unbiased estimator of the Jaccard similarity 𝐽 (𝐴, 𝐵) of 𝐴 and 𝐵.

Here we restrict that either𝐴 or 𝐵 has a size no smaller than 𝑘 to

use Equation 1 to estimate the Jaccard similarity. Otherwise, we can

directly compute the Jaccard similarity between𝐴 and 𝐵 with𝑂 (𝑘)
cost. Although there has been a lot of research work on bottom-𝑘

sketch, as far as we know [10, 11], there is no explicit bound for the

bottom-𝑘 sketch. Dahlgaard et al. [11] focus on the case when the

set has no more than 𝑘 elements and show how to add more entries

until there are 𝑘 elements in the sketch to provide approximation

guarantee. In such a scenario, they will face a similar issue as that in

𝑘-min hash. For self-completeness, we present the approximation

bound with bottom-𝑘 sketch and give a formal proof. In 𝑘-min hash

sketch, it can be derived by sampling with replacement and thus

different hash values are independent of each other. Therefore, the

estimation can directly apply the Hoeffding inequality to derive a

bounded error. However, with the bottom-𝑘 sketch, it is derived

via sampling without replacement and thus existing concentration

bound cannot be directly applied to derive a bounded error. Our

proof of Theorem 2 makes a careful connection of the bottom-𝑘

sketch problem to the martingale process.

Theorem 2. Given two sets 𝐴 and 𝐵 from a universe 𝑈 , let 𝑆𝑘 (𝐴)
and 𝑆𝑘 (𝐵) denote their bottom-𝑘 sketches, respectively. Given a failure
probability 𝑝 and an error parameter 𝜌 , by setting 𝑘 = 1

2𝜌2
ln

2

𝑝 , we

have that Pr[|𝐽 (𝐴, 𝐵) − 𝐽 (𝐴, 𝐵) | > 𝜌] ≤ 𝑝 .

Omitted proofs can be found in our technical report [4]. Given

Theorem 2, our similarity index is constructed as follows. Firstly,



we generate a random permutation ℎ of 𝑉 . Then, according to ℎ,

the similarity index 𝑆𝑘 (𝑣) of a vertex 𝑣 consists of the bottom-𝑘

sketch of set 𝑁 [𝑣]. The choice of 𝑘 is determinate according to

Theorem 2 and more discussion will be given. The time complexity

to build the similarity index can be bounded with 𝑂 (𝑚 + 𝑛). The
space cost can be further bounded by 𝑂 (min{𝑘 · 𝑛, 𝑛 +𝑚}) as each
vertex maintains min{𝑘, 1 + 𝑑𝑣} hash values.

Example 2. Still consider the graph𝐺1 in Figure 1. Assume that

the random permutation ℎ is {9, 14, 8, 2, 4, 1, 7, 5, 3, 6, 12, 13, 11, 10}.
In other words, ℎ(𝑣1) = 9, ℎ(𝑣2) = 14, ℎ(𝑣3) = 8, etc. Assume that

𝑘 = 3. Then, the similarity index 𝑆𝑘 (𝑣3) of 𝑣3 is {2, 4, 8}, since
ℎ(𝑣1), ℎ(𝑣2), ℎ(𝑣3), ℎ(𝑣4), ℎ(𝑣5) are 9, 14, 8, 2, 4, respectively, and
2, 4, and 8 are the 3 smallest hash values. Similarly, the similarity

index 𝑆𝑘 (𝑣2) of 𝑣2 is {4, 8, 9}. Then the estimated similarity �̂� (𝑣2, 𝑣3)
between 𝑣2 and 𝑣3 is 2/3 according to Equation 1.

Clustering index. Next, we elaborate on the details of the cluster-

ing index of the proposed BOTBIN. The clustering index is mainly

used to quickly return the 𝜌-approximate SCAN (Section 2.1) given

the input 𝜖 and 𝜇. Note that our clustering index is inspired by the

GS-Index. However, we tackle the challenging issue with dynamic

update on GS-Index as pinpointed at the beginning of Section 3.

The key observation is that given an arbitrary input 𝜖 , if a vertex

𝑢 is the (𝜖, 𝜌)-neighbor (Ref. to Definition 8) of vertex 𝑣 , given

a smaller input 𝜖 ′ < 𝜖 , then vertex 𝑢 is still the (𝜖, 𝜌)-neighbor
of vertex 𝑣 . Thus, to find the (𝜖, 𝜌)-neighbors of each vertex 𝑣

efficiently, for each vertex 𝑣 , BOTBIN maintains a sorted set 𝑁𝑂 [𝑣],
dubbed as the neighboring index, of its neighborhood 𝑁 [𝑣] in the

form of pairs ⟨𝑣, �̂� (𝑢, 𝑣)⟩, and the pairs are sorted in descending

order of �̂� (𝑢, 𝑣), where𝑢 ∈ 𝑁 [𝑣]. Note that, the estimated similarity

is derived via Equation 1. This obviously takes a space proportional

to the graph size 𝑂 (𝑛 +𝑚). Next, we elaborate on the bucket index
which is used to find the core vertices efficiently.

The bucket index takes 𝛿 as the number of the buckets and

then divide the similarity score into 𝛿 evenly partition ranges: [1 −
1/𝛿, 1], [1 − 2/𝛿, 1 − 1/𝛿), · · · [1 − 𝑖/𝛿, 1 − (𝑖 − 1)/𝛿) · · · , [0, 1/𝛿).
For the 𝑖-th bucket [1 − 𝑖/𝛿, 1 − (𝑖 − 1)/𝛿), it maintains a sorted

set 𝐵 [𝑖] of pairs (𝑢, |𝑁
1−𝑖/𝛿,𝜌 [𝑢] |), where 𝑁1−𝑖/𝛿,𝜌 [𝑢] is the set of

(𝜖, 𝜌)-neighbors of 𝑢 when 𝜖 = 1 − 𝑖/𝛿 . For the pairs stored in

bucket 𝑖 , they are sorted in descending order of the number of

(𝜖, 𝜌)-neighbors of each vertex with 𝜖 = 1 − 𝑖/𝛿 . For the sorted set

𝐵 [𝑖], we use a binary search tree to maintain the sorted pairs to

support efficient updates and searches. Since each vertex appears

at most 𝛿 times in the bucket index, the space consumption of the

bucket index is bounded by 𝑂 (𝛿 · 𝑛).
Given the bucket index, it can efficiently identify the set of core

vertices. In particular, given input parameters 𝜖 and 𝜇, we first find

the bucket 𝑖∗ whose range covers 𝜖 , i.e., 𝜖 ∈ [1−𝑖∗/𝛿, 1− (𝑖∗−1)/𝛿).
Then, with bucket 𝐵 [𝑖∗], it traverses the entries in decreasing order

of the (1 − 𝑖∗/𝛿, 𝜌) -neighbors and identifies the set of nodes with

the size of (1− 𝑖∗/𝛿, 𝜌)-neighbors no smaller than 𝜇 as core vertices.

This takes a cost proportional to the number of core vertices.

