
Crowd-Based Deduplication: An Adaptive Approach

Sibo Wang Xiaokui Xiao Chun-Hee Lee
School of Computer Engineering
Nanyang Technological University

Singapore

{wang0759, xkxiao, lee.ch}@ntu.edu.sg

ABSTRACT

Data deduplication stands as a building block for data integration
and data cleaning. The state-of-the-art techniques focus on how
to exploit crowdsourcing to improve the accuracy of deduplication.
However, they either incur significant overheads on the crowd or
offer inferior accuracy.

This paper presents ACD, a new crowd-based algorithm for data
deduplication. The basic idea of ACD is to adopt correlation clus-

tering (which is a classic machine-based algorithm for data dedu-
plication) under a crowd-based setting. We propose non-trivial
techniques to reduce the time required in performing correlation
clustering with the crowd, and devise methods to postprocess the
results of correlation clustering for better accuracy of deduplica-
tion. With extensive experiments on the Amazon Mechanical Turk,
we demonstrate that ACD outperforms the states of the art by of-
fering a high precision of deduplication while incurring moderate
crowdsourcing overheads.

Categories and Subject Descriptors

H.2 [Database Management]: Systems

Keywords

Crowdsourcing; Data Deduplication; Correlating Clustering

1. INTRODUCTION
Given a set of records from heterogenous sources, the data dedu-

plication problem aims to cluster the records into several groups,
such that records in the same group correspond to the same entity
in the real world. This problem finds important applications in data
integration [28], data cleaning [13, 40], and web searching [21],
etc. The problem is easy to address when the records to be clus-
tered share some common identifiers; but in many practical scenar-
ios, such common identifiers either do not exist or are rather noisy,
which makes it challenging to deduplicate records accurately.

Numerous techniques have been proposed for automatic data
deduplication based on pre-defined rules, similarity metrics, super-
vised learning, etc. (see [17] for a recent survey). Such machine-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2758-9/15/05 ...$15.00.

http://dx.doi.org/10.1145/2723372.2723739 .

based techniques, however, often face difficulties when process-
ing records that represent different entities but look highly simi-
lar. For example, consider three records about commercial brands:
Chevrolet, Chevy, and Chevron. All of these records resemble each
other, due to which they might be identified as the same entity by
machine-based techniques; nevertheless, only Chevrolet and Chevy
represent the same brand. To remedy the deficiency of machine-
based techniques, recent works [46–48] propose to utilize crowd-
sourcing to improve the accuracy of data deduplication. The ra-
tionale is that humans are often better than machines in tackling
complex tasks. In particular, given the three brand records above,
humans can easily determine that Chevron is a different brand from
Chevrolet and Chevy.

Given a set R of records, a naive approach to deduplicate R via
crowdsourcing is to generate all possible pairs of records from R,
and then ask the crowd to examine each pair to see if it contains
duplicate records. Nevertheless, this approach incurs a prohibitive
cost due to the enormous number of record pairs that need to be pro-
cessed by the crowd. To address this problem, Wang et al. [46] pro-
pose a hybrid approach that utilizes both the crowd and machines.
Specifically, Wang et al.’s approach runs in three steps. First, it
evaluates the similarity between each pair of records in R using a
machine-based algorithm. After that, it eliminates the pairs whose
similarity scores are below a pre-defined threshold τ . Finally, it in-
vokes the crowd to process the remaining pairs of records, and then
derives the final deduplication results accordingly.

The above hybrid approach is shown to be much more accu-
rate than conventional machine-based methods [46]. However,
it still entails a large crowdsourcing overhead when there exist a
large number of record pairs whose similarity scores are above the
threshold τ . To improve, Wang et al. [47] present a more advanced
approach (referred to as TransM) that reduces crowdsourcing costs
by exploring the transitive relationship among records. In partic-
ular, for any three records x, y, z, if the crowd has decided that
x = y and y = z, then TransM determines that x = z, without
issuing the pair (x, z) to the crowd. On the other hand, if the crowd
suggests that x = y and y 6= z, then TransM infers that x 6= z. As
such, TransM considerably reduces the number of record pairs that
requires human efforts.

The reduced crowdsourcing overhead of TransM, however,
comes with a cost of deduplication accuracy, as demonstrated in
the experiments in [47]. The reason is that TransM implicitly as-
sumes that the crowd always returns correct results, which is not
always the case in practice. When human errors occur in the pro-
cessing of crowdsourced record pairs, TransM’s transitivity mecha-
nism tends to amplify errors, leading to less accurate deduplication
results. For example, consider the scenario in Figure 1, where we
have two groups of records {ai} and {bj}, each of which corre-

1263

SIGMOD’15, May 31–June 4, 2015, Melbourne, Victoria, Australia.

a1

a2

...

ai

b1

b2

...

bj

Figure 1: Illustration of the deficiency of TransM.

sponds to one entity. Assume that TransM correctly clusters all ai

into one group and all bj into another, and then issues a pair (a2, b2)
to the crowd. If the crowd mistakenly marks a2 = b2, then by tran-
sitivity, TransM would put all ai and bj into one group, resulting in
significant errors.

Contributions. To address the deficiency of existing solutions,
this paper presents ACD (Adaptive Crowd-based Deduplication),
a new deduplication technique that utilizes both human and ma-
chine power. ACD consists of three phases: a pruning phase, a
cluster generation phase, and a cluster refinement phase. The prun-
ing phase applies a machine-based algorithm to eliminate record
pairs with low similarities. After that, the cluster generation phase
collects the remaining record pairs, and produces an initial cluster-
ing of the records using a small number of Human Intelligent Tasks

(HITs). The initial clustering is then passed over to the cluster re-
finement phase, which refines the clustering using additional HITs
and then returns the final deduplication results. Compared with
TransM, ACD is much less sensitive to human errors, as it does
not overly rely on the transitivity relationship among records. In-
stead, ACD adopts a more robust approach that is able to reconcile
inconsistent results from the crowd, by borrowing idea from corre-

lation clustering [9]. Furthermore, ACD incorporates a paralleliza-
tion method that enables it to issue HITs in a batch manner in both
the cluster generation and refinement phases, which significantly
improves the efficiency of crowdsourcing. We experimentally eval-
uate ACD with real-world datasets, and we demonstrate the superi-
ority of ACD against existing state-of-the-art crowd-based dedupli-
cation solutions.

In summary, the main contributions of this paper are as follows:

• We present ACD, a crowd-based data deduplication algo-
rithm that overcomes the deficiencies of TransM and strikes
a better balance between deduplication accuracy and crowd-
sourcing overheads.

• We devise a novel crowd-based approach for refining the
clusters generated by ACD, yielding further improved dedu-
plication results.

• We propose mechanisms to process HITs in ACD in a
batch manner, which significantly improves the efficiency of
crowdsourcing.

• We experimentally compare ACD with the states of the art on
the Amazon Mechanical Turk (AMT). Our results show that
ACD outperforms competitors by offering a high precision of
deduplication while incurring moderate crowdsourcing over-
heads.

2. PRELIMINARIES
In this section, we formally define the data deduplication prob-

lem, and revisit the existing crowd-based deduplication approaches.
Table 1 lists the notations that we will frequently use in the paper.

Notation Description

R = {r1, r2, · · · , rn} a set of records

S a candidate set of record pairs (see Section 3)

G = (VR, ES) an undirected graph where each vertex repre-
sents a record in R and each edge represents a
record pair in S

f(ri, rj) similarity score between ri and rj

fc(ri, rj) crowd’s confidence that ri = rj

Λ′(R) the optimization goal of ACD (see Equation 2)

b(o) benefit of operation o

b∗(o) estimated benefit of operation o

c(o) crowdsourcing cost of performing operation o

Table 1: Table of notations.

2.1 Problem Definition
Let R = {r1, r2, . . . , rn} be a set of records and g be a function

that maps each ri to the real world entity that ri represents. Given
R, the data deduplication problem aims to divide the records in R
into a set of disjoint clusters C = {C1, C2, . . . , Ck}, such that for
any two records ri, rj ∈ R, if g(ri) = g(rj) then ri and rj appear
in the same cluster, and vice versa.

In practice, however, the function g is either unknown or difficult
to obtain in many scenarios. In that case, it is often assumed that
there exists a similarity score function f : R × R → [0, 1], such
that f(ri, rj) equals the likelihood that ri and rj represent the same
entity. (Such a function can be constructed using either machine-
based or crowd-based algorithms.) Under this setting, the objective
of data deduplication is to construct the clustering C = {C1, C2,
. . . , Ck} in a manner that minimizes a certain error metric based
on f . In this paper, we use a cost metric Λ(R) that has been widely
adopted in previous work [8,11,27,41] on machine-based dedupli-
cation. In particular,

Λ(R) =
∑

ri,rj∈R,i<j

xi,j · (1− f(ri, rj))

+
∑

ri,rj∈R,i<j

(1− xi,j) · f(ri, rj), (1)

where xi,j = 1 if ri and rj are in the same cluster and xi,j = 0
otherwise. In other words, for any record pair (ri, rj), if ri and
rj are put into the same cluster, then Λ(R) assigns a penalty
of 1 − f(ri, rj) on the pair; otherwise, the penalty assigned is
f(ri, rj). As such, the minimization of Λ(R) tends to put simi-
lar (resp. different) records into the same (resp. different) clusters.
Example 1 shows an example of the data deduplication problem
with Λ(R) as the optimization goal.

EXAMPLE 1. Suppose that we have a set of six records R =
{a, b, c, d, e, f}. Table 2 shows the similarity score of each pair of
records, omitting those pairs with low similarity scores. It can be
verified that Λ(R) is minimized when the records in R are divided
into two clusters, {a, b, c} and {d, e, f}. �

In general, minimizing Λ(R) is an NP-hard problem [9]. Mo-
tivated by this, a number of approximation or heuristic algorithms
[5, 9, 14, 36, 41] have been proposed for machine-based data de-
duplication. All these algorithms formulate similarity score func-
tion f (used in Λ(R)) with machine-based approaches, such as
character-based metrics [32], token-based metrics [12], and pho-
netic similarity metrics [39], etc. However, these algorithms tend to
struggle when handling “difficult” pairs of records that have similar

1264

Record Pair Similarity Score Record Pair Similarity Score

(a, b) 0.81 (e, f) 0.69

(b, c) 0.75 (c, d) 0.45

(a, c) 0.73 (a, d) 0.43

(d, e) 0.72 (a, e) 0.37

(d, f) 0.70 · · · ≤ 0.3

Table 2: Similarity scores for the record pairs in Example 1.

representations but differ inherently. This motivates the utilization
of crowdsourcing to improve the accuracy of data deduplication, as
we explain in Section 2.2.

2.2 Crowd-based Deduplication
Crowdsourcing. There exist a number of crowdsourcing plat-
forms, such as Amazon Mechanical Turk, CrowdFlower, and Mo-
bileWorks. In such platforms, we can request human “workers” to
complete micro-tasks, e.g., we may ask them to answer questions
like “do ri and rj refer to the same entity?”. Each micro-task is
referred to as a human intelligent task (HIT). The completion of a
HIT by a worker is rewarded with a certain amount of money based
on the difficulty of the HIT, i.e., invoking the crowd for data dedu-
plication comes with a monetary cost. In addition, a human worker
may not always produce a correct answer for a HIT. A standard
practice to mitigate such human errors is to issue a HIT to mul-
tiple workers, and then take a majority vote. As we will show in
Section 6, however, even when majority votes are used, we may
still get incorrect answers from the crowd. As a consequence, it is
crucial to take human errors into account when designing a crowd-
based algorithm.

