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Personalized PageRank (PPR) stands as a fundamental proximity measure in graph mining. Given an input graph

𝐺 with the probability of decay 𝛼 , a source node 𝑠 and a target node 𝑡 , the PPR score 𝜋 (𝑠, 𝑡) of target 𝑡 with
respect to source 𝑠 is the probability that an 𝛼-decay random walk starting from 𝑠 stops at 𝑡 . A single-source
PPR (SSPPR) query takes an input graph 𝐺 with decay probability 𝛼 and a source 𝑠 , and then returns the

PPR 𝜋 (𝑠, 𝑣) for each node 𝑣 ∈ 𝑉 . Since computing an exact SSPPR query answer is prohibitive, most existing

solutions turn to approximate queries with guarantees. The state-of-the-art solutions for approximate SSPPR

queries are index-based and mainly focus on static graphs, while real-world graphs are usually dynamically

changing. However, existing index-update schemes can not achieve a sub-linear update time.

Motivated by this, we present an efficient indexing scheme for single-source PPR queries on evolving graphs.

Our proposed solution is based on a classic framework that combines the forward-push technique with a

random walk index for approximate PPR queries. Thus, our indexing scheme is similar to existing solutions in

the sense that we store pre-sampled randomwalks for efficient query processing. One of our main contributions

is an incremental updating scheme to maintain indexed random walks in expected 𝑂 (1) time after each graph

update. To achieve 𝑂 (1) update cost, we need to maintain auxiliary data structures for both vertices and

edges. To reduce the space consumption, we further revisit the sampling methods and propose a new sampling

scheme to remove the auxiliary data structure for vertices while still supporting 𝑂 (1) index update cost on
evolving graphs. Extensive experiments show that our update scheme achieves orders of magnitude speed-up

on update performance over existing index-based dynamic schemes without sacrificing the query efficiency.
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1 INTRODUCTION
Given an input graph𝐺 , a decay probability 𝛼 , a source node 𝑠 , and a target node 𝑡 , the personalized
PageRank (PPR) score 𝜋 (𝑠, 𝑡) stands as a classic proximity measure of the relative importance

of 𝑡 from the viewpoint of 𝑠 . More formally, the PPR score 𝜋 (𝑠, 𝑡) of 𝑡 with respect to 𝑠 is the

probability that an 𝛼-decay random walk [21] starting from 𝑠 stops at 𝑡 . Here, an 𝛼-decay random
walk works as follows: it starts from the source 𝑠 and at each step, it either (i) stops at the current
node 𝑣 (initially 𝑣 = 𝑠) with probability 𝛼 ; or (ii) randomly jumps to one of the out-neighbors of

𝑣 with probability 1−𝛼 (specially, a self-loop will be applied to 𝑣 if it has no out-neighbor). An

important type of PPR queries is the single-source PPR (SSPPR) query where a source 𝑠 is given,

and the goal is to compute the PPR score 𝜋 (𝑠, 𝑣) for each node 𝑣 in the input graph 𝐺 . SSPPR has

many important applications in web search [21, 32], spam detection [19], community detection [6],

social recommendations [18, 24], etc. Moreover, as a fundamental proximity measure, SSPPR is also

widely used in graph representation learning, e.g., HOPE [31], Verse [36], STRAP [46], NRP [45],

PPRGo [8], DynamicPPE [17], Lemane [48], and Tree-SVD [10].

With its wide applications, it is important to have efficient algorithms for SSPPR queries. However,

computing exact answers for SSPPR queries is prohibitive on massive graphs. Existing state-of-

the-art solutions [23, 44] all focus on approximate SSPPR (ASSPPR) queries with guarantees (Ref.

to Definition 2.1). With the framework which combines the Forward-Push technique with the