Example 3. Still consider the graph𝐺1 in Figure 1. Assume that

the estimated similarity scores are the same as the exact similarity

scores. Given 𝛿 = 5, the corresponding bucket index is shown in

Figure 2. Then, given 𝜇 = 5 and 𝜖 = 0.5, we use the bucket index to

Algorithm 1: BOTBIN-Index-Construction

Input: Input graph 𝐺 = (𝑉 , 𝐸), a random permutation ℎ

Output: BOTBIN-Index of G
1 for vertex 𝑣 ∈ 𝑉 in increasing order of their ℎ(𝑣) values do
2 update 𝑆𝑘 (𝑢) with 𝑢 ∈ 𝑁 [𝑣];
3 for vertex 𝑣 ∈ 𝑉 do
4 for vertex 𝑢 ∈ 𝑁 [𝑣] such that ℎ(𝑢) > ℎ(𝑣) do
5 Derive the estimated similarity �̂� (𝑢, 𝑣) of 𝑢 and 𝑣

with 𝑆𝑘 (𝑢), 𝑆𝑘 (𝑣) via Equation 1;

6 Add ⟨𝑢, �̂� (𝑢, 𝑣)⟩ into sorted set 𝑁𝑂 [𝑣];
7 for 𝑖 from 𝛿 to 1 do
8 cnt← |

{
𝑤 |𝑤 ∈ 𝑁 [𝑣], �̂� (𝑣,𝑤) ≥ 1 − 𝑖

𝛿

}
|;

9 if 𝑐𝑛𝑡 == 1 then break;

10 Add ⟨𝑣, 𝑐𝑛𝑡⟩ into bucket 𝐵 [𝑖];

11 return 𝑆𝑘 , 𝐵, 𝑁𝑂 ;
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Figure 2: The bucket index with 𝛿 = 5

first find the core vertices. In particular, 0.5 ∈ [0.4, 0.6) and thus we
use 𝐵 [3] to find the core vertices. Then, in 𝐵 [3], the set of vertices
that has the (1 − 𝑖∗/𝛿, 𝜌)-neighbor no smaller than 𝜇 = 5 consists

of {𝑣3, 𝑣8}. Then, 𝑣3 and 𝑣8 are returned as the core vertices.

Clearly, with the bucket index, there might exist some loss of

the approximation guarantee. We provide the following theorem

for the approximation guarantee with our BOTBIN index scheme.

Theorem 3 (Approximation guarantee with bucket index).

Given the bucket size 𝛿 and the 𝜌-absolute approximation guarantee
of the estimated similarity score provided by the similarity index, the
returned clustering result provides a (𝜌 + 1/𝛿)-approximate SCAN.

3.2 Index Construction and Query Processing
Index construction. Algorithm 1 shows the pseudo-code of the

BOTBIN index construction algorithm. Given the hash function ℎ

generated via a random permutation, BOTBIN builds the similarity

index from the vertex with the smallest hash value. Then, the sim-

ilarity index can be constructed easily with 𝑂 (𝑛 +𝑚) cost (Lines
1-2). After building the similarity index of each vertex, we can cal-

culate approximate similarity of any neighboring node pairs with a

running cost of 𝑂 ( 1

𝜌2
log

1

𝑝𝑓
) (Line 5). In total, it takes 𝑂 (𝑚

𝜌2
𝑙𝑜𝑔 1

𝑝 )
cost to compute the similarities. Then it costs𝑂 (log𝑑𝑢 ) time to add

⟨𝑣, �̂� (𝑢, 𝑣)⟩ into sorted set 𝑁𝑂 [𝑢] as shown in Line 6. In total, to

build the neighboring index, it takes𝑂 (∑𝑣∈𝑉 𝑑𝑣 log𝑑𝑣) cost, which
can be further bounded by 𝑂 (𝑚 log𝑑𝑚𝑎𝑥 ).



Algorithm 2: BOTBIN-Query

Input: Parameters 𝜖 and 𝜇, BOTBIN index

Output: the set C of clustering result

1 𝑖∗ ← arg𝑖 {𝜖 ∈ [1 − 𝑖/𝛿, 1 − (𝑖 − 1)/𝛿)};
2 C ← ∅, 𝐻 ← an empty hash table;

3 for ⟨𝑣, 𝑐𝑛𝑡⟩ ∈ 𝐵 [𝑖∗] in descending order of the 𝑐𝑛𝑡 values do
4 if 𝑐𝑛𝑡 < 𝜇 then break ;

5 Add 𝑣 to 𝐻 ;

6 Init 𝑄 as an empty queue, 𝑣𝑖𝑠𝑖𝑡 a size 𝑛 array with all zeros;

7 for 𝑣 ∈ 𝐻 do
8 if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣] then continue;

9 𝐶 ← {𝑣}, add 𝑣 into 𝑄 , 𝑣𝑖𝑠𝑖𝑡 [𝑣] ← 1;

10 while 𝑄 is not empty do
11 𝑢 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ();
12 for ⟨𝑤, �̂� (𝑤,𝑢)⟩ in sorted set 𝑁𝑂 [𝑢] do
13 if �̂� (𝑤,𝑢) < 𝜖 then break;

14 𝐶 ← 𝐶 ∪ {𝑤};
15 if 𝑣𝑖𝑠𝑖𝑡 [𝑤] then continue;

16 𝑣𝑖𝑠𝑖𝑡 [𝑤] ← 1;

17 if 𝑤 ∈ 𝐻 then 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒 (𝑤);

18 C ←− C ∪ {𝐶};
19 return C;

After constructing the neighboring index for vertex 𝑣 , BOTBIN

inserts entries about 𝑣 in the bucket index (Lines 7-9). This can

be finished via a linear scan of the neighboring index of 𝑣 , which

takes 𝑂 (𝑑𝑣) cost. For the bucket index, notice that each vertex 𝑣

maintains𝑂 (𝛿 · 𝜎𝑚𝑎𝑥 (𝑣)) entries among 𝛿 buckets, where 𝜎𝑚𝑎𝑥 (𝑣)
is the maximum similarity score between 𝑣 and its neighbors. To

explain, there is no vertex with similarity larger than 𝜎𝑚𝑎𝑥 (𝑣)
(except vertex 𝑣 itself). Thus, for a bucket whose corresponding

range is a subset of (𝜎𝑚𝑎𝑥 (𝑣), 1], it will not contain vertex 𝑣 . Let

𝜎𝑚𝑎𝑥 denote the average of this maximum similarity score, i.e.,

𝜎𝑚𝑎𝑥 = 1

𝑛

∑
𝑣∈𝑉 𝜎𝑚𝑎𝑥 (𝑣). Then, the bucket index takes 𝑂 (𝛿 · 𝑛 ·

𝜎𝑚𝑎𝑥 ) space in total. For each entry in the bucket index, it takes

𝑂 (log𝑛) cost to do the insertion. In total, the running cost to build

the bucket index can be bounded by 𝑂 (𝑚 + 𝛿 · 𝑛 · 𝜎𝑚𝑎𝑥 log𝑛).
According to the above discussions, we have the following theo-

rem about the space cost and running cost of the index construction.

Theorem 4. Given an error parameter 𝜌 , a failure probability 𝑝 ,

BOTBIN takes 𝑂
(
𝑚

(
1

𝜌2
ln

1

𝑝 + log𝑑𝑚𝑎𝑥

)
+ 𝛿 · 𝑛 · 𝜎𝑚𝑎𝑥 log𝑛

)
run-

ning cost to build the index and has a space cost of𝑂 (𝑚+𝛿 ·𝑛 ·𝜎𝑚𝑎𝑥 ).