Existing Crowd-based Deduplication Algorithms. There exist
five crowd-based deduplication algorithms in the literature, namely,
Crowdclustering [25], CrowdER [46], GCER [48], TransM [47],
and a very recent approach by Vesdapunt et al. [44] (referred to
as TransNode). As we have explained CrowdER and TransM in
Section 1, we focus on the other three approaches in the following.

Given a set R of records, Crowdclustering first creates a number
of small subsets of R, and then ask the crowd workers to perform
clustering on each subset individually. After that, Crowdclustering

inspects the clustering results produced by the crowd workers on
each subset, and applies a machine learning approach to general-
ize the clustering results to the original dataset R. In other words,
Crowdclustering assumes that the clustering results on a small sub-
set of records can be representative of the results on R. This, how-
ever, does not always hold. In particular, if there do not exist too
many records in R corresponding to the same entity (as is often the
case in practice), then a small subset of R may not even contain two
records that are duplicates. In that case, the clustering results on
the subset would not give a machine learning algorithm any useful
information about when two records should be regarded as dupli-
cates; as a consequence, the deduplication accuracy of Crowdclus-

tering would be poor. In general, Crowdclustering is more suitable
for data categorization, which asks whether different records be-
long to the same category (i.e., whether Chevrolet and Chevron are
both car brands) instead of whether they are duplicates. The rea-
son is that, in data categorization, it is common that a large num-
ber of records belong to the same category, in which case even a
small subset of the records could provide representative informa-
tion about the whole dataset.

GCER shares the same spirit as Crowdclustering in that it first
asks the crowd to process a subset of the data, and then generalizes
the crowd’s results to the entire data. In particular, it first con-

structs a machine-based similarity score function f . After that, it
iteratively issues record pairs to the crowd, and utilizes the crowd’s
answers to refine f for better deduplication accuracy. As with
TransM, however, GCER is also susceptible to mistakes made by
the crowd, in the sense if the crowd gives an incorrect answer re-
garding whether two records are duplicate, then GCER would ad-
just f based on the incorrect answer, which degrades the precision
of deduplication.

TransNode performs data deduplication in a way that is simi-
lar to TransM. In particular, they both discard dissimilar record
pairs based on a machine-based similarity score function, and then
exploit the crowd to process the remaining record pairs (referred
to as candidate pairs), using transitive relations to improve effi-
ciency and reduce crowdsourcing costs. The main difference be-
tween TransM and TransNode lies in the order which they inspect
candidate pairs. In TransM, candidate pairs are issued in decreas-
ing order of their machine-based similarity scores. In contrast,
TransNode adopts a more advanced approach to order record pairs,
which leads to a non-trivial worst-case guarantee on the number of
record pairs that need to be crowdsourced to complete the cluster-
ing task. However, as TransNode also relies on transitive relations,
it suffers from the same deficiency as TransM.

3. SOLUTION OVERVIEW
At a high level, our ACD algorithm for crowd-based deduplica-

tion consists of three phases:

1. Pruning Phase: This phase invokes a machine-based algo-
rithm to construct the similarity score function f , and then
generates a candidate set S from the set R of the input
records, using a similarity threshold τ . In particular, S con-
sists of all record pairs (ri, rj) such that f(ri, rj) > τ .

2. Cluster Generation Phase: This phase issues a selected sub-
set of the pairs in S to the crowd. After that, based on the
crowd answers, it divides the records in R into a set of dis-
joint clusters C = {C1, C2, · · · , Ck}.

3. Cluster Refinement Phase: This phase issues some pairs in
S that are previously not processed by the crowd, and then
refines C based on the crowd answers.

Note that the pruning phase utilizes only machine-based algo-
rithms, which have been well studied in the literature. Therefore,
we will focus only on the cluster generation and refinement phases
of ACD, assuming that a machine-based algorithm for the pruning
phase is given.

Cluster Generation Phase. Let fc : R × R → [0, 1] be a
crowd-based similarity score function, such that fc(ri, rj) equals
the crowd’s confidence that ri = rj . Without loss of generality, we
assume that fc(ri, rj) equals the fraction of crowd workers (among
those who inspect the record pair (ri, rj)) that mark ri and rj as
duplicates. In addition, we set fc(ri, rj) = 0 if (ri, rj) is elimi-
nated in the pruning phase. The cluster generation phase of ACD

aims to minimize the following metric Λ′(R):

Λ′(R) =
∑

ri,rj∈R,i<j

xi,j · (1− fc(ri, rj))

+
∑

ri,rj∈R,i<j

(1− xi,j) · fc(ri, rj), (2)

where xi,j = 1 if ri and rj are in the same cluster and xi,j = 0 oth-
erwise. The minimization of Λ′(R) is an instance of the correlation

clustering problem [9], which is NP-hard. The classic approximate

1265

solution for the problem is Pivot [5], which is a randomized algo-
rithm that yields a 5-approximation in expectation. Accordingly,
we adopt Pivot in the cluster generation phase of ACD.

The adoption of Pivot under the crowd-based setting is non-
trivial, since Pivot is a sequential algorithm. In particular, Pivot

constructs clusters one by one, such that the formation of the i-th
(i > 1) cluster depends on those of the first i − 1 clusters. There-
fore, if we are to translate Pivot directly into a crowd-based algo-
rithm, we need to crowdsource the generation of clusters one at
a time, i.e., we cannot construct the i-th cluster until we get the
crowd’s answer to the HITs pertinent to the first i − 1 clusters.
Such sequential processing of clusters leads to a large total over-
head in terms of processing time. In contrast, if we can simulta-
neously crowdsource the construction of multiple clusters, then the
total time required to complete the clustering procedure could be
significantly reduced, due to the concurrent generation of clusters
by the crowd.

To parallelize the construction of clusters, one may attempt to
post a large number of HITs in one batch, and dynamically adjust
the content of HITs according to the crowd workers’ answers. For
example, we may issue a number n of HITs to the crowd, such that
the first n′ HITs are pertinent to the generation of the first cluster,
while the remaining HITs are left as blank initially. Then, when-
ever a crowd worker (say, Alice) finishes answering the first n′

HITs, we inspect her answers to decide the formation of the first
cluster; based on that, we dynamically generate the HITs required
for the construction of the second cluster, and show them to Alice
by utilizing some of the n− n′ blank HITs previously “reserved”.
(Such dynamic adjustment can be implemented on Amazon Me-
chanic Turk using the iFrame technique.) This approach, albeit
intuitive, assumes that the HITs required for the i-th cluster can
be chosen based only on Alice’s answers to the HITs for the first
i − 1 clusters. In practice, however, we usually need to take an-
swers from multiple workers on each HIT, as a means to mitigate
human errors. Therefore, Alice’s answers for the first i−1 clusters
are insufficient to decide the HITs for the i-th cluster; instead, we
need to incorporate multiple users’ responses to HITs for the first
i − 1 clusters, before we can decide HITs to be shown next. This
requires us to synchronize the efforts of multiple workers, which is
highly challenging and not supported by the standard interface of
the existing crowdsourcing platforms.

To remedy the drawbacks of the above approach, we propose
a method to parallelize the Pivot algorithm under the crowd-based
setting, while retaining its approximation guarantee. The basic idea
of our method is to predict the HITs required by Pivot in construct-
ing clusters, and then issue them to the crowd in one batch, at the
minor cost of posting some HITs that are unnecessary in the se-
quential version of Pivot. In Section 4, we provide the details of
our parallel method.

Cluster Refinement Phase. Although Pivot returns a 5-
approximation in the expected case, its performance in a single
run may be rather inferior, due to the fact that it is a randomized
algorithm. To circumvent this drawback of Pivot, a standard un-
der the machine-based setting is to repeat Pivot a large number
of times, and then choose the result from the run that minimizes
the cost metric. This approach, however, does not work under the
crowd-based setting. First, repeating Pivot for a large number of
times would incur a significant crowdsourcing overhead. Second,
if we are to evaluate the output of a run of Pivot according to the
cost metric Λ′(R) in Equation 2, we would have to first obtain the
crowd-based similarity score function fc, in which case we need to

Algorithm 1: Crowd-Pivot

input : The set R of records and the candidate set S generated by the
pruning phase

output: A set C of clusters }

1 initialize C as an empty set;
2 construct an undirected graph G = (VR, ES), where each vertex in

VR represents a record in R, and each edge (ri, rj) ∈ ES

corresponds to a record pair in S;
3 while VR 6= ∅ do
4 randomly pick a vertex r from VR as a pivot;
5 initialize an empty set P ;
6 for each neighbor r′ of r in G do
7 add the record pair (r, r′) into P ;

8 issue all record pairs in P to the crowd;
9 initialize a set C = {r};

10 for each record pair (r, r′) in P do
11 if the crowd decides that fc(r, r′) > 0.5 then
12 add r′ into C;

13 add C into C;
14 remove from G all vertices that appear in C;

15 return C;

issue all record pairs in the candidate set S to the crowd. This also
leads to a tremendous crowdsourcing cost.

To tackle the above problem, we propose a crowd-based algo-
rithm to refine the initial clustering result returned by the cluster
generation phase. The basic idea of the algorithm is to issue se-
lected record pairs to the crowd, and check if the crowd answers
are consistent with the initial clustering; if many of crowd answers
contradict the initial clustering, then we adjust the clustering to al-
leviate its contradiction with the crowd. As such, we mitigate the
deficiency of Pivot and obtain higher accuracy in deduplication. As
with the case of cluster generation phase, we also devise a parallel
version of our cluster refinement algorithm, so as to reduce the total
time required in crowdsourcing. We provide details of our refine-
ment algorithms in Section 5.

4. CLUSTER GENERATION
This section details the algorithms used in the cluster generation

phase of ACD. We first present a crowd-based version of the Pivot

algorithm in Section 4.1, and then describe its parallelization in
Sections 4.2 and 4.3.

4.1 Crowd-Pivot Algorithm
Algorithm 1 shows the pseudo-code of Crowd-Pivot, a simple

adoption of the Pivot algorithm [9] under the crowd-based setting.
The input of Crowd-Pivot includes the set R of records to be de-
duplicated, and the candidate set S of record pairs generated by the
pruning phase of our solution (see Section 3). Its output is a set of
disjoint clusters C = {C1, C2, . . . , Ck} whose union equals R.

Crowd-Pivot first initializes C = ∅, and constructs an undirected
graph G = (VR, ES), such that each vertex in VR is a record in
R, and each edge (ri, rj) ∈ ES corresponds to a record pair in S
(Lines 1-2). The subsequent part of Crowd-Pivot runs in several
iterations (Lines 3-14). In the i-th iteration, Crowd-Pivot randomly
selects a vertex r from VR as a pivot, and creates a set P that con-
tains all record pairs (r, r′) that correspond to the edges incident to
r in G (Lines 4-7). After that, it posts all record pairs in P to the
crowd (Line 8). Each record pair (r, r′) will be evaluated by mul-
tiple crowd workers, and we set the crowd-based similarity score
between r and r′ (denoted as fc(r, r

′)) to the percentage of crowd
workers who believe that r and r′ correspond to the same entity.