Monte-Carlo method for random walks, existing solutions, e.g., FORA+ [41] and SpeedPPR+ [44],

pre-store randomwalks and show superb query efficiency onASSPPR queries while providing strong

approximation guarantees. However, all these index-based methods assume that the input graph is

static while most real-world graphs are dynamically evolving. Social recommendation systems,

e.g. Twitter Whom-to-Follow [18] and Tencent social recommendation [24] are virtually required

to work on social networks which keep evolving frequently. Besides, some graph representation

learning frameworks, e.g. SDG [12], need to estimate SSPPR on evolving graphs. Despite that

index-free solutions can also handle ASSPPR queries on dynamic graphs, existing solutions with

random walk index have a significant improvement in query performance compared to index-free

solutions. In addition, early index-based solutions for ASSPPR queries on dynamic graphs [7, 47]

have a prohibitive cost to maintain index structures. Even the state-of-the-art index-update solution,

Agenda [29], still has a time consumption that is linearly related to the graph size for each update.

Motivated by limitations of existing solutions, we propose an efficient index scheme FIRM
1
, which

solves single-source PPR queries on evolving graphs. Our proposed solution is also based on the

classic Forward-Push + Monte-Carlo framework, and thus it can provide query processing as

efficiently as existing solutions on static graphs. One of our main contributions is that we design an

incremental index update scheme to maintain the random walk index after each graph update in

expected𝑂 (1) time. The main idea is to find affected random walks for the recent graph update and

adjust such random walks to fit the updated graph. We design auxiliary structures to trace affected

random walks efficiently and achieve the 𝑂 (1) expected update time. In particular, we maintain

auxiliary data structures for each node and each edge which record the information of random

walks that go across each node and each edge, respectively. To reduce the space consumption, we

further revisit the sampling method and present a non-trivial new sampling scheme to remove the

requirement of the auxiliary data structure for each node. Remarkably, the new scheme comes at no

sacrifice of the update time complexity as it still provides 𝑂 (1) expected time cost for each graph

update. Extensive experiments show that our update scheme achieves up to orders of magnitude

1
Forward-Push with Incremental Random Walk Maintenance
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speed-up over existing index-based schemes on evolving graphs without sacrificing the query

efficiency over index-based solutions.

2 PROBLEM DEFINITION
Let 𝐺 = (𝑉 , 𝐸) be a directed graph with node number 𝑛=|𝑉 | and edge number𝑚=|𝐸 |. For an edge

𝑒= ⟨𝑢, 𝑣⟩ ∈ 𝐸, we say that 𝑒 is an outgoing edge of node 𝑢, and node 𝑣 is an out-neighbor of node

𝑢. Then for a node 𝑢 ∈ 𝑉 , the set N(𝑢) of its out-neighbors, the set E(𝑢) of its outgoing edges,

and the out-degree 𝑑 (𝑢) of node 𝑢 are denoted as N(𝑢) = {𝑣 | ⟨𝑢, 𝑣⟩ ∈ 𝐸}, E(𝑢) = {⟨𝑢, 𝑣⟩ ∈ 𝐸}, and
𝑑 (𝑢)=|E(𝑢) |, respectively.
Personalized PageRank (PPR) [21]. Given a directed graph 𝐺 = (𝑉 , 𝐸), a source node 𝑠 ∈ 𝑉 and

a decay probability 𝛼 , the PPR score of node 𝑡 with respect to node 𝑠 is defined as the probability

that an 𝛼-decay random walk starting from 𝑠 stops at 𝑡 , denoted as 𝜋 (𝑠, 𝑡). We use a vector 𝝅 (𝑠) to
represent the PPR scores of all nodes in the graph with respect to source node 𝑠 .

Approximate Single-Source PPR (ASSPPR). Following [29, 42, 44], this paper focuses on the

ASSPPR problem defined as follows:

Definition 2.1 ((𝜖, 𝛿)-ASSPPR). Given a threshold 𝛿>0, a relative error 1>𝜖>0, and a failure proba-

bility 𝑝 𝑓 , an ASSPPR query returns an estimated PPR score �̃� (𝑠, 𝑣) for each node 𝑣 ∈ 𝑉 so that:

|𝜋 (𝑠, 𝑣) − �̃� (𝑠, 𝑣) | < 𝜖 · 𝜋 (𝑠, 𝑣) ∀𝜋 (𝑠, 𝑣) ≥ 𝛿
with at least 1−𝑝 𝑓 probability where the parameter 𝜖 is usually in (0, 1) and the parameters 𝛿 and

𝑝 𝑓 are typically set to 1/𝑛.