For GS-Index, it takes a worst case of 𝑂 (𝑚1.5) time to build the

index and its space cost is𝑂 (𝑚 +𝑛). Clearly, our proposed BOTBIN
is more scalable in terms of index construction time complexity.

In terms of space cost, both methods has a space cost linear to the

input graph. As we will show in our experiment, our BOTBIN may

have slightly smaller memory consumption compared to GS-Index

(Figure 7) with our default choice of 𝛿 . To explain, it is observed

that on almost all datasets, 𝛿 · 𝜎𝑚𝑎𝑥 is actually smaller than the

average degree of all the tested graphs on our default choice of 𝛿 .

Query processing. Algorithm 2 shows the pseudo-code of the

query algorithm. Given the input parameter 𝜖 and 𝜇, the BOTBIN

index, it firstly finds the bucket 𝑖∗ that covers 𝜖 (Line 1). Next, it
initializes the clustering result C and maintains a hash table 𝐻 of

the core vertices. As described in Section 3.1, it visits bucket 𝐵 [𝑖∗]
in descending order of the size of their (1 − 𝑖∗/𝛿, 𝜌)-neighbors and
stops as soon as the number is smaller than 𝜇. The core vertices are

added to the hash table 𝐻 (Lines 3-5).

Next, it initializes a queue𝑄 and a size𝑛 array 𝑣𝑖𝑠𝑖𝑡 for the cluster

generation. The 𝑣𝑖𝑠𝑖𝑡 array is used to identify the core vertices that

have been traversed and added to previous clusters (Line 6). Then,

for each core vertex 𝑣 , it first checks if 𝑣 has been traversed and

added to previous clusters. If the answer is yes, it then continues to

the next core vertex. Otherwise, it traverses the graph to generate

the clusters corresponding to core vertex 𝑣 . In particular, it adds 𝑣 to

the cluster𝐶 , adds 𝑣 to𝑄 , and sets 𝑣𝑖𝑠𝑖𝑡 [𝑣] to be 1. Then, it proceeds
a pruned BFS where only neighbors who are core vertices are added

to the queue (Lines 11-17). Firstly, it finds the front element 𝑢 of

queue 𝑄 . Then, it visits all its neighbors in descending order of

the estimated similarity scores via the neighboring index 𝑁𝑂 [𝑢].
If the neighbor𝑤 of vertex 𝑢 has a similarity no smaller than 𝜖 ,𝑤

is an (𝜖, 𝜌)-neighbor of 𝑢. Thus,𝑤 is added into cluster 𝐶 (Line 14).

If 𝑤 has been visited before, the pruned BFS continues (Line 15).

Otherwise, it sets 𝑣𝑖𝑠𝑖𝑡 [𝑤] to be 1 (Line 16). Next,𝑤 is added to the

queue if 𝑤 is not visited in previous iterations (Line 15) and is a

core vertex (Line 17). The iteration stops when the queue is empty.

Cluster 𝐶 is then added to the clustering result C. When all core

vertices finish pruned BFSs, it returns C as the final result.

Clearly, the running cost is proportional to the number of vertices

and edges visited during the pruned BFS traversals. It is easy to

verify that this cost can be easily bounded by the size of the cluster

subgraph (Definition 6) as we will visit each core vertex at most

and the (𝜖, 𝜌)-neighbor of each core vertex at most once. Theorem

5 summarizes the running cost for query processing.

Theorem 5. The time complexity of Algorithm 2 is bounded by
𝑂 ( |𝑉C | + |𝐸C |) where 𝑉C and 𝐸C are the vertex set and edge set,
respectively, of the cluster subgraph of the final clustering result C.

Compared to GS-Index, our BOTBIN achieves the same query

time complexity that depends on the size of cluster subgraph, i.e.,

𝑂 ( |𝑉C | + |𝐸C |). As we will show in the experiment, our BOTBIN

achieves an identical query performance as that of GS-Index.

4 DYNAMIC INDEX MAINTENANCE
Next, we present a basic solution to handle dynamic updates in

Section 4.1, followed by an improved scheme in Section 4.2.

4.1 Basic Methods
We discuss how to handle edge insertions and deletions one by one.

Edge insertion. We first discuss the effects after adding an new

edge (𝑢, 𝑣). Firstly, 𝑣 (resp. 𝑢) is added to the set 𝑁 [𝑢] (resp 𝑁 [𝑣])
of the neighborhood of vertex 𝑢 (resp. 𝑣). Therefore, the similarity

index of vertex 𝑢 (resp. 𝑣) might be changed. Thus, the first step

is to update the similarity index of 𝑢 and 𝑣 if necessary. Next, if

the similarity index of vertex 𝑢 (resp. 𝑣) is not changed, then the

similarity between 𝑢 (resp. 𝑣) and its neighborhood 𝑁 [𝑢] (resp.



Algorithm 3: BOTBIN-Update-Insertion

Input: Inserted edge (𝑢, 𝑣), the updated graph 𝐺 , and

BOTBIN index for the original graph 𝐺 ′

Output: Updated BOTBIN index for graph 𝐺

1 Update 𝑆𝑘 (𝑢), 𝑆𝑘 (𝑣);
2 if 𝑆𝑘 (𝑢)is modified then
3 for vertex𝑤 ∈ 𝑁 [𝑢] do
4 �̂�𝑜𝑙𝑑 ←− estimated similarity �̂� (𝑢,𝑤) before update;
5 Derive �̂� (𝑢,𝑤) of 𝑢 and𝑤 with 𝑆𝑘 (𝑢), 𝑆𝑘 (𝑤);
6 Insert/update ⟨𝑤, �̂� (𝑢,𝑤)⟩ in 𝑁𝑂 [𝑢];
7 Insert/update ⟨𝑢, �̂� (𝑤,𝑢)⟩ in 𝑁𝑂 [𝑤];
8 UpdateBucket(𝑤 , �̂�𝑜𝑙𝑑 , �̂� (𝑢,𝑤),𝑤 = 𝑣);

9 Update all records of 𝐵 associated with 𝑢;

10 else
11 Derive �̂� (𝑢, 𝑣) of 𝑢 and 𝑣 with 𝑆𝑘 (𝑢), 𝑆𝑘 (𝑣);
12 Insert ⟨𝑣, �̂� (𝑢, 𝑣)⟩ to 𝑁𝑂 [𝑢];
13 UpdateBucket(𝑢, 0, �̂� (𝑢, 𝑣), 1);
14 Repeat Lines 2-13 for vertex 𝑣 ;

15 return 𝑆𝑘 , 𝐵, 𝑁𝑂 ;
16 procedure UpdateBucket(𝑤 , 𝜎𝑜𝑙𝑑 , 𝜎𝑛𝑒𝑤 , 𝑖𝑠_𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑒𝑑𝑔𝑒):
17 𝑖∗ ← arg𝑖 {𝜎𝑜𝑙𝑑 ∈ [1 − 𝑖/𝛿, 1 − (𝑖 − 1)/𝛿)};
18 𝑗∗ ← arg𝑖 {𝜎𝑛𝑒𝑤 ∈ [1 − 𝑖/𝛿, 1 − (𝑖 − 1)/𝛿)};
19 if 𝑖∗ > 𝑗∗ then swap(𝑖∗, 𝑗∗);
20 if !𝑖𝑠_𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑒𝑑𝑔𝑒 then 𝑗∗ ← 𝑗∗ − 1;

21 for 𝑖 ∈ [𝑖∗, 𝑗∗] do
22 The record of𝑤 in 𝐵 [𝑖] increases by 1 if

𝜎𝑜𝑙𝑑 < 𝜎𝑛𝑒𝑤 otherwise decreases by 1;

23 Insert/update the entry of𝑤 in 𝐵 [𝑖];

𝑁 [𝑣]) before the 𝑣 (resp. 𝑢) is added is also unchanged. No further

update is required. On the other hand, if the similarity index gets

updated, then further updates are required. We focus on the case

when the similarity index 𝑆𝑘 (𝑢) of 𝑢 gets changed as the case for 𝑣

can be discussed in the same way. When 𝑆𝑘 (𝑢) gets changed, for
a vertex 𝑤 in 𝑁 [𝑢], their similarity score may also get changed.