1266

Once all record pairs in P are processed by the crowd, Crowd-Pivot

forms a cluster C that includes r, as well as any record r′ such that
(r, r′) ∈ W and fc(r, r

′) > 0.5 (Lines 9-12). Then, Crowd-Pivot

removes from G all vertices that appear in C, and proceeds to the
next iteration (Line 13). This iterative process terminates when all
vertices in G are removed.

Crowd-Pivot is almost identical to the standard Pivot algorithm
[9]. The only difference is that Pivot assumes that the similarity
score for each edge in G is predefined, whereas Crowd-Pivot de-
cides the similarity scores on the fly with the crowd. By the existing
results on Pivot [5], we have the following lemma:

LEMMA 1. Algorithm 1 returns a 5-approximation for the min-

imization of Λ′(R) (in Equation 2), in expectation to its random

choices made. �

We omit the proof of Lemma 1 and refer interested readers to [5].

4.2 Parallel Crowd-Pivot: Rationale
Recall that, in each iteration of Crowd-Pivot, we issue a set of

candidate pairs to the crowd and wait for the crowd to answer, be-
fore we can proceed to the next iteration. As a consequence, the
running time of Crowd-Pivot mainly depends on the number of
iterations. To reduce the running time of Crowd-Pivot, we aim
to reduce the number of iterations in Crowd-Pivot, by selecting
multiple pivots in each iteration and constructing multiple clusters
simultaneously. Although similar ideas have been studied under
a machine-based setting [34], the algorithm thus proposed does
not retain the approximation guarantee of Pivot. In contrast, we
propose a parallel version of Crowd-Pivot that constructs multi-
ple clusters at the same time, without compromising the worst-case
guarantee on the clustering results.

Let M be a random permutation of the records in R. For any
record r ∈ R, if r is the i-th record in M, then we say that the
permutation rank of r in M equals i. Recall that, in each iter-
ation of Crowd-Pivot, we randomly pick a record r from the un-
clustered ones as a pivot, and then construct a cluster centering at
r. Equivalently, we can first select a random permutation M before
Crowd-Pivot starts, and then in each iteration of Crowd-Pivot, we
can choose r as the record that has the smallest permutation rank
among the un-clustered ones.

Our idea to parallelize Crowd-Pivot is that, in each iteration of
the algorithm, we choose multiple pivots with the smallest permu-
tation ranks among the un-clustered vertices, instead of selecting
only one pivot. Given the chosen pivots, we issue to the crowd all
record pairs pertinent to the pivots, and we construct clusters based
on the crowd workers’ answers, in such a way that the clustering
results produced are identical to the case when we run the sequen-
tial version of Crowd-Pivot given the same permutation order M.
This ensures that the parallelization of Crowd-Pivot retains its ap-
proximation guarantee. In the following, we first consider a simple
setting where we choose, in each iteration, 2 pivots with the small-
est permutation ranks among the un-clustered vertices. (We will
soon extend our discussions to the case when k pivots are chosen
simultaneously.)

Consider the graph G constructed in Line 2 of Crowd-Pivot. Let
Gi be the version of G at the beginning of Crowd-Pivot’s i-th itera-
tion, i.e., each vertex in Gi represents a record that is not clustered
in the first i − 1 iterations. Assume that, in the i-th iteration of
Crowd-Pivot, we choose two pivots r1 and r2 that have the small-
est and second smallest permutation ranks, respectively, among the
vertices in Gi. Let di(r1, r2) be the number of hops between r1
and r2 in Gi, e.g., di(r1, r2) = 1 if they are neighbors in Gi. We
differentiate three cases: (i) di(r1, r2) > 2, (ii) di(r1, r2) = 2, and

e

f

d

a

b

c1.0

0.8

1.0

0.6
0.8

1.0
0.8

0.4

0.6 e

f

d

a

b

c

(a) Gi (b) M = (b, f, a, c, d, e)

e

f

d

a

b

c

e

f

d

a

b

c

(c) M = (b, e, a, c, d, f) (d) M = (b, c, a, f, d, e)

Figure 2: Different cases for the pivot choice.

(iii) di(r1, r2) = 1. We will demonstrate each case, assuming that
Gi is as illustrated in Figure 2a, where the number on each edge
(x, y) indicates the similarity score fc(x, y) that we would obtain
if we issue (x, y) to the crowd.

Case 1: di(r1, r2) > 2. Consider a permutation M =
(b, f, a, c, d, e) on the vertices in Gi in Figure 2a. Given M, we
would choose r1 = b and r2 = f as pivots, and then issue to the
crowd all edges incident to r1 and r2, namely, (b, a), (b, c), (f, d),
and (f, e), as shown in Figure 2b. Observe that, for each of these
four edges, the crowd-based similarity score for the two records in
the edge is above 0.5. Accordingly, we construct a cluster C1 that
contains r1 = b and its two neighbors a and c, as well as a cluster
C2 consisting of r2 = f and all of its neighbors d and e. No-
tice that this parallel clustering result is identical to the case when
we run the sequential version Crowd-Pivot on Gi, using r1 = b
as a pivot, followed by r2 = b. In addition, the number of edges
crowdsourced are also identical in both cases. �

Case 2: di(r1, r2) = 2. Consider a permutation M =
(b, e, a, c, d, f) on the vertices in Gi in Figure 2a. In that case,
we set r1 = b and r2 = e, and crowdsource all edges incident to
b and e, i.e., (b, a), (b, c), (e, a), (e, d), and (e, f), as shown in
Figure 2c. Each of these edges has a crowd-based similarity score
above 0.5. Given the crowd answer on each edge, we first generate
a cluster C1 that includes r1 = b and its neighbors a and c. After
that, we construct a cluster C2 that consists of r2 = e and two of its
neighbors, namely, d and f . Notice that C2 does not include a, as
it has been contained in C1. Observe that this result is the same as
the case when we apply Crowd-Pivot on Gi with r1 = b as a pivot,
followed by r2 = e. However, Crowd-Pivot would not issue the
edge (e, a) to the crowd, because once C1 is formed, it removes
all records in C1 from Gi, after which (e, a) is no longer under
consideration. In other words, our parallel construction of C1 and
C2 incurs a small additional overhead, in that it crowdsources one
“useless” edge (e, a) that has no effect on the clustering result. �

Case 3: di(r1, r2) = 1. Consider a permutation M =
(b, c, a, f, d, e) on the vertices in Gi in Figure 2a. With this per-
mutation, we select r1 = b and r2 = c and post all edges of b and
c to the crowd. Figure 2d shows all edges posted, i.e., (b, a), (b, c),
(c, a), and (c, d), all of which have crowd-based similarity scores
above 0.5. In that case, we first form a cluster C1 with r1 = b
and its neighbors a and c. Then, we are unable to form a second
cluster using c as a pivot, since c is already included in C1. This
result is identical to the case when we run Crowd-Pivot on Gi with
r1 = b as a pivot. In other words, although we crowdsource all
edges incident to r1 = b and r2 = c, we end up with one cluster
C1 only. Furthermore, compared with Crowd-Pivot, we pay extra
cost in crowdsourcing the edge (c, d) (which is not considered in
Crowd-Pivot). �

1267

As we can observe from the above discussions, it is possible to
parallelize the construction of clusters in Crowd-Pivot, at the poten-
tial cost of having some wasted pairs, e.g., the edge (e, a) in Case
2 and the edge (c, d) in Case 3. In particular, we define a candi-
date pair as a wasted pair, if it is crowdsourced by our parallelized
version of Crowd-Pivot but not in the sequential version. We now
extend our discussions to the case when we choose k pivots simul-
taneously.

Given Gi, we first identify the k records r1, r2, . . . , rk with the
smallest permutation ranks in Gi. After that, we crowdsource all
edges in Gi that are adjacent to rj (j ∈ [1, k]). Let P ′ be the subset
of those edges whose crowd-based similarity scores are above 0.5,
and Hi be the subgraph of Gi induced by the edges in P ′. Then,
we generate a cluster that consists of r1 and all of its neighbors in
Hi, and remove all records in the cluster from Hi. Subsequently,
we inspect each rj (j ∈ [2, k]) in ascending order of j. For each
rj , if rj has not been removed from Hi, we create a cluster that
contains rj and its remaining neighbors in Hi (i.e., we exclude
the neighbors of rj that have been eliminated in the processing of
r1, . . . , rj−1). In other words, we simultaneously crowdsource all
record pairs pertinent to r1, . . . , rk, and we construct multiple clus-
ters from r1, . . . , rk in one batch based on the crowd workers’ an-
swers. Algorithm 2 shows the pseudo-code of this parallel method
(referred to as Partial-Pivot). Lemma 2 establishes the correctness
of the algorithm.

LEMMA 2. Let Gi be the version of G in the beginning of

Crowd-Pivot’s i-iteration, and M be the permutation of records

implicitly used by Crowd-Pivot. Let rk be the record with the k-

th smallest permutation rank in Gi, and C′
i be the set of clusters

generated by Crowd-Pivot from its i-th iteration until it chooses a

pivot with a larger permutation rank than rk. Then, given Gi, k,

and M, Partial-Pivot outputs Ci = C′
i. �

In Section 4.3, we will use Partial-Pivot to develop a parallelized
version of Crowd-Pivot. Before that, we first introduce a method
for deriving the maximum number of wasted pairs incurred by
Partial-Pivot. Let r1, r2, . . . , rk be as defined in Line 2 of Partial-

Pivot, and wj be defined as follows:

wj =

the number of vertices (in Gi) adjacent to
rj , except r1, . . . , rj−1,

if d(rj, rx) = 1 for some x < j;

the number of vertices (in Gi) adjacent to
both rj and some rl (l < j),

otherwise.

(3)

We have the following lemma:

LEMMA 3. The number of wasted pairs incurred by Partial-

Pivot equals
∑k

j=1
wj in the worst case. �

4.3 Parallel Crowd-Pivot: Algorithm
Observe that, if we set Gi = G and k = |R| in the input to

Partial-Pivot, then it would cluster all records in R with a single-
batch of HITs, and its output would be identical with the output of
Crowd-Pivot given G and the same permutation M. This leads to a
maximum degree of parallelization, but at a tremendous cost: It re-
quires issuing all edges inG to the crowd, which incurs a significant
amount of wasted pairs. On the other hand, if we set k = 1, then
Partial-Pivot can only generate one cluster, in which case it avoids
wasted pairs but fails to achieve any parallelism. A natural idea
here is to choose k in a way that strike a balance between the num-
ber of wasted pairs and the degree of parallelism. Towards that end,

Algorithm 2: Partial-Pivot

input : Gi, k, and M
output: A set Ci of clusters and Gi+1 (a subgraph of Gi)

1 initialize Ci as an empty set;
2 identify the record rj (j ∈ [1, k]) with the j-th smallest permutation

rank in Gi;
3 let P be a set that contains all edges in Gi that are adjacent to

r1, r2, . . . , rk;
4 issue all edges in P to the crowd;
5 let P ′ be the set of edges (r, r′) ∈ W with fc(r, r′) > 0.5;
6 let Hi be the subgraph of Gi induced by the edges in P ′;
7 for j = 1 to k do
8 if rj remains in Hi then
9 create a cluster C that contains rj and all of its neighbors in

Hi;
10 insert C into Ci;
11 remove all vertices in C from both Hi and Gi;

12 return Ci and Gi+1 = Gi;

Algorithm 3: PC-Pivot

input : The set R of records and the candidate set S generated by the
pruning phase

output: A set C of clusters

1 initialize C as an empty set;
2 construct an undirected graph G = (VR, ES), where each vertex in

VR represents a record in R, and each edge (ri, rj) ∈ ES

corresponds to a record pair in S;
3 select a random permutation M of the records in R;
4 while VR 6= ∅ do
5 derive the maximum k that satisfies Equation 4;
6 (C′, G) = Partial-Pivot(G, k, M);
7 C = C ∪ C′;

8 return C;

we introduce a constant ε, and consider the following optimization
problem: Given Gi and M, we aim to select the maximum k under
the constraint that

∑k

j=1
wj ≤ ε · |Pj |, (4)

where Pj is the set of edges in Gi that are incident to r1, r2, . . . , rj .
In other words, we maximize k while ensuring that, among the
record pairs issued by Partial-Pivot to the crowd, at most a ε frac-
tion is wasted. Observe that such k can be easily derived using a
linear scan of all wj and Pj .