Besides, many applications, e.g. recommendation system [18, 24] and graph neural networks [8, 12],

are not interested in the full PPR vector with respect to 𝑠 . Instead, they only use the vertices which

have the highest PPR scores with respect to 𝑠 . Thus, we study another type of PPR queries, called

approximate single-source top-𝑘 PPR (ASSPPR top-𝑘) queries [42] defined as follows:

Definition 2.2. ((𝜖, 𝛿)-ASSPPR top-𝑘) Given a threshold 𝛿>0, a relative error 1>𝜖>0, a failure

probability 𝑝 𝑓 , and a positive integer 𝑘 , an ASSPPR top-𝑘 query returns a sequence of 𝑘 nodes,

𝑣1, 𝑣2, . . . , 𝑣𝑘 , such that for any 𝑖 ∈ [1..𝑘], the following equations hold with at least 1−𝑝 𝑓 probability:
|𝜋 (𝑠, 𝑣𝑖 ) − �̃� (𝑠, 𝑣𝑖 ) | ≤ 𝜖 · 𝜋 (𝑠, 𝑣𝑖 )
𝜋 (𝑠, 𝑣𝑖 ) ≥ (1 − 𝜖) · 𝜋 (𝑠, 𝑣∗𝑖 )

∀𝜋 (𝑠, 𝑣∗𝑖 ) ≥ 𝛿,

where 𝑣∗𝑖 has the 𝑖-th largest exact PPR score with respect to 𝑠 .

Evolving Graph. We make a consistent assumption of the dynamically evolving graph with

previous works [7, 29, 47]. There exist an initial graph at the beginning, followed by a sequence of

updates. In this paper, we only consider edge updates: edge insertion and edge deletion. There may

also exist node insertions/deletions on evolving graphs, both of which can be easily converted to

a sequence of edge insertions/deletions. We add a subscript to specify which timestamp we are

discussing. Let𝐺0 be the initial graph, 𝑒𝜏 denotes the 𝜏-th updating edge (the update is either an

insertion or a deletion). Let𝐺𝜏 = (𝑉𝜏 , 𝐸𝜏 ) denotes the graph after the 𝜏-th update has been applied.

Note that in the insertion case, we have 𝐸𝜏 = 𝐸𝜏-1∪{𝑒𝜏 }; in the deletion case, we have 𝐸𝜏 = 𝐸𝜏-1\{𝑒𝜏 }.
Besides, we consider that the 𝜏-th update occurs at timestamp 𝜏 , and thus the update at timestamp

𝜏 refers to the 𝜏-th update.

With the edge updating model, we further assume that the sequence of updates is uniformly random,

which is called random arrival model in [7, 47]. More precisely, it is defined as follows.
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Notation Description
𝐺 = (𝑉 , 𝐸) a directed graph consists of node set 𝑉 and edge set 𝐸

𝑛,𝑚 the number of nodes and edges, respectively

N(𝑢) the set of out-neighbors of node 𝑢

E(𝑢) the set of outgoing edges of node 𝑢

𝑑 (𝑢) the out-degree of node 𝑢

𝐺𝜏=(𝑉𝜏 , 𝐸𝜏 ) the graph after the 𝜏-th update has been executed

𝑒𝜏=⟨𝑢𝜏 , 𝑣𝜏 ⟩ the 𝜏-th updating edge, which occurs at timestamp 𝜏

𝜋 (𝑠, 𝑣) the PPR score for node 𝑣 with respect to source node 𝑠

𝐻 , 𝐻 (𝑠) the pre-stored random walk index and those starting from node 𝑠 , respectively

�̃� (𝑠, 𝑣) the estimation of the PPR score 𝜋 (𝑠, 𝑣)
𝜋 (𝑠, 𝑣), 𝑟 (𝑠, 𝑣) the reserve and residue value of node 𝑣 with respect to source node 𝑠 , respectively

𝜖 , 𝛿 , 𝑝 𝑓 relative error bound, effective threshold, and failure probability, respectively

Table 1. Frequently used notations.