Then, the neighboring index 𝑁𝑂 [𝑤] of vertex 𝑤 and the entries

related to𝑤 in the bucket index might also need to be updated.

Algorithm 3 shows the pseudo-code of BOTBIN index update

for insertion. Firstly, it updates the similarity index of 𝑢 and 𝑣

respectively if it is needed (Line 1). If the similarity index of vertex

𝑢 is changed, it examines all vertices in the neighborhood of 𝑢.

Let 𝑤 be a vertex in 𝑁 [𝑢], it obtains the similarity score derived

before the update (Line 4). Next, given the updated similarity index,

it computes the updated similarity score between 𝑢 and 𝑤 with

𝑆𝑘 (𝑢) and 𝑆𝑘 (𝑤) via Equation 1. Then it updates (resp. inserts)

⟨𝑤, �̂� (𝑢,𝑤)⟩ in 𝑁𝑂 [𝑢] if𝑤 is not 𝑣 (resp.𝑤 is 𝑣) (Line 6). Similarly,

𝑁𝑂 [𝑤] needs to be updated as �̂� (𝑤,𝑢) is also changed with vertex

𝑢 as the key in 𝑁𝑂 [𝑤] (Line 7). After that, it updates the bucket
index for vertex𝑤 by invoking the UpdateBucket procedure (Lines

16-23). Given the old similarity score𝜎𝑜𝑙𝑑 and the updated similarity

score 𝜎𝑛𝑒𝑤 , it first identifies the bucket 𝑖
∗
of 𝜎𝑜𝑙𝑑 and bucket 𝑗∗ of

𝜎𝑛𝑒𝑤 . If 𝑖
∗
is equal to 𝑗∗, the bucket is unchanged. Notice that if

Algorithm 4: BOTBIN-Update-Deletion

Input: Deleted edge (𝑢, 𝑣), the updated graph 𝐺 , and

BOTBIN index for the original graph 𝐺 ′

Output: Updated BOTBIN index for graph 𝐺

1 Update 𝑆𝑘 (𝑢), 𝑆𝑘 (𝑣);
2 if 𝑆𝑘 (𝑢)is modified then
3 Do the same operations of Lines 3-9 in Algorithm 3;

4 �̂�𝑜𝑙𝑑 ← estimated similarity �̂� (𝑢,𝑤) before update;
5 Delete the entry of 𝑣 from 𝑁𝑂 [𝑢];
6 UpdateBucket(𝑢, �̂�𝑜𝑙𝑑 , 0, 1);

7 Repeat Lines 2-6 for vertex 𝑣 ;

8 return 𝑆𝑘 , 𝐵, 𝑁𝑂 ;

the updated bucket is related to �̂� (𝑢, 𝑣), i.e., the edge to be updated

(insertion/deletion), the information in bucket 𝑖∗ also needs to be

updated. That is why it includes an 𝑖𝑠_𝑢𝑝𝑑𝑎𝑡𝑒𝑑_𝑒𝑑𝑔𝑒 flag. If it is

not related to the updated edge, then there is no need to update the

bucket information. Otherwise, if the bucket changes from 𝑖∗ to 𝑗∗

(assuming 𝑖∗ < 𝑗∗ here), entries ⟨𝑤, 𝑐𝑛𝑡⟩ in buckets 𝐵 [𝑖∗] to 𝐵 [ 𝑗∗]
all need to be updated from 𝑖∗ to 𝑗∗ (resp 𝑗∗ − 1) if the similarity

is (resp. is not) for the updated edge (Lines 16-23). The case when

𝑖∗ > 𝑗∗ can be handled in the same way. To facilitate the update,

for each vertex 𝑤 , BOTBIN maintains the count of approximate

neighbors in each bucket. Thus, we can easily use the maintained

count to find the location of each entry ⟨𝑤, 𝑐𝑛𝑡⟩ in bucket 𝐵 [𝑖] via
a binary search. After updating all neighborhoods of 𝑢, it further

updates the bucket information for vertex 𝑢 via the maintained

count. If 𝑆𝑘 (𝑢) is not changed, then the similarity between 𝑢 and

𝑤 ∈ 𝑁 [𝑢] \ {𝑣} is not changed. Thus, only the similarity between

𝑢 and 𝑣 must be computed (Line 11). Then, an entry ⟨𝑣, �̂� (𝑢, 𝑣)⟩ is
added to 𝑁𝑂 [𝑢]. Lastly, it invokes the UpdateBucket algorithm to

update the bucket index related to 𝑢 with the maintained count

for each bucket. This process is repeated for 𝑣 , whose steps are

identical to that for 𝑢. This finishes the update to BOTBIN index.

Edge deletion. Next, we elaborate on how to update the index

when there is an edge deletion. With the deletion of an edge (𝑢, 𝑣),
the first step is still to update the similarity index of vertices 𝑢

and 𝑣 . Then, if the similarity index of 𝑢 is updated, it might affect

the similarity between 𝑢 and all nodes in its neighborhood 𝑁 [𝑢].
Thus, similar to Algorithm 3, it updates the neighboring index of

𝑤 where𝑤 ∈ 𝑁 [𝑢], and further updates the bucket index related

to𝑤 . The steps are the same as that in the insertion by repeating

Lines 3-9 in Algorithm 3 (Algorithm 4 Line 3). Next, it handles the

deleted edge (𝑢, 𝑣) (Lines 4-6). In particular, it deletes the entry of

𝑣 from the neighboring index 𝑁𝑂 [𝑢] of vertex 𝑢. Then, it further
updates entries related to 𝑢 in the bucket index. Finally, it repeats

this process for vertex 𝑣 (Line 6). After that, it finishes the index

update and returns the updated index (Line 8).

Notice that similar to edge insertion, the major cost comes from

the recalculation of the similarity scores and the updates to the

bucket index. Thus, the time complexity of the BOTBIN index up-

date given an edge deletion is the same as that of edge insertion.

We have the following theorem to bound the index update cost.