Based on the above method for deciding k, we propose a paral-
lel version of Crowd-Pivot (referred to as PC-Pivot), as shown in
Algorithm 3. The input to PC-Pivot is identical to that of Crowd-

Pivot, which includes a set S of records to be clustered and a can-
didate set S of record pairs produced by the pruning phase of our
solution. As with Crowd-Pivot, PC-Pivot also begins by initializ-
ing an empty set C and constructing a graph G that represents the
records in R as vertices and the record pairs in S as edges (Lines
1-2). After that, it selects a random permutation M of the records
in R, and generates clusters in an iterative manner (Lines 3-7). In
particular, in the first iteration, PC-Pivot inspects G, and derives
the maximum k that satisfies Equation 4. Then, it invokes Partial-

Pivot with Gi = G, k, and M as input, and obtains as output a
set of clusters C′ and a modified version of G (where some vertices
are removed). After that, PC-Pivot inserts the clusters in C′ into
C. Each subsequent iteration of PC-Pivot is performed in the same
manner: PC-Pivot first decides k based on the current version of G,
and applies Partial-Pivot to construct clusters. This iterative proce-

1268

dure terminates when all vertices in G are removed, in which case
PC-Pivot returns C as output.

The following lemma shows the performance guarantees of
PC-Pivot.

LEMMA 4. PC-Pivot returns a 5-approximation for the mini-

mization of Λ′(R) (in Equation 2), in expectation to its random

choices made. In addition, among the record pairs crowdsourced

by PC-Pivot, at most a fraction ε is wasted. �

5. CLUSTER REFINEMENT
Although our cluster generation phase returns a 5-approximation

in expectation (for the minimization of Λ′(R)), its performance in
a particular run could be rather inferior, because of its randomized
nature. To address this issue, the cluster refinement phase of our so-
lution post-processes the results produced by the cluster generation
phase, by using additional HITs to fine-tune the clusters, so as to re-
duce Λ′(R). In what follows, we will introduce postprocessing op-
erations in Section 5.1, analyze the cost and benefit of postprocess-
ing operations in Section 5.2, present crowd-based postprocessing
algorithm in Section 5.3, and demonstrate parallelized postprocess-
ing algorithms in Section 5.4.

5.1 Rationale and Basic Operations
There exist several machine-based algorithms (e.g., [5, 23]) for

postprocessing the results generated by a randomized correlation
clustering algorithm. These algorithms, however, require as in-
put the similarity scores of all record pairs, which incur significant
monetary costs under a crowd-based setting. For example, con-
sider the BOEM algorithm [5]. It runs in several iterations, each
of which moves one record from one cluster to another. To de-
termine the record to be moved in an iteration, BOEM first identi-
fies a set R of candidate records, and then examines the similarity
scores of all record pairs involving at least one record in R, based
on which it selects a record whose move leads to the largest reduc-
tion in the cost function of correlation clustering (see Equation 1).
If we directly adopt BOEM in a crowd-based setting, then in each
iteration, we need to crowdsource a large number of record pairs to
obtain their crowd-based similarity scores, which results in signifi-
cant overheads.

To address the above problem, we propose to adjust clusters with
a sequence of operations that are economical in terms of the num-
ber of additional record pairs that need to be crowdsourced. In
particular, we consider two basic operations, split and merger. A
split operation removes a vertex v from a cluster, and uses v to
constructs a singleton cluster. A merger operation combines two
clusters C1 and C2 into a new cluster C1 ∪ C2. Our objective
is to develop a crowd-based algorithm that takes as input a set of
clusters, and identifies a split or merger operation that will reduce
Λ′(R) without substantial crowsourcing costs. Given such an algo-
rithm, we can then recursively apply it on the clustering results pro-
duced by our cluster generation phase, so as to improve the quality
of clustering. As a first step, we will analyze the cost and benefit of
performing a split or merger operation on a set of clusters.

5.2 Cost-Benefit Analysis
Suppose that we split a record r from a cluster C. Let os denote

this split operation, and C′ = C \ {r}. According to Equation 2,
after the split, Λ′(R) decreases by:

b(os) =
∑

r′∈C\{r}

(

1− 2fc(r, r
′)
)

. (5)

C0

d

a

c

b

0.4

0.8

0.2

C1

d

C2

+a

c
b

Figure 3: illustration of a split operation.

c

d

a

b

C1 C2
0.8

0.6

0.6

0.2

C3 a c

b d

Figure 4: illustration of a merger operation.

We define b(os) as the benefit of os. On the other hand, if we merge
two clusters C1 and C2, then the merger operation (denoted as om)
would reduce Λ′(R) by:

b(om) =
∑

r1∈C1,r2∈C2

(2fc(r1, r2)− 1). (6)

We refer to b(om) as the benefit of om. We illustrate b(os) and
b(om) with an example.

EXAMPLE 2. Figure 3 demonstrates a split operation os to split
record d from a cluster C0 = {a, b, c, d}. The number on each
edge (x, y) indicates the similarity score fc(x, y) that we would
obtain if we issue (x, y) to the crowd. We omit the similarity score
if the edge is irrelevant to the operation. Based on Equation 5,
the benefit of this operation is 0.2. That is, by applying this split
operation, Λ′(R) can be reduced by 0.2. After the split operation,
we obtain two clusters C1 = {a, b, c} and C2 = {d}. Figure 4
illustrates a merger operation om to merge cluster C1 = {a, b}
and C2 = {c, d}. With Equation 6, it can be calculated that the
benefit of this merger operation is 0.4. After the merger operation,
we obtain a new cluster C3 = {a, b, c, d}. �

Intuitively, if we are to fine-tune a set C of clusters, we should
identify the operation o with the largest positive benefit b(o), and
then apply o on C. However, the computation of b(o) requires the
crowd-based similarity scores of various record pairs, which may
not be readily available. In particular, if a record pair (r, r′) has
not been crowdsourced during the cluster generation phase, then
fc(r, r

′) remains unknown in the cluster refinement phase, unless
we post (r, r′) to the crowd. That is, the derivation of b(o) incurs
crowdsourcing overheads. Therefore, we cannot solely rely on b(o)
to identify the best operation for cluster refinement. Instead, we
adopt a more economical approach as follows:

1. Let O be the set of all possible (split and merger) operations on
a given set C of clusters, and O+ be the set of operations in O
whose benefits are known and are larger than zero. If O+ 6= ∅,
then we choose the operation in O+ with the largest benefit, and
apply it on C.

2. If O+ = ∅, then we estimate the benefit of each operation in
O, and choose an operation o. After that, we compute the exact
benefit b(o) of o (by crowdsourcing the relevant record pairs
with unknown similarity scores), to check if b(o) > 0. If b(o) >
0, then we perform o on C; otherwise, we ignore o.

We now clarify how we estimate b(o) when it is unknown. For
simplicity, we assume that o is a split operation that removes a
record r from a cluster C; our discussions can be easily extended
to the case of merger operations. By Equation 5, the computa-
tion of b(o) requires the crowd-based similarity scores fc(r, r

′) of

1269

all record pairs (r, r′) with r′ ∈ C \ {r}. Let P be the set of
record pairs (among those required by the computation of b(o))
that are unknown. Our idea is to (i) estimate the crowd-based sim-
ilarity score fc(r, r

′) of each record pair (r, r′) ∈ P based on its
machine-based similarity score f(r, r′), and then (ii) compute an
estimated value of b(o) accordingly. Towards this end, a straight-
forward solution is to set directly use f(r, r′) as an estimation of
fc(r, r

′) [46, 47]. However, this solution is often inaccurate due to
the limitations of machine-based algorithms. As an improved solu-
tion, previous work [48] proposes to (i) crowdsource a number of
record pairs and then (ii) utilize the crowd workers’ answers to con-
struct a histogram, which maps each f(r, r′) into a more accurate
estimation of fc(r, r

′). We adopt a similar solution as follows.
First, we collect the set A of record pairs whose crowd-based

similarity scores are known from the cluster generation phase.
Then, we inspect the machine-based similarity scores of those
record pairs, and construct an equi-depth histogram H with m
buckets on the machine-based scores. (Following [48], we set
m = 20.) After that, for each bucket B in H , we examine the
record pairs whose machine-based similarity scores fall in B, and
compute the average crowd-based similarity score of those record
pairs. Subsequently, if we have any record pair (r, r′) whose
crowd-based similarity score fc(r, r

′) is unknown, we first identify
the bucket that covers f(r, r′), and then we estimate fc(r, r

′) as the
average crowd-based similarity score associated with the bucket. In
addition, whenever we crowdsource additional record pairs in the
cluster refinement phase, we also insert the record pairs into A and
reconstruct the histogram H , for more accurate estimation.

Next, we explain how we choose the operation to be performed
on C, given a benefit estimation of each operation of interest. As
we aim to minimize Λ′(R), an intuitive choice is to select the oper-
ation o with the maximum estimated benefit. However, this choice
may incur a large crowdsourcing cost, since we need to first com-
pute the exact value of b(o) (to confirm o’s benefit) before we apply
o on C. That is, if the computation of b(o) requires crowsourcing a
large number of record pairs, then o may not be an ideal choice of
operation. Motivated by this, we select operations based on a met-
ric that takes into account both the estimated benefit of an operation
and the crowdsourcing overhead incurred. In particular, we choose
the operation o that maximizes b∗(o)/c(o), where b∗(o) is the esti-
mated value of b(o), and c(o) is the cost of o defined as follows. If
o splits a vertex v from a cluster C,

c(o) =

∣

∣

∣

∣

{

r′
∣

∣

∣
r′ ∈ C \ {r} ∧ fc(r, r

′) /∈ A
}

∣

∣

∣

∣

, (7)

where A denotes the set of record pairs that have been crowd-
sourced. In other words, c(o) equals the number of record pairs
that need to be posted to the crowd, if we are to compute b(o) ex-
actly. Similarly, if o merges two clusters C1 and C2, then

c(o) =

∣

∣

∣

∣

{

(r1, r2)
∣

∣

∣ r1 ∈ C1∧r2 ∈ C2∧fc(r1, r2) /∈ A
}

∣

∣

∣

∣

. (8)

Intuitively, by selecting an operation o with the maximum
b∗(o)/c(o), we strike a better balance between the minimization
of Λ′(R) and the overhead of crowdsourcing. For convenience, we
refer to b∗(o)/c(o) as the benefit-cost ratio of o.