Definition 2.3 (Random arrival model). For edge insertion, the probability that 𝑒= ⟨𝑢, 𝑣⟩ is inserted
at timestamp 𝜏 is

P [𝑒𝜏 = 𝑒] = 1

𝑚𝜏

,

i.e., the probability that each edge in 𝐸𝜏 is the last one to be inserted at timestamp 𝜏 is equal. In the

case of edge deletion, the probability that any edge 𝑒= ⟨𝑢, 𝑣⟩ ∈ 𝐸𝜏-1 will be deleted at timestamp 𝜏 is

P [𝑒𝜏 = 𝑒] = 1

𝑚𝜏-1

,

i.e., each edge has equal probability to be deleted at timestamp 𝜏 .

From the above definition, we could immediately know that the probability that the updating edge

𝑒𝜏 is an outgoing edge of node 𝑢 in the edge insertion case is

P [𝑒𝜏 ∈ E𝜏 (𝑢)] =
𝑑𝜏 (𝑢)
𝑚𝜏

, (1)

and for the edge deletion case, the corresponding probability is

P [𝑒𝜏 ∈ E𝜏-1 (𝑢)] =
𝑑𝜏-1 (𝑢)
𝑚𝜏-1

. (2)

In the rest of this paper, for the sake of brevity, we use the non-subscripted notations (e.g., 𝐺 , 𝐸, 𝑑)

in the context if there is no danger of confusion. Otherwise, the subscripted notations are used. In

Table 1, we list the notations frequently used in this paper.

3 EXISTING SOLUTIONS
In this section, we first revisit two index-free solutions for ASSPPR queries on static graphs:

FORA [41] and SpeedPPR [44] and their index-based solution FORA+ and SpeedPPR+. Then, we

review Agenda [29], the state-of-the-art solution for evolving graphs.

3.1 Solutions on Static Graph
FORA.Wang et al. [41] propose a two-phase solution, dubbed as FORA, to answer ASSPPR queries.

It first performs the Forward-Push technique [6] as Algorithm 1 shows. In particular, it maintains

two vectors, the reserve vector �̂� (𝒔) and the residue vector 𝒓 (𝒔). Initially, the vector �̂� (𝒔) is set to
zero on all entries and we use 𝜋 (𝑠, 𝑣) to denote the 𝑣-th entry of vector �̂� (𝒔). For the residue vector
𝒓 (𝒔), it is initialized as 1𝑠 where 1𝑠 denotes the one-hot vector with respect to 𝑠 , i.e., only 𝑟 (𝑠, 𝑠)

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 25. Publication date: May 2023.
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Algorithm 1: Forward-Push
Input: Graph 𝐺 = (𝑉 , 𝐸), decaying rate 𝛼 , threshold 𝑟𝑚𝑎𝑥 , source node 𝑠;

Output: reserve vector �̂� (𝑠) and residue vector 𝒓 (𝑠);
1 �̂� (𝑠) ← 0, 𝒓 (𝑠) ← 1𝑠 ;
2 while ∃𝑢 ∈ 𝑉 such that 𝑟 (𝑠,𝑢 )

𝑑 (𝑢 ) ≥ 𝑟𝑚𝑎𝑥 do
3 𝜋 (𝑠,𝑢) ← 𝜋 (𝑠,𝑢) + 𝛼 · 𝑟 (𝑠,𝑢);
4 foreach 𝑣 ∈ N(𝑢) do
5 𝑟 (𝑠, 𝑣) ← 𝑟 (𝑠, 𝑣) + (1−𝛼) · 𝑟 (𝑠,𝑢 )

𝑑 (𝑢 ) ;

6 end
7 𝑟 (𝑠,𝑢) ← 0;

8 end
9 return [�̂� (𝑠), 𝒓 (𝑠)];

is 1 and other positions are zero. Then for any node 𝑢 with residue no smaller than 𝑟𝑚𝑎𝑥 ·𝑑 (𝑢), it
performs a push operation to 𝑢, which converts 𝛼 portion of the current residue to the reserve of