Algorithm 5: BOTBIN-Update-Insertion-Opt

Input: Inserted edge (𝑢, 𝑣), the updated graph 𝐺 , and

BOTBIN index for the original graph 𝐺 ′

Output: Updated BOTBIN index for graph 𝐺

1 Update 𝑆𝑘 (𝑢), 𝑆𝑘 (𝑣);
2 Let 𝑝𝑜𝑝𝑢 be the old 𝑘-th smallest element in 𝑆𝑘 (𝑢);
3 if 𝑆𝑘 (𝑢)is modified then
4 for vertex𝑤 ∈ 𝑁 [𝑢] do
5 𝑘𝑜𝑙𝑑 ← 𝑘𝑡ℎ(𝑢,𝑤);
6 if ℎ(𝑣) ≤ 𝑘𝑜𝑙𝑑 then
7 if ℎ(𝑣) ∈ 𝑆𝑘 (𝑤) then
8 𝑐𝑛𝑡 (𝑢,𝑤) ← 𝑐𝑛𝑡 (𝑢,𝑤) + 1

9 else
10 𝑘𝑡ℎ(𝑢,𝑤) ← 𝑓 𝑖𝑛𝑑_𝑘𝑡ℎ(𝑆𝑘 (𝑢), 𝑆𝑘 (𝑤), 𝑘𝑜𝑙𝑑 );
11 if (𝑘𝑜𝑙𝑑 in 𝑆𝑘 (𝑢) or 𝑝𝑜𝑝𝑢 = 𝑘𝑜𝑙𝑑 ) and 𝑘𝑜𝑙𝑑 in

𝑆𝑘 (𝑤) then
12 𝑐𝑛𝑡 (𝑢,𝑤) ← 𝑐𝑛𝑡 (𝑢,𝑤) − 1;

13 �̂�𝑜𝑙𝑑 ←− estimated similarity �̂� (𝑢,𝑤) before update;
14 Derive �̂� (𝑢,𝑤) of 𝑢 and𝑤 as 𝑐𝑛𝑡 (𝑢,𝑤)/𝑘 ;
15 Do the same operations of Lines 6-8 in Algorithm 3;

16 Update all records of 𝐵 associated with 𝑢;

17 else
18 Do the same operations of Lines 11-13 in Algorithm 3;

19 Repeat Lines 2-18 for vertex 𝑣 ;

20 return 𝑆𝑘 , 𝐵, 𝑁𝑂 ;

Theorem 6. Given a failure probability 𝑝 , an error parameter 𝜌 ,
for an edge insertion/deletion, the expected cost to update the BOTBIN

index by Algo. 3 /Algo. 4 is 𝑂
(

1

𝜌2
log

1

𝑝 · (
1

𝜌2
log

1

𝑝 + 𝛿 log𝑛)
)
.

4.2 Improved Solutions
One key bottleneck of solutions in Section 4.1 is that it takes

𝑂 ( 1

𝜌2
log

1

𝑝 ) time to recalculate the similarity between 𝑢 (resp. 𝑣)

and its neighborhood 𝑁 [𝑢] (resp. 𝑁 [𝑣]) each time after an edge

insertion/deletion to (𝑢, 𝑣). This cost is the main update cost as we

will show in the experiment. A natural question is: can we reduce

the cost for the recalculation of the similarity between 𝑢 (resp. 𝑣)

and its neighborhood 𝑁 [𝑢] (resp. 𝑁 [𝑣])? Intuitively, the need to

recalculate the similarity between 𝑢 and𝑤 ∈ 𝑁 [𝑢] after updating
the sketch of 𝑢 seems to be redundant as we only update at most

one entry in the sketch of 𝑢, making the majority of the sketch

untouched. This motivates us to devise a more efficient algorithm to

re-compute �̂� (𝑢,𝑤), reducing the cost to re-compute the similarity

score from 𝑂 ( 1

𝜌2
ln

1

𝑝 ) to 𝑂 (log ( 1

𝜌2
log

1

𝑝 )). Next, we elaborate on
the improved solutions to re-compute the similarity scores.

Faster update for insertion. Consider the impact of adding an

edge (𝑢, 𝑣) to the sketch of vertex 𝑢. If ℎ(𝑣) is larger than the 𝑘-th

smallest hash value in similarity index 𝑆 ′
𝑘
(𝑢) before the update,

then the sketch 𝑆𝑘 (𝑢) after the insertion remains the same. There

is no need to re-compute the similarity between 𝑢 and 𝑤 where

𝑤 ∈ 𝑁 [𝑢] \ {𝑣}. If ℎ(𝑣) is among the 𝑘 smallest hash values in

𝑁 [𝑢], ℎ(𝑣) will be added into the updated similarity index 𝑆𝑘 (𝑢)
and the 𝑘-th smallest hash value is removed from original similarity

index 𝑆 ′𝑢 (𝑘). It is easy to verify that 𝑆 ′
𝑘
(𝑢) and 𝑆𝑘 (𝑢) differ by at

most two elements. The first element that may be different is the

𝑘-th smallest element of original similarity index 𝑆 ′
𝑘
(𝑢). Let 𝑝𝑜𝑝𝑢

denote this element and it will be eliminated from 𝑆𝑘 (𝑢). The second
different element is ℎ(𝑣) because it has just been added to 𝑆𝑘 (𝑢).

Given this information, how can we quickly compute the approx-

imate similarity of 𝑆𝑘 (𝑢) and 𝑆𝑘 (𝑤)? To speed up the similarity

re-computation, we maintain two values attached to each edge

(𝑢,𝑤). The first value is 𝑐𝑛𝑡 (𝑢,𝑤), which stores the number of ele-

ments in the intersection of 𝑆𝑘 (𝑢), 𝑆𝑘 (𝑤), and 𝑆𝑘 (𝑁 [𝑢] ∪ 𝑁 [𝑤]).
Notice that, given this 𝑐𝑛𝑡 (𝑢,𝑤), we can then directly derive the esti-
mated similarity �̂� (𝑢,𝑤) between𝑢 and𝑤 as 𝑐𝑛𝑡 (𝑢,𝑤)/𝑘 according

to Equation 1. The second element that we maintain for edge (𝑢,𝑤)
is 𝑘𝑡ℎ(𝑢,𝑤), which stores the 𝑘-th element of 𝑆𝑘 (𝑁 [𝑢] ∪ 𝑁 [𝑤]).
All these values can be initialized during the index construction

without affecting the time complexity of the index construction

algorithm. Since this incurs 𝑂 (𝑚) cost, it also does not affect the

space complexity of the BOTBIN index. Algorithm 5 shows the

pseudo-code of the optimized insertion algorithm.