5.3 Crowd-Based Postprocessing
Based on the discussions in Sections 5.1 and 5.2, Algorithm 4 il-

lustrates a (sequential) crowd-based method for cluster refinement,
referred to as Crowd-Refine. The algorithm takes as input the set
C of clusters produced by the cluster generation phase, as well as
the set A of record pairs that have been crowdsourced. It first con-

Algorithm 4: Crowd-Refine

input : A set C of clusters and a set A of crowdsourced record pairs,
both obtained from the cluster generation phase

output: A set C of improved clusters
1 construct a histogram H that maps machine-based similarity scores to

estimated crowd-based similarity scores;
2 while true do
3 let O be the set of all operations on C;

4 let O+ be the set of operations (in O) whose benefits are known
and larger than zero;

5 if O+ 6= ∅ then

6 let o be the operation in O+ with the largest benefit;
7 apply o on C;

8 else
9 let o′ be the operation in O with the largest benefit-cost ratio

b∗(o′)/c(o′);
10 if b∗(o′)/c(o′) ≤ 0 then
11 return C;

12 compute b(o′) by crowdsourcing relevant record pairs with
unknown crowd-based similarity scores;

13 if b(o′) > 0 then
14 apply o′ on C;

15 insert all newly crowdsourced record pairs into A;
16 update H;

structs, based on A, a histogram H that maps machine-based sim-
ilarity scores to estimated crowd-based similarity scores (Line 1),
using the method described in Section 5.2. The subsequent exe-
cution of Crowd-Refine consists of a number of iterations (Lines
2-16). In each iteration, it first identifies the set O of all (split
and merger) operations on C, and the set O+ of operations in O
whose benefits are known and positive (Lines 3-4). If O+ 6= ∅,
then there exists at least one operation that can reduce Λ′(R) with-
out incurring any crowdsourcing overhead; accordingly, Crowd-

Refine pinpoints the operation in O+ with the maximum benefit,
and applies it on C (Lines 5-7). On the other hand, if O+ = ∅,
then Crowd-Refine proceeds to derive the operation o′ ∈ O with
the largest benefit-cost ratio b∗(o′)/c(o′) (Line 9). If this ratio is
larger than 0, then Crowd-Refine computes the exact value of b(o)
to check if the benefit of o′ is indeed positive (Line 12), and the
record pairs crowdsourced during the derivation of b(o) are added
into A and used to update the histogram H (Lines 15-16). In case
that b(o′) > 0 holds, Crowd-Refine performs o′ on C (Line 13-
14). However, if the benefit-cost ratio of o′ is non-positive in the
first place, then all operations in O should have non-positive esti-
mated benefits. In that case, Crowd-Refine terminates by returning
C (Lines 10-11).

Let n be the total number of records in R. Observe that, on any
set C of clusters on R, there are O(n) split operations and O(n2)
merger operations. Therefore, in each iteration of Crowd-Refine,
we consider O(n2) operations, which is a reasonable number given
that we need to process O(n2) record pairs in our clustering tasks.
We refer the reader to Appendix B for an example that demosntrates
the execution of Crowd-Refine.

5.4 Parallel Postprocessing
Notice that Crowd-Refine is a sequential algorithm, in that it ad-

justs clusters using one operation at a time, and each operation may
require posting some record pairs to the crowd and wait for the an-
swers. Such sequential processing leads to significant processing
time, as we point out in Section 3. To remedy this deficiency, we
aim to parallelize Crowd-Refine, in a manner similar to the paral-

1270

lelization of Crowd-Pivot. To that end, we first introduce the con-
cept of independence between different operations on C.

Specifically, we say that two operations o1 and o2 are indepen-

dent, if the clusters adjusted by o1 are completely different from
those adjusted by o2. For instance, if o1 splits a vertex from a clus-
ter C0, and o2 merges two other clusters C1 and C2, then o1 and
o2 are independent of each other. In contrast, o1 is not independent
of an operation that merges C0 with another cluster, or one that
splits another vertex from C0. Observe that if two operations are
independent, then we can apply them simultaneously on C without
any side effect. Therefore, if we are to parallelize Crowd-Refine, a
natural idea is to first identify a large number of independent op-
erations, and then process them concurrently by crowdsourcing all
relevant record pairs in one batch.

Based on the above idea, we propose to refine a given set C of
clusters with a two-step approach as follows:

1. Let O+ be the set of operations on C whose benefits are known
and are larger than zero. We recursively choose the operation in
O+ with the largest benefit and apply it on C, until O+ becomes
empty. Note that this step can be conducted without the crowd.

2. Whenever O+ = ∅, we identify a set Oi of independent opera-
tions on C, and process the operations in Oi concurrently with
the crowd. After that, if O+ becomes non-empty, we go back to
Step 1; otherwise, we repeat this step.

The key issue in the above approach is the choice of Oi. Intuitively,
Oi should contain operations o with large estimated benefits b∗(o)
but small crowdsourcing costs c(o). Motivated by this, we select
Oi as the set with the maximum overall benefit-cost ratio, which is
defined as:

Ψ(Oi) =

∑

o∈Oi b
∗(o)

∑

o∈Oi c(o)
. (9)

Unfortunately, deriving such a set of independent operations is NP-
hard, as shown in the following lemma.

LEMMA 5. Given a set C of clusters, it is NP-hard to identify a

set Oi of independent operations that maximizes Ψ(Oi). �

Given Lemma 5, we resort to a greedy heuristic for constructing
Oi. In particular, we first set Oi = ∅, and then linearly scan all
operations in O in descending order of their benefit-cost ratios. For
each operation inspected, if its benefit-cost ratio is positive and it is
independent of all operations in Oi, then we insert it into Oi; oth-
erwise, we ignore the operation. This linear scan terminates when
∑

o∈Oi c(o) (i.e., the total crowdsourcing cost of the operations in

Oi) reaches a predefined threshold T . After that, the construction
of Oi is completed. The reason that we impose a threshold τ on
the total crowdsourcing cost of Oi is to avoid packing Oi with an
excessive number of operations, since the operations examined in
the later stage of the linear scan tend to have small benefits.

Based on the above heuristic, Algorithm 5 shows our paral-
lel method for crowd-based cluster refinement, referred to as PC-

Refine. PC-Refine is similar to Crowd-Refine (Algorithm 4), but
differs in the handling of the case when O+ = ∅, i.e., when there
does not exist any operation whose benefit is known and positive.
Specifically, when O+ = ∅, PC-Refine adopts the heuristic ap-
proach previously discussed to construct a set Oi of independent
operations (Lines 9-14), and then computes the exact benefits of all
operations in Oi by crowdsourcing all relevant record pairs in one
batch (Line 15), instead of processing one operation at a time with
the crowd. After that, for each operation inOi with positive benefit,

Algorithm 5: PC-Refine

input : A set C of clusters and a set A of crowdsourced record pairs,
both obtained from the cluster generation phase

output: A set C of improved clusters
1 construct a histogram H that maps machine-based similarity scores to

estimated crowd-based similarity scores;
2 while true do
3 let O be the set of all operations on C;

4 let O+ be the set of operations (in O) whose benefits are known
and larger than zero;

5 if O+ 6= ∅ then

6 let o be the operation in O+ with the largest benefit;
7 apply o on C;

8 else

9 set Oi = ∅;
10 for each o′ ∈ O in descending order of b∗(o′)/c(o′) do
11 if b∗(o′)/c(o′) <= 0 or

∑
o∈Oi c(o) ≥ T then

12 break;

13 if o′ is independent of all operations in Oi then

14 insert o′ into Oi;

15 compute b(o) for all o ∈ Oi by crowdsourcing all relevant
record pairs in one batch;

16 for each o ∈ Oi do
17 if b(o) > 0 then
18 apply o on C;

19 if none of the operation in Oi is applied on C then
20 return C;

21 insert all newly crowdsourced record pairs into A;
22 update H;

PC-Refine applies the operation on C to reduce Λ′(R). However,
if none of the operation in Oi has a positive benefit, then it is un-
likely that we can further decrease Λ′(R), in which case PC-Refine

terminates and returns C (Lines 19-20).
It remains to clarify how we set the threshold T on the total cost

of the operations in Oi. Intuitively, T controls the tradeoff between
PC-Refine’s processing time and crowdsourcing cost. When T is
large, PC-Refine issues fewer batches of questions to the crowd,
which leads to smaller processing time. However, a large T also
makes PC-Refine pack more operations into Oi, which results in
higher crowdsourcing overheads. To strike a balance between pro-
cessing time and crowdsourcing cost, we set T as follows. First,

given a set C of clusters, we first compute
|R|2

2·|C|
, which is the maxi-

mum number of record pairs that we need to crowdsource, if we are
to perform all operations on C in one batch. (This maximum num-
ber is achieved when each cluster contains |R|/|C| records, and we
conduct |C|/2 merger operations simultaneously.) After that, we
retrieve the number Nu of record pairs whose crowd-based simi-
larity scores are currently unknown. Let Nm be the smaller one be-

tween
|R|2

2·|C|
and Nu. We set T = Nm/x, where x is a pre-defined

constant. In Section 6, we will decide x with experiments.

6. EXPERIMENTS
This section experimentally evaluates ACD against the states of

the art in terms of deduplication accuracy, the number of record
pairs crowdsourced, and the number of crowd iterations required.

6.1 Experimental Setup
Datasets and Baselines: We use three benchmark datasets in the
literature of crowd-based data deduplication [46–48], namely, Pa-

1271

datasets # of records # of entities # of candidate pairs crowd error rate (3w) crowd error rate (5w)

Paper 997 191 29,581 23% 21%

Restaurant 858 752 4,788 0.8% 0.2%
Product 3,073 1,076 3,154 9% 5%

Table 3: Characteristics of datasets and crowd answers.

10
0

10
1

10
2

10
3

0 0.2 0.4 0.6 0.8

ε

of crowd iterations

Crowd-Pivot

PC-Pivot

10
0

10
1

10
2

10
3

0 0.2 0.4 0.6 0.8

ε

of crowd iterations

Crowd-Pivot

PC-Pivot

10
0

10
1

10
2

10
3

0 0.2 0.4 0.6 0.8

ε

of crowd iterations

Crowd-Pivot

PC-Pivot

0

50

100

150

0 0.2 0.4 0.6 0.8

ε

of crowdsourced pairs

Product

Restaurant
Paper

(a) # of iterations on Paper. (b) # of iterations on Restaurant. (c) # of iterations on Product. (d) # of crowdsourced record pairs

Figure 5: Impacts of ε.

per [1], Restaurant [2], and Product [3]. Table 3 shows the number
of records and entities in each dataset.

We compare our ACD method against existing four state-of-the-
art algorithms: TransNode [44], TransM [47], CrowdER [46], and
GCER [48]. Note that CrowdER does not specify the algorithm
for clustering crowdsourced record pairs. In our implementation,
we use the sorted neighborhood algorithm [48] to produce clusters
from crowd answers for CrowdER, following previous work [48].
We denote this implementation as CrowdER+. Meanwhile, GCER

requires a user-specified parameter on the number of record pairs
to be issued to the crowd. We set this parameter for GCER, so
that it crowdsources the same number of record pairs as ACD does.
This enables us to compare the deduplication accuracy of ACD and
GCER under the same crowdsourcing budget. In addition, we also
evaluate ACD against PC-Pivot, i.e., a “crippled” version of ACD

that incorporates the pruning phase and cluster generation phase of
ACD but omits the cluster refinement phase.