𝑢 (Line 3), and for remaining residues, they are evenly propagated to out-neighbors of 𝑢 (Lines

4-5). It stops when no node satisfies the push condition (Line 2). After the Forward-Push phase, it

simulates sufficient random walks to give the final result. The rationale of FORA comes from the

following invariant which always holds during the Forward-Push phase:

𝜋 (𝑠, 𝑡) = 𝜋 (𝑠, 𝑡) +
∑︁
𝑣∈𝑉

𝑟 (𝑠, 𝑣) · 𝜋 (𝑣, 𝑡) (3)

FORA computes 𝜋 (𝑠, 𝑡) to roughly approximate the PPR score in the first phase and then exploits

randomwalks to estimate the cumulative term

∑
𝑣∈𝑉 𝑟 (𝑠, 𝑣)·𝜋 (𝑣, 𝑡) in the second phase, thus refining

the estimation. The following lemma about the number of random walks is proved in [41].

Lemma 3.1. Given the threshold of residue 𝑟𝑚𝑎𝑥 , the number of independent random walks starting
from node 𝑣 ∈ 𝑉 should be at least ⌈𝑟 (𝑠, 𝑣)·𝜔⌉ to satisfy (𝜖, 𝛿)-approximate guarantee, where

𝜔 =
((2/3) · 𝜖 + 2) · log (2/𝑝 𝑓 )

𝜖2𝛿
. (4)

As [6] shows that the time complexity of Forward-Push phase corresponding to the threshold of

residue 𝑟𝑚𝑎𝑥 is𝑂 (1/𝑟𝑚𝑎𝑥 ), FORA sets 𝑟𝑚𝑎𝑥=
√︁

1/(𝑚·𝜔) to optimize the time complexity to𝑂 (
√
𝑚·𝜔).

Since a scale-free graph with 𝛾 ∈ [2, 3] has the average degree ¯𝑑=𝑚/𝑛=𝑂 (log𝑛), the above time

complexity will be 𝑂 (𝑛· log𝑛/𝜖) with 𝛿=1/𝑛 and 𝑝 𝑓 =1/𝑛. Interested readers can refer to [41] for

more details of the time complexity.

FORA+. Wang et al. [41] also propose an index scheme of FORA that works on static graphs,

dubbed as FORA+, which pre-computes a sufficient number of random walks to further improve

the query efficiency of their algorithm. For each random walk, FORA+ simply stores the source

and terminal node. Then, when FORA+ needs to sample a random walk starting from a node 𝑢,

it directly gets a pre-stored random walk with 𝑢 as the source and chooses a pre-stored terminal

node. Notice that each pre-stored random walk will be used at most once for an ASSPPR query to

guarantee that random walks are independent from each other. One important question for FORA+

is how many random walks should be pre-computed for each node 𝑣 ∈ 𝑉 such that it could achieve

both accuracy guarantee and space efficiency. According to Lemma 3.1, they have:

Lemma 3.2. Given the threshold of residue 𝑟𝑚𝑎𝑥 , the number of pre-computed independent random
walks starting at node 𝑣 ∈ 𝑉 should be at least ⌈𝑑 (𝑣)·𝑟𝑚𝑎𝑥 ·𝜔⌉ to satisfy (𝜖, 𝛿)-approximate guarantee.
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By setting 𝑟𝑚𝑎𝑥=
√︁

1/(𝑚·𝜔) as in FORA, FORA+ [41] has a space complexity of Θ(𝑚+
√
𝑚·𝜔) and

will become 𝑂 (𝑛· log𝑛/𝜖) on scale-free graphs with 𝛾 ∈ [2, 3].
SpeedPPR.Wu et al. [44] propose an improved FORA version, called SpeedPPR, to answer ASSPPR

queries. In practice, SpeedPPR takes benefits from their cache-friendly implementation of Forward-

Push, called Power-Push, which combines the power iteration and vanilla Forward-Push into a

whole. As well as they theoretically prove that the Forward-Push phase could achieve a time

complexity of 𝑂 (𝑚· log (1/𝑟𝑚𝑎𝑥 )) apart from the previously known result 𝑂 (1/𝑟𝑚𝑎𝑥 ) and this

bound improves when 𝑟𝑚𝑎𝑥 is very small, i.e., 𝑂 (1/𝑚). With the aid of such new knowledge, they

further set the threshold 𝑟𝑚𝑎𝑥=Θ(1/𝜔) in SpeedPPR, rather than

√︁
1/(𝑚·𝜔) in the original FORA.