Recap that 𝑝𝑜𝑝𝑢 is the 𝑘-th element in 𝑆 ′
𝑘
(𝑢) before the update

(Line 2). If 𝑆𝑘 (𝑢) is modified, then it affects the similarity between

𝑢 and𝑤 ∈ 𝑁 [𝑢] and re-computation is required (Line 3). For each

vertex 𝑤 in the neighborhood of 𝑢, denote 𝑘𝑜𝑙𝑑 as the 𝑘-th ele-

ment of 𝑆𝑘 (𝑁 [𝑢] ∪ 𝑁 [𝑤]) before the insertion, i.e., being equal to

𝑘𝑡ℎ(𝑢,𝑤) before the edge insertion (Line 5). We focus on the case

when ℎ(𝑣) ≤ 𝑘𝑜𝑙𝑑 (Line 6) as otherwise, it will not affect 𝑐𝑛𝑡 (𝑢,𝑤)
or 𝑘𝑡ℎ(𝑢,𝑤) and thus the estimated similarity between 𝑢 and𝑤 is

unchanged. In this case, i.e., ℎ(𝑣) ≤ 𝑘𝑜𝑙𝑑 , if ℎ(𝑣) is also in 𝑆𝑘 (𝑤),
then we can know that 𝑐𝑛𝑡 (𝑢,𝑤) will be incremented by one (Lines

7-8). Notice that for the removed 𝑝𝑜𝑝𝑢 , it will be larger than ℎ(𝑣),
and further larger than 𝑘𝑜𝑙𝑑 . Hence, it is not in the intersection of

𝑆𝑘 [𝑢] ∩ 𝑆𝑘 [𝑤] ∩ 𝑆𝑘 [𝑆𝑘 [𝑢] ∪ 𝑆𝑘 [𝑤]] and will not affect 𝑐𝑛𝑡 (𝑢,𝑤).
If ℎ(𝑣) is not in 𝑆𝑘 (𝑤), then we first update 𝑘𝑡ℎ(𝑢,𝑤) according to

𝑆𝑘 (𝑢), 𝑆𝑘 (𝑤), and 𝑘𝑜𝑙𝑑 . In particular, as we only modify the 𝑘-th

smallest by one position, we can first find the largest element in

𝑆𝑘 (𝑢) that is smaller than 𝑘𝑜𝑙𝑑 and the largest element in 𝑆𝑘 (𝑤)
that is smaller than 𝑘𝑜𝑙𝑑 then take the larger one of these two. This

will be the 𝑘-th smallest element in 𝑆𝑘 (𝑁 [𝑢] ∪ 𝑁 [𝑤]) in the new

similarity index (Line 10). After that, we check if 𝑘𝑜𝑙𝑑 that is kicked

out from 𝑆𝑘 (𝑁 [𝑢] ∪𝑁 [𝑤]) is in both 𝑆𝑘 (𝑢) and 𝑆𝑘 (𝑤). If this is the
case, we decrease 𝑐𝑛𝑡 (𝑢,𝑤) by 1 (Lines 11-12). Notice that we might

not be able to find 𝑘𝑜𝑙𝑑 in 𝑆𝑘 (𝑢) as it has been removed from 𝑆𝑘 (𝑢),
i.e., 𝑝𝑜𝑝𝑢 . Thus, if 𝑘𝑜𝑙𝑑 = 𝑝𝑜𝑝𝑢 , it also indicates that 𝑘𝑜𝑙𝑑 was in

𝑆𝑘 (𝑢) (Line 11). After updating 𝑐𝑛𝑡 (𝑢,𝑤) and 𝑘𝑡ℎ(𝑢,𝑤), we are able
to derive the updated similarity between 𝑢 and𝑤 via 𝑐𝑛𝑡 (𝑢,𝑤)/𝑘 .
For the remaining parts to update th neighboring index and bucket

index, it is the same as that in Algorithm 3 (Lines 15-18). Finally, it

repeats this process for 𝑣 and returns the updated index.

Faster update for deletion. The improved update algorithm for

edge deletion shares the similar idea as that for insertion, i.e., main-

taining 𝑐𝑛𝑡 (𝑢,𝑤) and 𝑘𝑡ℎ(𝑢,𝑤) for each pair of edges and dynam-

ically tracking the changes of these two. Algorithm 6 shows the

pseudo-code of the index update algorithm for edge deletion. Firstly,



Algorithm 6: BOTBIN-Update-Deletion-Opt

Input: Inserted edge (𝑢, 𝑣), the updated graph 𝐺 , and

BOTBIN index for the original graph 𝐺 ′

Output: Updated BOTBIN index for graph 𝐺

1 Update 𝑆𝑘 (𝑢), 𝑆𝑘 (𝑣);
2 if 𝑆𝑘 (𝑢)is modified then
3 for vertex𝑤 ∈ 𝑁 [𝑢] do
4 𝑘𝑜𝑙𝑑 ← 𝑘𝑡ℎ(𝑢,𝑤);
5 if ℎ(𝑣) ≤ 𝑘𝑜𝑙𝑑 then
6 if ℎ(𝑣) in 𝑆𝑘 (𝑤) then
7 𝑐𝑛𝑡 (𝑢,𝑤) ← 𝑐𝑛𝑡 (𝑢,𝑤) − 1

8 else
9 𝑘𝑡ℎ(𝑢,𝑤) ← 𝑓 𝑖𝑛𝑑_𝑘𝑡ℎ(𝑆𝑘 (𝑢), 𝑆𝑘 (𝑤), 𝑘𝑜𝑙𝑑 );

10 if 𝑘𝑡ℎ(𝑢,𝑤) ∈ 𝑆𝑘 (𝑢) and 𝑘𝑡ℎ(𝑢,𝑤) ∈ 𝑆𝑘 (𝑤)
then

11 𝑐𝑛𝑡 (𝑢,𝑤) ← 𝑐𝑛𝑡 (𝑢,𝑤) + 1;

12 Do the same operations of Lines 13-15 of

Algorithm 5

13 Update all records of 𝐵 associated with 𝑢;

14 Do the same operations of Lines 4-6 of Algorithm 4

15 Repeat Lines 2-14 for vertex 𝑣 ;

16 return 𝑆𝑘 , 𝐵, 𝑁𝑂 ;

the similarity between 𝑢 and nodes in the neighborhood of 𝑢 are

not changed if 𝑆𝑘 (𝑢) is not changed. When 𝑆𝑘 (𝑢) is updated, then
𝑘𝑡ℎ(𝑢,𝑤) is the 𝑘-th smallest hash value for set 𝑁 [𝑢] ∪ 𝑁 [𝑤]
before the graph update. Denote this as 𝑘𝑜𝑙𝑑 (Line 4). Next, we

only need to handle the case when ℎ(𝑣) ≤ 𝑘𝑜𝑙𝑑 , otherwise the

deletion of ℎ(𝑣) will not affect 𝑐𝑛𝑡 (𝑢,𝑤) and 𝑘𝑡ℎ(𝑢,𝑤). In such a

case, i.e., ℎ(𝑣) ≤ 𝑘𝑜𝑙𝑑 , if ℎ(𝑣) is in 𝑆𝑘 (𝑤), then 𝑐𝑛𝑡 (𝑢,𝑤) decreases
by 1. However, 𝑘𝑡ℎ(𝑢,𝑤) remains unchanged as ℎ(𝑣) remains in

𝑆𝑘 (𝑁 [𝑢] ∪𝑁 [𝑣]) and thus 𝑆𝑘 (𝑁 [𝑢] ∪𝑁 [𝑣]) is not changed. If ℎ(𝑣)
is not in 𝑆𝑘 (𝑤), we first derive the updated 𝑘𝑡ℎ(𝑢,𝑤) by comput-

ing the smallest element in 𝑆𝑘 (𝑢) that is larger than 𝑘𝑜𝑙𝑑 and the

smallest element in 𝑆𝑘 (𝑤) that is larger than 𝑘𝑜𝑙𝑑 and taking the

smaller one. Then, if 𝑘𝑡ℎ(𝑢,𝑤) appears in both 𝑆𝑘 (𝑢) and 𝑆𝑘 (𝑤),
then 𝑐𝑛𝑡 (𝑢,𝑤) increases by 1. This finishes the update to 𝑘𝑡ℎ(𝑢,𝑤)
and 𝑐𝑛𝑡 (𝑢,𝑤). Next, the remaining steps to update the bucket index

and neighboring index are similar to that of Algorithm 5 (Lines 12-

13). Next, it removes 𝑣 from the neighboring index of 𝑢, updates the

bucket index of 𝑢 based on the estimated similarity score �̂� (𝑢,𝑤)
before the update (Line 14), which is the same as Algorithm 4 Lines

4-6. Finally, it repeats this process for vertex 𝑣 (Line 15) and returns

the updated index. We have the following theorem to bound the

index update cost for the improved algorithms.