Following previous work [47], we use the F1-measure to gauge
the deduplication accuracy of each method, and we evaluate the
crowdsourcing overhead of each method in terms of the number
of record pairs crowdsourced, as well as the number of crowd it-
erations (i.e., the number of batches of HITs that are issued to the
crowd). For ACD and PC-Pivot, we repeat each of them 5 times in
each experiment and report the average measurements, since they
are both randomized algorithms. Note that TransNode [44] does
not incorporate any parallel mechanism to issue HITs in a batch
manner. Therefore, we omit TransNode from the experiments on
the number of crowd iterations.

Pruning Phase Setting: All methods that we test require a
machine-based approach in their pruning phases to generate a set S
of candidate pairs. Following previous work [47], we compute the
machine-based similarity score for each record pair using the Jac-

card similarity metric, and we set the threshold value for machined-
based similarity scores as τ = 0.3. That is, only the record pairs
with Jaccard similarity above 0.3 are retained in the candidate set
S. Table 3 shows the size of S on each dataset.

AMT Setting: We use the Amazon Mechanical Turk (AMT) as our
crowdsourcing platform. For each dataset, we post all record pairs
in the candidate set S to AMT, and record the crowd’s answers in
local file F . Then, during our experiments, whenever a method re-
quests to crowdsource a record pair (r, r′), we retrieve the answers
for (r, r′) from F instead of posting (r, r′) to AMT. This ensures

that all methods utilize the same set of crowdsourced results, for
fairness of comparison.

Note that the above evaluation approach is adopted in previous
work [46, 47]. We obtain, from the authors of [46, 47], the crowd
answers used in their experiments, and reuse them in our evalu-
ation. The AMT setting pertinent to those results are as follows.
Each HIT contains 20 record pairs, and each record pair requires
inputs from three workers. Each worker must pass a qualification
test before she can work on the HITs, and she is paid 2 cents for
completing each HIT.

In addition to reusing data from [46, 47], we also obtain an ad-
ditional set of crowd answers from AMT under a more stringent
setting1. In particular, we require each worker to not only pass a
qualification test, but also has completed 100 approved HITs and
has an approval rate at least 95%. (Previous work [24] adopts the
same setting.) This setting is intended to ensure that all workers
provide reasonably accurate answers to the HITs. To further re-
duce the impact of human errors, we require inputs from 5 workers
for each record pair, and we only pack 10 record pairs into each
HIT. The monetary reward for each HIT is set to 2 cents. For
each dataset D, we denote the crowd answers obtained from this
5-worker setting as D(5w), and those from the previous 3-worker
setting as D(3w).

Table 3 shows, for each dataset, the percentages of crowd an-
swers that are incorrect under the 3-worker and 5-worker settings.
Evidently, the 5-worker setting results in more accurate outputs
from the crowd, at a higher monetary cost. Furthermore, the
crowd’s error rate for Paper is above 20% under both settings,
which indicate that the records in Paper are more difficult to dedu-
plicate.

6.2 Tuning Parameters for ACD
Recall from Section 4.3 that, in the cluster generation phase of

ACD, the PC-Pivot algorithm requires a parameter ε that decides
the maximum allowed amount of wasted pairs. In the first set of
experiments, we study the effect of ε on the efficiency and crowd-
sourcing cost of PC-Pivot. We only show results obtained from
the 3-worker setting, but the results from the 5-worker setting are
similar.

Figure 5(a), 5(b), and 5(c) show the number of crowd iterations
required by PC-Pivot, when ε varies. For comparison, we also
show the number of crowd iterations required by Crowd-Pivot, i.e.,
the sequential version of PC-Pivot. Observe that PC-Pivot incurs a

1We make this set of crowd answers available at [4].

1272

TransM ACDTransNode CrowdER+GCER PC-Pivot

 0.68
 0.7

 0.72
 0.74
 0.76
 0.78
 0.8

 0.82
 0.84
 0.86
 0.88

Paper (3w) Paper (5w)

F1-measure

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98

Restau (3w) Restau (5w)

F1-measure

 0.74
 0.76
 0.78
 0.8

 0.82
 0.84
 0.86
 0.88

Product (3w) Product (5w)

F1-measure

(a) Paper dataset (b) Restaurant dataset (c) Product dataset

Figure 6: Comparison of deduplication accuracy.

TransM ACDTransNode CrowdER+GCER PC-Pivot

 0
 5000

 10000
 15000
 20000
 25000
 30000

Paper (3w) Paper (5w)

of crowdsourced pairs

 0

 1000

 2000

 3000

 4000

 5000

 6000

Restau (3w) Restau (5w)

of crowdsourced pairs

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

Product (3w) Product (5w)

of crowdsourced pairs

(a) Paper dataset (b) Restaurant dataset (c) Product dataset

Figure 7: Comparison of crowdsourcing costs.

much smaller number of crowd iterations than Crowd-Pivot does.
For example, even when we set ǫ as small as 0.1, PC-Pivot’s num-
ber of crowd iterations is 20 times smaller than that of Crowd-Pivot

on the Restaurant dataset.
When ε increases, the number of crowd iterations decreases.

This is because, with a larger ε, PC-Pivot can choose more pivots
in each iteration, and hence, the clustering process can be acceler-
ated. However, the decrement of crowd iterations is more signifi-
cant when ε increases from 0.0 to 0.1, comparing to the case from
0.1 to 0.8. The reason is that the larger ε is, the more pivots are
selected, in which case there is a higher chance that the remaining
pairs are predicted as wasted pairs by the PC-Pivot algorithm.

Meanwhile, a larger ε leads to higher crowdsourcing costs, as
shown in Figure 5(d). In particular, when ε increases, the number
of HITs required by PC-Pivot also increases. In the following ex-
periments, we set ε to 0.1 since it strikes a good balance between
efficiency and crowdsourcing cost.

In addition to the ε, we have also conducted an experiment to
evaluate the effect of T , i.e., which is a threshold used in the cluster
refinement phase of ACD to restrict the total crowdsourcing cost of
the independent operations to be performed in each iteration (see
Algorithm 5). In particular, we vary T from Nm/16 to Nm/2,
where Nm is as defined in Section 5.4. We observe that T = Nm/8
nicely balances the efficiency and cost of cluster refinement. In-
terested readers are referred to Appendix C for the experimental
results on T . In the rest of our experiments, we set T = Nm/8.

6.3 Comparison of All Methods
In our next set of experiments, we evaluate all methods on their

deduplication accuracy (in terms of F1-measure), crowdsourcing
costs (in terms of the number of record pairs crowdsourced), and
crowdsourcing efficiency (in terms of the number of crowd iter-
ations). Figure 6 (resp. Figure 7) shows the F1-measures (resp.
numbers of crowdsourced record pairs) of each method on each
dataset under both the 3-worker and 5-worker settings. CrowdER+

consistently provides the highest accuracy, but incurs significant
crowdsourcing costs (especially on Paper, since it requires issu-

ing all record pairs in the candidate set S to the crowd). In con-
trast, ACD provides an accuracy that is highly comparable to that
of CrowdER+, but incurs considerably lower crowdsourcing costs.
In particular, on paper, the number of record pairs crowdsourced
by ACD is less than 1/7 (resp. 1/5) the number by CrowdER+ un-
der the 3-worker (resp. 5-worker) setting. Meanwhile, PC-Pivot

is much less accurate than ACD on Paper, which demonstrates the
effectiveness of the cluster refinement phase of our solution. On
the other hand, on Restaurant and Product, PC-Pivot provides sim-
ilar accuracy to ACD. The reason is that, on those two datasets, the
crowd workers make a relatively smaller number mistakes in pro-
cessing record pairs. As a consequence, PC-Pivot alone can pro-
duce high-quality clustering results, which leaves little room for the
cluster refinement phase to improve.

GCER’s accuracy is lower than ACD in all cases, except for
Restaurant under the 5-worker setting. This indicates that GCER

provides lower-quality clustering results than ACD does, when
both of them crowdsource the same number of record pairs. Both
TransNode and TransM provide inferior deduplication accuracy on
Paper, since they are susceptible to errors made by the crowd work-
ers, as we analyzed in Sections 1 and 2.2. Their performance are
much better on Restaurant and Product, due to the smaller amount
of errors made by crowd workers on those datasets. However, on
Restaurant and Product, the numbers of record pairs crowdsourced
by TransNode and TransM are almost the same as that by ACD, i.e.,
they do not provide any advantage over ACD on those two datasets.

Overall, all methods yield higher accuracy in the 5-worker set-
ting than the 3-worker setting, which shows that all methods benefit
from more accurate results from the crowd. However, we observe
that the performance of TransNode and TransM degrades more sig-
nificantly than other methods in the 3-worker setting. This, again,
is consistent with our analysis that TransNode and TransM are vul-
nerable to human errors.

Figure 8 illustrates the number of crowd iterations incurred by
each method. The results of all methods are roughly comparable in
all cases, except that CrowdER+ requires only one crowd iterations,
as it issues all record pairs in S in one batch. This shows that

1273

TransM ACDCrowdER+GCER PC-Pivot

 0

 5

 10

 15

 20

 25

Paper (3w) Paper (5w)

of crowd iterations

 0

 5

 10

 15

 20

 25

 30

Restau (3w) Restau (5w)

of crowd iterations

 0

 5

 10

 15

 20

 25

 30

Product (3w) Product (5w)

of crowd iterations

(a) Paper dataset (b) Restaurant dataset (c) Product dataset

Figure 8: Comparison of crowdsourcing efficiency

crowdsourcing efficiency of ACD is comparable to that of TransM

and GCER.
In summary, our experimental results show that ACD provides

high deduplication accuracy at moderate costs of crowdsourcing,
and its crowdsourcing efficiency is comparable to the states of the
art. In contrast, the existing methods for crowd-based deduplica-
tion either provide inferior clustering results, or incur significant
crowdsourcing overheads. Therefore, ACD is a favorable method
for crowd-based data deduplication.

7. RELATED WORK
Correlation clustering is a classic method used in large scale data

deduplication [8,27]. Optimal correlation clustering is shown to be
NP-hard [9], which motivates a line of research [5, 10, 22] to seek
good approximation algorithms. In particular, Ailon et al. [5] pro-
pose the Pivot algorithm, which returns a 5-approximation when
the similarity score of each record pair is a fractional number in
[0, 1]. Meanwhile, if the similarity scores are either in {0, 1}, the
algorithm yields a 3-approximation. This 3-approximation result
is improved to a 2.5-approximation [5] with a linear programming
approach, which, however, incurs a larger computational overhead
than Pivot. [42] proposes a deterministic version of Pivot that pro-
vides the same approximation guarantee, but it also relies on linear
programming. Gionis et al. [22] propose the BOEM algorithm for
postprocessing the results of correlation clustering to improve accu-
racy. As we point out in Section 5.1, however, BOEM is unsuitable
under the crowd-based setting, as it would incur a significant over-
head in crowdsourcing. Besides correlation clustering, there exists
a large body of literature on machine-based data deduplication al-
gorithms (see [17] for a survey).

As we review in Section 2.2, there exist five crowd-based solu-
tions [25, 44, 46–48] for data deduplication. Among them, Crowd-

clustering [25] is designed for data categorization, which is a vari-
ant of data deduplication that aims to identify records belonging to
the same category, instead of identifying duplicates. Meanwhile,
CrowdER [46] provides a high precision of deduplication, but in-
curs a significant crowdsourcing overhead. The other three meth-
ods, namely, GCER [48], TransM [47], and TransNode [44], reduce
the costs of crowdsourcing but compromise deuplication accuracy,
as shown in our experiments. In contrast, our ACD approach yields
as accurate results as CrowdER does, only at moderate costs of
crowsourcing.