It is proved in [44] that such a modification yields a time complexity of 𝑂 (𝑛· log𝑛· log (1/𝜖)) on
scale-free graphs, improving a factor of 1/(𝜖 · log (1/𝜖)) over FORA. Interested readers can refer

to [44] for more details of the time complexity.

SpeedPPR+. SpeedPPR also admits an index-based version called SpeedPPR+ [44]. It is shown

in [44] that as 𝑟𝑚𝑎𝑥 ·𝜔=Θ(1), the index size of SpeedPPR+ is Θ(𝑚), independent of the relative error
𝜖 and effective threshold 𝛿 , and smaller than the space complexity of FORA+, which isΘ(𝑚+

√
𝑚·𝜔).

3.2 Solutions on Evolving Graph
There is no doubt that pure-online approaches such as FORA can be applied to dynamically evolving

graphs directly. Nevertheless, the previous works [41, 44] show that an index-based scheme is

much more efficient in query processing than its index-free version. On the other hand, there is

also a trivial tactic to adapt indexing schemes to evolving graphs which reconstructs the whole

index after every update. However, such a strategy is obviously inefficient in dynamic graphs while

most real-world graphs evolve frequently.

The early index-based solutions for ASSPPR queries on evolving graphs try to maintain random

walks [7] or the reserve and residue vectors [47] incrementally, while the index cost and update

cost are still inconceivable to answer ASSPPR queries for arbitrary source nodes. For instance,

the solution in [7] needs 𝑂 (𝑛2) space to pre-store random walks to answer ASSPPR queries for

arbitrary source nodes when 𝛿=1/𝑛, making them infeasible to large graphs.

Agenda. Mo and Luo [29] propose a feasible approach to maintain the index of FORA on evolving

graphs named Agenda, which aims to balance the query and update efficiencies of ASSPPR esti-

mation. The core strategy of Agenda is lazy-update, which has a tolerance for the inaccuracy of

random walks and reconstructs a part of random walks when the error exceeds the limit.

Agenda introduces a parameter 𝜃∈(0, 1) and makes an inaccuracy tolerance of its index. When

an edge update 𝑒𝜏= ⟨𝑢𝜏 , 𝑣𝜏 ⟩ comes, it traces the (upper bound of) inaccuracy of current index by

performing a Backward-Push [5] starting from 𝑢𝜏 , and accumulates the inaccuracy of each node

into a vector 𝝈 . For query processing, Agenda splits the error tolerance. Specifically, it first invokes

the Forward-Push phase of FORA whereas the 𝑟𝑚𝑎𝑥 is set according to the relative error bound 𝜃 ·𝜖
instead of 𝜖 . With this tightened error bound 𝜃 ·𝜖 , if there is no update at all, the query accuracy of

Agenda tends to be higher than that of the original FORA/SpeedPPR. Then, it checks the query-

dependent inaccuracy of current index with 𝒆=𝝈◦𝒓 (where 𝒓 is the residue vector and ◦ is the
pairwise multiplication). Next, it repeats to reconstruct all random walks starting from node 𝑣

which has the largest value in 𝒆, until the inaccuracy of the index with respect to the query will

not exceed a relative error (1−𝜃 )·𝜖 . Finally, Agenda enters the refining phase of FORA with the

less inaccurate index. Since the relative error of the two parts (i.e. the FORA process and the index

itself) is bounded by 𝜃 ·𝜖 and (1−𝜃 )·𝜖 , respectively, the final result can be bounded by relative error