Theorem 7. Given a failure probability 𝑝 , an error parameter 𝜌 ,
for an edge insertion/deletion, the expected cost to update the BOTBIN

index by Algo. 5/Algo. 6 is bounded by 𝑂
(
𝛿
𝜌2
· log

1

𝑝 · log𝑛

)
.

Choice of 𝒑. Finally, we discuss how to set 𝑝 so that we can provide

an approximation guarantee with 1−𝑝 𝑓 probability after a sequence
of updates. Suppose that there are 𝑚 edges in the initial graph.

Regardless of whether they modify the similarity index of 𝑢, 𝑣 or

not, each update of edge (𝑢, 𝑣) can be seen as a re-sampling of the

neighbors of 𝑢 and 𝑣 . After adding an edge, this is equivalent to

𝑑𝑢 + 𝑑𝑣 + 1 times of re-sampling. For deleting an edge, it affects

the similarity score of 𝑑𝑢 + 𝑑𝑣 − 2 edges. Assuming that there are

𝑀 random updates, on average, it affects 𝑀 · 𝑑𝐸 edges, where 𝑑𝐸
represents the mean of the degrees of the two endpoints of each

edge in the edge set 𝐸. So if we want to handle 𝑀 updates, we

should set 𝑝 =
𝑝𝑓

𝑀 ·𝑑𝐸 . A total of 𝑚 edges need to be initialized

during the construction of the BOTBIN, and this part also needs to

be considered in the error probability. By setting 𝑝 = 𝑝 𝑓 /(𝑀 ·𝑑𝐸+𝑚),
we can guarantee that we have 1−𝑝 𝑓 success probability to produce
an (𝜖, 𝜌 + 1/𝛿)-approximate SCAN. We have the following theorem

on the choice of 𝑘 according to the above discussion.

Theorem 8. Given an approximate parameter 𝜌 and a probability
parameter 𝑝 𝑓 , let 𝑘 = 1

𝜌2
log

2(𝑀 ·𝑑𝐸+𝑚)
𝑝𝑓

, then BOTBIN can support
𝑀 random updates and return (𝜖, 𝜌 + 1/𝛿)-approximate SCAN with
probability 1 − 𝑝 𝑓 for input graph 𝐺 .

Notice that log
2(𝑀 ·𝑑𝐸+𝑚)

𝑝𝑓
= 𝑂 (log

𝑀+𝑚
𝑝𝑓
). As 𝛿 and 𝜌 can be

treated as small constants, the final time complexity is 𝑂 (log𝑛 ·
log

𝑀+𝑚
𝑝𝑓
). With edge insertions/deletions, the number of affected

edges may exceed 𝑀 · 𝑑𝐸 . We set a reconstruction threshold 𝜁 =

𝑀 · 𝑑𝐸 with 𝑀 = 𝑚. When the total number of affected edges

reaches 𝜁 , we rebuild our index and then double 𝜁 . By setting

𝑝 =
𝑝𝑓

𝑀 ·𝑑𝐸 to Theorem 4, the index construction time is then

bounded by 𝑂

(
𝑚

(
1

𝜌2
ln

𝑀+𝑚
𝑝𝑓
+ log𝑑𝑚𝑎𝑥

)
+ 𝛿𝑛 log𝑛

)
. The amor-

tized update time of BOTBIN remains the same.

5 EXPERIMENT
We experimentally evaluate our BOTBIN against the state-of-the-art

index-based method GS-Index in terms of efficiency and effective-

ness. All experiments are conducted on a Linux machine with an

Intel Xeon(R) CPU clocked at 2.30GHz with 768GB memory.

5.1 Experimental Settings
Datasets. We use 10 large real datasets in the experiments. All

these datasets are publicly available at SNAP [2], Konect [1] and

Network Repository [3]. Among them, Pokec, Orkut, Twitter, Live-

journal, and Friendster are social networks; Skitter, Topcats, and

Web are web networks; Brain and PP are biological networks where

Brain is a gene-gene interaction network and PP is a protein-protein

association network. Following previous works [27, 34], directed

graphs, like Twitter, are converted to an undirected graph by treat-

ing directed edges as undirected ones. The statistics of datasets are

shown in Table 1, where
¯𝑑 is the average degree, 𝑐 is the average

clustering coefficient, and 𝜎𝑚𝑎𝑥 is the average of the maximum

similarity between each vertex to its neighbors (Ref. to Section 3.2).

Main Competitor.We mainly compare our BOTBIN against the

state-of-the-art index-based method GS-Index [34], as discussed in

Section 2.2. The implementation of GS-Index is provided by their

inventors. We do not compare against DynStrClu [27] as it cannot

support different input parameters of 𝜇 and 𝜖 as we discussed in

Section 2.2. To examine the update performance, we further include



Table 1: Summary of datasets (𝐾 = 10
3, 𝑀 = 10

6, 𝐵 = 10
9)

Dataset 𝒏 𝒎 𝒅 𝒄 �̄�𝒎𝒂𝒙

Skitter 1.7M 22.2M 13.1 0.258 0.245

Pokec 1.6M 44.6M 27.3 0.109 0.171

Topcats 1.8M 50.9M 28.4 0.274 0.202

Livejournal (LJ) 4.8M 85.7M 17.7 0.117 0.297

Orkut 3.1M 234.4M 76.3 0.166 0.202

Brain 784.3K 535.7M 683.1 0.486 0.724

PP-Miner (PP) 8.3M 1.8B 223.8 0.341 0.455

Twitter 41.7M 2.4B 57.7 0.073 0.091

Friendster (FS) 65.6M 3.6B 55.1 0.134 0.130

Web 90.3M 3.9B 42.9 0.194 0.178

Table 2: Clustering Quality: Core Labelled Rate (Precision,
Recall), Overall Clustering Quality (ARI) (%) and the average
number of core-vertices (𝐾 = 10

3, 𝑀 = 10
6)

Dataset ARI Precision Recall Number of cores
Skitter 99.98 99.94 99.47 11.9K

Pokec 99.43 99.96 99.78 4.0K

Topcats 99.90 100.00 99.73 11.8K

LJ 99.97 100.00 99.90 212.5K

Orkut 99.46 100.00 99.92 64.5K

Brain 99.00 99.60 99.61 524.8K

PP 98.88 99.91 99.92 1.4M

Twitter 98.54 99.89 99.75 86.0K

FS 99.41 99.37 99.43 104.2K

Web 99.16 99.46 99.95 2.6M

the solution in Section 4.1 as a baseline, dubbed as BOTBIN-Basic.

Our full-fledged solution in Section 4.2 is dubbed as BOTBIN.