Besides data deduplication, there also exist many research works
that incorporate crowdsourcing into record linkage, which targets
to link records representing the same entity across databases. How-
ever, in such tasks, it is usually assumed that, given three records
r1, r2, and r3, if r1 = r2, then r3 cannot represent the same entity
as r1 or r2 does. Nonetheless, if r1 does not represent the same en-
tity as r2 does, then r3 can represent the same entity as r1 or r2 does

but not both. Existing work on record linkage uses this assumption
to prune a plenty of record pairs. Nevertheless, such an assumption
does not hold for data deduplication scenario, which makes them
inapplicable under data deduplication scenarios. Arasu et al. [7]
mainly use human power to build up the classifier for the dataset,
while as shown in previous work [46], these techniques often face
difficulties when processing records that represent different entities
but look highly similar. On the contrary, our solution can still work
in such scenarios. Demartini et al. [16] propose ZenCrowd to do
record linkage for large collections of online pages with the crowd.
Gokhale et al. [24] study how to do hands-off crowdsourcing record
linkage which requires no involvement of developers.

In addition, recent work has developed several crowdsourc-
ing platforms for various tasks. Franklin et al. [19, 20] pro-
pose a CrowdSQL query language, and develop the CrowdDB

database. Marcus et al. [35] propose Qurk, a query processing sys-
tem for allowing crowd-powered processing of relational databases.
Parameswaran et al. [38] develop Deco, a database system that
answers, with crowd assistance, declarative queries posted over
relational data. Jeffery et al. [30, 31] construct a hybrid crowd-
machine data integration system. Furthermore, several database op-
erations are also studied under the crowd setting, such as JOIN [35],
MAX [26], TOP-K, and GROUP BY queries [15]. Others have
also investigated crowd-based techniques for data mining [6], web
table matching [18], and data analysis [33]. Finally, previous work
[29, 37, 43, 45] have studied how one can extract high-quality an-
swers from crowdsourcing platforms.

8. CONCLUSION
This paper presents ACD, a crowd-based algorithm for data

deduplication. Compared with the existing solutions, ACD distin-
guishes itself in that it is more robust to errors made by the crowd
in identifying duplicates. In addition, ACD incorporates several
advanced techniques to improve efficiency without compromising
deduplication accuracy. We experimentally evaluate ACD on the
Amazon Mechanical Turk, and show that ACD outperforms the
states of the art by providing high-precision deduplication with
moderate crowdsourcing overheads. For future work, we plan to
further improve the performance of ACD, by investigating tech-
niques for adaptively assigning more crowd workers to more dif-

ficult record pairs in data deduplication.

9. ACKNOWLEDGMENTS
This work was supported by AcRF Tier 2 Grant ARC19/14 from

the Ministry of Education, Singapore, an SUG Grant from the
Nanyang Technological University, and a gift from the Microsoft
Research Asia. The authors would like to thank the anonymous
reviewers for their constructive and insightful comments.

1274

10. REFERENCES

[1] http://www.cs.umass.edu/~mccallum/data/

cora-refs.tar.gz.

[2] http://www.cs.utexas.edu/users/ml/riddle/data/

restaurant.tar.gz.

[3] http://dbs.uni-leipzig.de/Abt-Buy.zip.

[4] https://sourceforge.net/p/acd2015/.

[5] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent
information: ranking and clustering. Journal of the ACM (JACM),
55(5):23, 2008.

[6] Y. Amsterdamer, Y. Grossman, T. Milo, and P. Senellart. Crowd
mining. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, pages 241–252. ACM, 2013.

[7] A. Arasu, M. Götz, and R. Kaushik. On active learning of record
matching packages. In Proceedings of the 2010 ACM SIGMOD

International Conference on Management of Data, pages 783–794,
2010.

[8] A. Arasu, C. Ré, and D. Suciu. Large-scale deduplication with
constraints using dedupalog. In Data Engineering, 2009. ICDE’09.

IEEE 25th International Conference on, pages 952–963. IEEE, 2009.

[9] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In FOCS,
pages 238–, 2002.

[10] M. Charikar, V. Guruswami, and A. Wirth. Clustering with
qualitative information. In Foundations of Computer Science, 2003.
Proceedings. 44th Annual IEEE Symposium on, pages 524–533.
IEEE, 2003.

[11] Z. Chen, D. V. Kalashnikov, and S. Mehrotra. Exploiting context
analysis for combining multiple entity resolution systems. In
Proceedings of the 2009 ACM SIGMOD International Conference on

Management of data, pages 207–218. ACM, 2009.

[12] W. W. Cohen. Integration of heterogeneous databases without
common domains using queries based on textual similarity. In ACM

SIGMOD Record, volume 27, pages 201–212. ACM, 1998.

[13] W. W. Cohen, H. Kautz, and D. McAllester. Hardening soft
information sources. In Proceedings of the sixth ACM SIGKDD

international conference on Knowledge discovery and data mining,
pages 255–259. ACM, 2000.

[14] W. W. Cohen and J. Richman. Learning to match and cluster large
high-dimensional data sets for data integration. In Proceedings of the
eighth ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 475–480. ACM, 2002.

[15] S. B. Davidson, S. Khanna, T. Milo, and S. Roy. Using the crowd for
top-k and group-by queries. In Proceedings of the 16th International
Conference on Database Theory, pages 225–236. ACM, 2013.

[16] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux. Zencrowd:
leveraging probabilistic reasoning and crowdsourcing techniques for
large-scale entity linking. In WWW, pages 469–478, 2012.

[17] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
record detection: A survey. Knowledge and Data Engineering, IEEE
Transactions on, 19(1):1–16, 2007.

[18] J. Fan, M. Lu, B. C. Ooi, W.-C. Tan, and M. Zhang. A hybrid
machine-crowdsourcing system for matching web tables. Technical
report, Technical report, National University of Singapore, 2013.

[19] A. Feng, M. Franklin, D. Kossmann, T. Kraska, S. Madden,
S. Ramesh, A. Wang, and R. Xin. Crowddb: Query processing with
the vldb crowd. Proceedings of the VLDB Endowment, 4(12), 2011.

[20] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin.
Crowddb: answering queries with crowdsourcing. In Proceedings of

the 2011 ACM SIGMOD International Conference on Management
of data, pages 61–72. ACM, 2011.

[21] J. Gemmell, B. I. Rubinstein, and A. K. Chandra. Improving entity
resolution with global constraints. arXiv preprint arXiv:1108.6016,
2011.

[22] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. ACM

Transactions on Knowledge Discovery from Data (TKDD), 1(1):4,
2007.

[23] A. Goder and V. Filkov. Consensus clustering algorithms:
Comparison and refinement. In Proceedings of the Tenth Workshop

on Algorithm Engineering and Experiments, ALENEX 2008, San

Francisco, California, USA, January 19, 2008, 2008.

[24] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. W.
Shavlik, and X. Zhu. Corleone: hands-off crowdsourcing for entity
matching. In Proceedings of the 2014 ACM SIGMOD International

Conference on Management of Data, 2014.

[25] R. Gomes, P. Welinder, A. Krause, and P. Perona. Crowdclustering.
In NIPS, pages 558–566, 2011.

[26] S. Guo, A. Parameswaran, and H. Garcia-Molina. So who won?:
dynamic max discovery with the crowd. In Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data,
pages 385–396. ACM, 2012.

[27] O. Hassanzadeh, F. Chiang, H. C. Lee, and R. J. Miller. Framework
for evaluating clustering algorithms in duplicate detection.
Proceedings of the VLDB Endowment, 2(1):1282–1293, 2009.

[28] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large
databases. In ACM SIGMOD Record, volume 24, pages 127–138.
ACM, 1995.

[29] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management on
amazon mechanical turk. In Proceedings of the ACM SIGKDD

workshop on human computation, pages 64–67. ACM, 2010.

[30] S. R. Jeffery, M. J. Franklin, and A. Y. Halevy. Pay-as-you-go user
feedback for dataspace systems. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages
847–860. ACM, 2008.

[31] S. R. Jeffery, L. Sun, M. DeLand, N. Pendar, R. Barber, and A. Galdi.
Arnold: Declarative crowd-machine data integration. In CIDR, 2013.

[32] V. I. Levenshtein. Binary codes capable of correcting deletions,
insertions and reversals. In Soviet physics doklady, volume 10, page
707, 1966.

[33] X. Liu, M. Lu, B. C. Ooi, Y. Shen, S. Wu, and M. Zhang. Cdas: a
crowdsourcing data analytics system. Proceedings of the VLDB

Endowment, 5(10):1040–1051, 2012.

[34] M. Luby. A simple parallel algorithm for the maximal independent
set problem. SIAM journal on computing, 15(4):1036–1053, 1986.

[35] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller.
Human-powered sorts and joins. Proceedings of the VLDB

Endowment, 5(1):13–24, 2011.

[36] A. McCallum and B. Wellner. Conditional models of identity
uncertainty with application to noun coreference. In NIPS, 2004.

[37] A. G. Parameswaran, H. Garcia-Molina, H. Park, N. Polyzotis,
A. Ramesh, and J. Widom. Crowdscreen: Algorithms for filtering
data with humans. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data, pages 361–372.
ACM, 2012.

[38] A. G. Parameswaran, H. Park, H. Garcia-Molina, N. Polyzotis, and
J. Widom. Deco: declarative crowdsourcing. In Proceedings of the

21st ACM international conference on Information and knowledge

management, pages 1203–1212. ACM, 2012.

[39] L. Philips. Hanging on the metaphone. Computer Language, 7(12
(December)), 1990.

[40] E. Rahm and H. H. Do. Data cleaning: Problems and current
approaches. IEEE Data Eng. Bull., 23(4):3–13, 2000.

[41] W. M. Soon, H. T. Ng, and D. C. Y. Lim. A machine learning
approach to coreference resolution of noun phrases. Computational

linguistics, 27(4):521–544, 2001.

[42] A. Van Zuylen and D. P. Williamson. Deterministic pivoting
algorithms for constrained ranking and clustering problems.
Mathematics of Operations Research, 34(3):594–620, 2009.

[43] P. Venetis and H. Garcia-Molina. Quality control for comparison
microtasks. In Proceedings of the First International Workshop on

Crowdsourcing and Data Mining, pages 15–21. ACM, 2012.

[44] N. Vesdapunt, K. Bellare, and N. Dalvi. Crowdsourcing algorithms
for entity resolution. Proceedings of the VLDB Endowment, 7(12),
2014.

[45] P. Wais, S. Lingamneni, D. Cook, J. Fennell, B. Goldenberg,
D. Lubarov, D. Marin, and H. Simons. Towards building a
high-quality workforce with mechanical turk. Proceedings of

computational social science and the wisdom of crowds (NIPS),
pages 1–5, 2010.

[46] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder:
Crowdsourcing entity resolution. Proceedings of the VLDB
Endowment, 5(11):1483–1494, 2012.

1275

[47] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging
transitive relations for crowdsourced joins. In Proceedings of the

2013 international conference on Management of data, pages
229–240. ACM, 2013.

[48] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question selection
for crowd entity resolution. Proceedings of the VLDB Endowment,
6(6):349–360, 2013.

APPENDIX

A. PROOFS

Proof of Lemma 2. We prove this lemma by induction. Observe
that in the first iteration, G1 = G, and rk is exactly the record
who ranks k-th in M. In Crowd-Pivot algorithm, assume that ri
is clustered into Cj where j ≤ i and rj is the record first added
into the cluster, then it can be concluded that if there exist incident
edges between ri and records with permutation ranks smaller than
rj , then the crowd infers them as non-deduplicates. Otherwise, it
will be clustered into a cluster Cj′ with M(rj′) < M(rj). With
the constraints in our Algorithm 2 (Lines 7-11), ri will be also clus-
tered to Cj . So for all records with permutation rank no higher than
rk, Crowd-Pivot and Partial-Pivot will output the same cluster.

Then, assume that Lemma 2 still holds in the m-th iteration, and
let rw be the record with k-th smallest permutation rank in Gm,
in the (m + 1)-th iteration, Gm+1 will be the same as the input
graph of Crowd-Pivot after removing r1, r2, · · · , rw. Given the
same input graph, and the same permutation order for the records,
it can be similarly proved that Crowd-Pivot and Partial-Pivot will
provide the same cluster result. So for all iterations, we guarantee
that, given Gi, k, and M, Partial-Pivot outputs Ci = C′

i. �

Proof of Lemma 3. Recall that a wasted pair is a pair of records
that is issued in Partial-Pivot algorithm but not issued in Crowd-

Pivot algorithm. The reason why we may issue wasted pairs
in Partial-Pivot algorithm is that Crowd-Pivot algorithm removes
records that have been clustered by r1, · · · , rk−1 before issuing
pairs incident to rk, while Partial-Pivot algorithm will issue all the
incident pairs to r1, r2, · · · , rk in a batch.

If there exists an x < j, such that d(rj , rx) = 1, then rj can
be clustered by rx. As a result, for all vertices r′ incident to rj ,
it can be a wasted pair. The exception is that if r′ is a vertex in
{r1, r2, · · · , rj−1}, then the pair is not a wasted pair for rj . The
reason is that, if pair (r′, rj) is not estimated as a wasted pair be-
fore, then it means that r′ is the vertex with the smallest permu-
tation rank that is incident to rj and r′ is not incident to pivots
chosen earlier than it. So (r′, rj) will be issued in the Crowd-Pivot

algorithm as well, which indicates that (r′, rj) is not a wasted pair.
However, if (r′, rj) is estimated as a wasted pair before, then re-
counting this pair will overestimate the wasted pair, which will not
guarantee tight bound.

If there does not exist such an x < j such that d(rj , rx) =
1, then rj will not be clustered by r1, r2, · · · , rj−1. As a result,
for any records that are incident to rj but not to any records in
r1, r2, · · · , rj−1, then it is not a wasted pair, since in Crowd-Pivot

algorithm, this record pair will also be issued. At the meantime, if
it is incident to a record in r1, r2, · · · , rj−1, then it can be a wasted
pair and we estimate it as a wasted pair.

By summing up all the wasted pairs incurred by r1, ..., rk, we get
the upper bound of the total number of wasted pairs as

∑k

j=1
wj .

We next show that this upper bound is tight. If there exists an
x < j, such that d(rj, rx) = 1, then if rx and rj are inferred
as duplicates, then all the record pairs that incident to rj become
wasted pairs except the case in which the adjacent record is from

r1, r2, · · · rj−1, which is exactly the value defined in Equation 3
with the first case. If there does not exist such an x < j such that
d(rj , rx) = 1, the worst case is that all the records adjacent to
some records ri with i < j are clustered. Then all such pairs are
wasted pairs, which is exactly the value defined in Equation 3 with
the second case. Thus the total number of wasted pairs is exactly
∑k

j=1
wj in the worst case and the upper bound is tight. �

Proof of Lemma 4. We first prove that PC-Pivot returns a 5-
approximation for the minimization of Λ′(R) in expected case.
Based on Lemma 2, it can be concluded that given a permutation
M, PC-Pivot and Crowd-Pivot return the same clustering result,
which means both algorithms will have the same Λ′(R) value. As a
result, Crowd-Pivot and PC-Pivot have the same expected value of
Λ′(R) from all possible permutations, which means PC-Pivot re-
turns a 5-approximation for the minimization of Λ′(R) in expected
case.

Next we prove that PC-Pivot has the following guarantee:
among the record pairs crowdsourced by PC-Pivot, at most a frac-
tion of ǫ is wasted. Given a random permutation M, we let IiW be
the number of issued wasted pairs in the i-th iteration of PC-Pivot,
and IiPCP be the number of pairs issued by PC-Pivot in the i-th
iteration. Then,

ǫ · IiW ≤ IiPCP .

By summing the pairs in all iterations, we have ǫ · IW ≤ IPCP

for the given permutation M, where IW and IPCP denote the num-
ber of wasted pairs and issued pairs of PC-Pivot algorithm, respec-
tively. By summing for all possible permutations, we have:

ǫ ·E(IW) ≤ E(IPCP).

This finishes the proof. �

Proof of Lemma 5. We prove it by reduction from the maximal
independent set problem [34]. A maximal independent set in an
undirected graph is a maximal collection of vertices I subject to
the restriction that no pair of vertices in I are adjacent. To reduce
this problem to our problem of finding a set Oi of independent op-
erations that maximizes Ψ(Oi), we take each vertex of the graph
as an operation. If there is an edge between two vertices, we re-
gard the operation corresponding to the two vertices as a dependent
operation. For each operation o corresponding to the vertex in the
graph, we assume the b(o), c(o) are all the same and N is larger
than the cost of all operations.

Now assume that we can obtain such a set Oi of the independent
operation maximizing Ψ(Oi) in polynomial time. Then by solving
the above constructed problem, we can find a maximal indepen-
dent set in polynomial time as well. This contradicts the fact that
the maximal independent set problem is NP-hard. So by contradic-
tion, we prove that finding a set Oi of independent operations that
maximizes Ψ(Oi) is NP-hard. �

B. ADDITIONAL EXAMPLE

EXAMPLE 3. Given a set of six records R = {a, b, c, d, e, f},
assume that after the pruning phase, the candidate pairs are as
shown in Figure 9a. The number on each edge (x, y) indicates the
similarity score fc(x, y) that we would obtain if we issue (x, y) to
the crowd. At the meantime, b∗(o) is identical to b(o). Then given a
random permutation P = {c, e, b, d, a, f} with ǫ = 0.4 , in cluster
generation phase, PC-Pivot selects incident edges to c and e to the
crowd in a batch, since the fraction of wasted pairs would not ex-
ceed 0.4. The issued pairs are (a, c), (b, c), (c, d), (e, a), (e, d) and
(e, f). With the crowd answers, two clusters {a, b, c, d} and {e, f}

1276

Nm/2 Nm/4 Nm/8 Nm/16ProductPaper Restau

10
0

10
1

10
2

10
3

2
-1

2
-2

2
-3

2
-4

N / Nm

of crowdsourced pairs

 0

 0.2

 0.4

 0.6

 0.8

 1

Paper Restau Product

F1-measure

 0

 5

 10

 15

 20

Paper Restau Product

of crowd iterations

(a) number of crowdsourced pairs (b) F1-measure (c) crowd iterations

Figure 10: PC-Refine: impact of T on crowdsourced pairs, F1-measure, and crowd iterations on three datasets.

e

f

d

a

b

c1.0

0.8

1.0

0.6
0.8

1.0
0.8

0.4

0.6
a

b

c

e

f

d

(a) G (b) C1

a

b

c

e

f

d

a

b

c

e

f

d

(c) C2 (d) C3

Figure 9: Example of cluster refinement phase.

are generated in one iteration. As the records are clustered after
one iteration, PC-Pivot finishes. The clustering result after cluster
generation phase is as shown in Figure 9b, where each dashed box
corresponds to a cluster. Afterwards, in the postprocessing phase,
Crowd-Refine algorithm first inspects each operation and calculates
the benefit-cost ratio correspondingly. It can be verified that the
operation os to split vertex d from cluster {a, b, c, d} has the high-
est benefit-cost ratio. Then Crowd-Refine issues pair (a, d) to the
crowd and obtains fc(a, d). As fc(a, d) = 0.4, fc(b, d) = 0,
and fc(c, d) = 0.6, b(os) can be calculated with Equation 5 and
equals 1. So os will be proceeded. After operation os proceeded,
the clustering result is as shown in Figure 9c. Next, Crowd-Refine

recomputes the benefit-cost ratio, and the merger operation om to
merge {d} and {e, f} incurs the highest benefit-cost ratio. Only
pair (d, f) is required to be issued to the crowd since (d, e) was is-
sued in the cluster generation phase. After issuing pair (d, f) to the
crowd, we obtain the crowd similarity fc(d, f) = 0.8. The ben-
efit of om can be calculated with Equation 6 and equals 1.2. The
operation hence is proceeded. The clustering result is as shown in
Figure 9d. After the two operations, b∗(o) for all operations are no
larger than zero. Hence Crowd-Refine stops and returns the cluster-
ing result. �

C. ADDITIONAL EXPERIMENTS
Recall that in the cluster refinement phase of ACD, PC-Refine

algorithm requires a parameter T to specify the number of record
pairs to issue in a crowd iteration. In this set of experiments, we
study the impact of T to our ACD algorithm in terms of the crowd-
sourcing cost, accuracy, and efficiency.

Figure 10(a) demonstrates the impact of T in terms of the
number of crowdsourced pairs. For the Restaurant and Product

datasets, as the clustering result provided by the cluster generation
phase is already of high quality, there are very few operations with

expected benefit greater than zero to reduce Λ′(R). Hence, the is-
sued crowdsourced pairs can be less than the pre-defined threshold
T in the first crowd-iteration. On Paper dataset, the number of
crowdsourced pairs is reduced as T decreases. When T is small
enough (e.g, Nm/8), it decreases smoothly or shows the same
value. This is because for a large T , our algorithm packs many
unnecessary operations with low benefit-cost ratio; in contrast, for
a small enough T , it does not pack such operations further.

Figure 10(b) shows the impact of parameter T in terms of the
accuracy to the deduplication result. Observe that the F1-measure
value for each dataset is insensitive to T . The reason is that our
algorithm stops when optimization goal Λ′(R) cannot be further
reduced, and this stopping condition is not significantly affected by
the choice of T .

Figure 10(c) demonstrates the impact of T in terms of the num-
ber of crowd iterations. Notice that for the Restaurant and Prod-

uct datasets, the result of the cluster generation phase is already of
high quality. Therefore, the algorithm stops after one crowd itera-
tion, regardless how we change N . On the other hand, on the Paper

dataset, the number of crowd iterations increases with T . However,
when T changes from Nm/2 to Nm/8, the increase of the number
of crowd iterations is not significant. The main reason is that the
number of crowd iterations is effected only by the postprocessing
operations that can reduce Λ′(R); when T is large, PC-Refine al-
gorithm packs many operations with low benefit-cost ratio, which
have low probability of reducing Λ′(R). However, when we fur-
ther decrease the size of T from Nm/8 to Nm/16, we can observe
that the number of crowd iterations is doubled. The reason is that
when T is small enough, the packed operations are mainly the op-
erations that can reduce Λ′(R). Therefore, the number of iterations
in Nm/16 is 2 times more than that in Nm/8.

So in ACD, we set T = Nm/8, as it is the setting under which
the PC-Refine algorithm provides good clustering accuracy while
uses only a small number of crowdsourced pairs and crowd itera-
tions.

1277