Parameter settings. Recall that all our algorithms include a failure

probability parameter 𝑝 𝑓 . We set the failure probability as
1

1000
. We

set𝑀 =𝑚 and 𝑑𝐸 based on each dataset (Ref. to Theorem 8 for their

definition), and then we can calculate 𝑘 for the bottom-𝑘 sketch.

In addition, BOTBIN includes an error parameter 𝜌 to control the

trade-off between the update efficiency and clustering quality. We

tune the impact of 𝜌 in Exp 5. The experimental results suggest

that when 𝜌 = 0.1, it achieves the best trade-off between the update

efficiency and clustering quality. For the parameter of bucket size

𝛿 (Refer to Section 3 for its definition), we tune 𝛿 and examine its

impact in Exp 5. We observe that when 𝛿 = 100, it achieves the best

trade-off between the efficiency and accuracy and thus we choose

𝛿 = 100 as the default setting in the remaining experiments.

5.2 Experimental Comparisons
Exp 1: Update efficiency. In the first set of experiments, we ex-

amine the update performance of our BOTBIN scheme. Firstly, we

examine the performance of our index update algorithms for edge

insertions. Figure 3 shows the results of the average index update

cost for 10,000 random edge insertions. Notice that the 𝑦-axis is log-

scale. As we can observe, our BOTBIN achieves superb performance

and can update the index with milliseconds even on billion edge

graphs like PP, Twitter, FS, and Web. Compared to GS-Index, our

BOTBIN achieves up to 2 order of magnitude speed-up on the Twit-

ter dataset and an order of magnitude speedup on most datasets.

Our BOTBIN further achieves significant speed-up over BOTBIN-

Basic as it reduces the cost to re-compute the similarity scores

from 𝑂 (𝑘) to 𝑂 (log𝑘). BOTBIN-Basic is still more efficient than
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Figure 3: Index update time with edge insertions.
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Figure 4: Index update time with edge deletions.

GS-Index on all datasets and achieves up to an order of magnitude

speed-up over GS-Index on the Twitter dataset.

Next, we examine the performance of the index update algo-

rithms for edge deletions. Figure 4 shows results of average index

update costs for 10,000 random edge deletions. The performance

gain shows a similar trend as that on edge insertions. We further

examine the performance of our index scheme under a mixing work-

load of insertions and deletions. We find that all algorithms show

a stable performance under mixing workloads and is insensitive

to the change of workloads. For the interest of space, we omit the

results and refer interested readers to our technical report [4].

Exp 2: Query efficiency. Finally, we randomly choose 100 queries

with different 𝜖 and 𝜇 parameters by varying 𝜖 in {0.2, 0.21, . . . , 0.80}
and 𝜇 in {2, 3, 4, . . . , 15}, which follows the previous work [34]. Fig-

ure 5 shows the average query time. We can see that GS-Index

and BOTBIN show identical query performance as both GS-Index

and BOTBIN has a query cost linearly depending on the size of

the cluster subgraph. The results show that BOTBIN gains a good

trade-off among index update cost, query cost, and query accuracy,

and is the preferred choice on dynamic graphs.

Exp 3: Clustering quality. We evaluate the clustering quality

of our approximate algorithm and the baseline algorithm on all

datasets. In the first set of experiment, the queries are generated

following the settings in Exp 2. Following previous work [27], our

evaluation uses three metrics: precision, recall, and adjusted rand
index (ARI). The precision and recall here are defined based on core-

vertex. We use the baseline algorithm to get the ground truth of the

core vertex, and then we test the recall and precision of the core

vertices found by the approximate algorithm. For ARI, it is a popular

metric to evaluate the clustering quality of outputted clustering

results under the ground-truth of known clustering results and the

higher (up to 1) the better the clustering results are. Table 2 reports

the precision, recall, and ARI of the clustering result returned by

BOTBIN. We further report the average number of core vertices per

query as a reference. As we can observe, BOTBIN achieves close to

100% accuracy, recall, and ARI on all datasets.

In the second set of experiment, we examine the impact of 𝜖 on

the quality of the clustering results returned by BOTBIN by varying

𝜖 in {0.1, 0.2, 0.4, 0.8}. To examine clustering results, we report the
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average ARI score with different choice of 𝜇 from 2 to 15. Figure

8 reports ARI scores when we vary 𝜖 on two large datasets PP

and Twitter. As we can observe, our BOTBIN still provides almost

identical clustering result as that of the exact SCAN algorithm. This

shows the effectiveness of our approximate solution.

Exp 4: Indexing Costs. Next, we compare the indexing cost of

BOTBIN against GS-Index. Figure 6 reports the index construction

time of both methods. It can be observed that our BOTBIN can

be up to 3.3x faster than GS-Index on index construction. To ex-

plain, our BOTBIN has an improved time complexity over GS-Index

on index construction. Thus, on huge graphs, BOTBIN tends to

be more scalable than GS-Index. In addition, the index construc-

tion cost is almost 10
6
times as that of the index update. This fur-

ther demonstrates the effectiveness of our proposed index update

scheme. Figure 7 reports the memory usage of the built indices. We

have reported the size of the similarity index, dubbed as BOTBIN-

Sim, and the size with both similarity index and clustering index,

dubbed as BOTBIN. We further include the memory cost of the

input graph as a reference. Note that to maintain the input graph,

we need to use dynamic data structures such as BST or hash table

(we used hash table) to store the neighboring vertices of each node.

Thus, the memory consumption is generally higher than that of the

compressed sparse array design on static graphs. The results show

that the major space cost of BOTBIN comes from the clustering

index. The results also show that BOTBIN takes less space cost

compared to GS-Index on large graphs since 𝛿 · 𝜎𝑚𝑎𝑥 is generally

smaller than the average degree of the input graph when 𝛿 = 100.

Exp 5: Tuning parameters. Finally, we examine the impact of 𝜌

(error parameter) and 𝛿 (bucket number). Due to space limit, we only

show results on two representative datasets: PP and Twitter. To ex-

amine the impact of 𝜌 , we vary 𝜌 in {0.05, 0.075, 0.1, 0.2, 0.25, 0.4, 0.5}
and see the trade-off between index update time and the query ac-

curacy in terms of ARI as shown in Figure 9. Notice that the smaller
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Figure 9: Impact of 𝜌: ARI and update time by BOTBIN
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𝜌 it is, the higher the update cost it is while the more accurate the

clustering results are. We observe that when 𝜌 = 0.1, it achieves a

good trade-off between the update cost and clustering quality. We

also test the impact of 𝜌 on precision/recall and index update cost.

It shows a similar trend and thus is omitted for the interest of space.

Interested readers are referred to our technical report [4]. Thus, we

set 𝜌 = 0.1 as the default settings. Next, we examine the impact of 𝛿 .

Figure 10 shows the results when we vary 𝛿 with {50, 100, 200, 400}.
Notice that the larger 𝛿 is, the more accurate the clustering results

are while the higher update cost it incurs. The results show that

when we set 𝛿 = 100, it achieves almost 100% ARI score. Thus, we

set 𝛿 = 100 as the default setting.

6 CONCLUSION
In this paper, we present an efficient and effective index scheme

for dynamic structural graph clustering, verified with extensive

experiments. For further work, we plan to investigate how to devise

efficient estimation schemes for weighted similarity measures like

Cosine and weighted Jaccard similarities on weighted graphs so as

to support efficient index updates.
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