𝜖 , so that Agenda can answer an ASSPPR query with (𝜖, 𝛿)-approximate guarantee.
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Algorithm 2: Update-Insert
Input: Graph 𝐺𝜏 = (𝑉𝜏 , 𝐸𝜏 ), past index 𝐻𝜏-1, edge 𝑒𝜏 = ⟨𝑢𝜏 , 𝑣𝜏 ⟩;
Output: New index 𝐻𝜏 and 𝐶

𝑉
𝜏 ;

1 𝐻𝜏 ← 𝐻𝜏-1;

2 𝐶 ← Sample(𝐶𝑉
𝜏-1
(𝑢𝜏 ), 1

𝑑𝜏 (𝑢𝜏 ) );
3 foreach 𝑐 ∈ 𝐶 do
4 𝑤 ← 𝐻𝜏 [𝑐.𝑖𝑑];
5 𝑤 [𝑐.𝑠𝑡𝑒𝑝+1] ← 𝑣𝜏 ;

6 𝑤 ←Walk-Restart(𝐺𝜏 ,𝑤, 𝑐.𝑠𝑡𝑒𝑝+1);
7 end
8 while |𝐻𝜏 (𝑢𝜏 ) | < ⌈𝑑𝜏 (𝑢𝜏 ) · 𝑟𝑚𝑎𝑥 · 𝜔⌉ do
9 𝐻𝜏 ← 𝐻𝜏 ∪ {Random-Walk(𝐺𝜏 , 𝑢𝜏 )};

10 end
11 return 𝐻𝜏 ;

It is proved in [29] that the expected fraction of index to be reconstructed for each update will be

either 𝑂 (𝜖 · ¯𝑑𝜏/ log𝑛𝜏 ) by setting 𝑟𝑏𝑚𝑎𝑥=Θ(1/𝑛𝜏 ) on directed graphs (where
¯𝑑𝜏 is the average degree

of 𝐺𝜏 ), or 𝑂 (𝜖/ log𝑛𝜏 ) by setting 𝑟𝑏𝑚𝑎𝑥=Θ(𝑑𝜏 (𝑢𝜏 )/𝑚𝜏 ) on undirected graphs. Agenda significantly

reduces the number of random walks to be re-sampled for each update, whereas according to [5],

backward-push expectantly runs within 𝑂 ( ¯𝑑/𝑟𝑏𝑚𝑎𝑥 ) time for random starting node, and thus the

time cost for tracing the inaccuracy is 𝑂 (𝑚𝜏 ) for each update, which will also become more and

more expensive when the graph is becoming larger and larger.

Agenda#. Since Agenda divides the error tolerance into two parts, the error bound of its FORA

process becomes 𝜃 ·𝜖 which is tighter than that of the original FORA/SpeedPPR. That means Agenda

requires a more precise result of Forward-Push phase, and thus it makes a trade-off between query

performance and update cost. On the other hand, Agenda makes a conservative estimation to

bound the error resulting from the remaining non-updated part of the index, which is (1 − 𝜃 )·𝜖 . In
practice, the actual inaccuracy of its index after the lazy-update process often becomes far smaller

than the upper bound it reckons. Therefore, in most cases, Agenda wastes computation resources

to provide over-exquisite results. In our experiments, we present a new version of Agenda, dubbed

as Agenda
#
, which aggressively assumes that the inaccuracy (with respect to the processing query)

after the lazy-update phase is negligible. Thus, We set the relative error of the FORA process to be 𝜖

instead of 𝜃 ·𝜖 . By such a strategy, the worst case relative error of Agenda
#
becomes (2−𝜃 )·𝜖 . As we

will see, Agenda
#
provides an accuracy pretty close to that of FORA/FORA+ when FORA/FORA+

provides a worst-case 𝜖-relative error. We include Agenda
#
as our baseline since we aim to provide

a fair comparison where we compare the efficiency when all methods provide a similar accuracy.

4 THE INCREMENTAL APPROACH
Real-world graphs are usually dynamically evolving, which motivates us to find an efficient algo-

rithm for ASSPPR problems on evolving graphs. Unfortunately, we need to make a great effort to

achieve this goal. On one hand, the index-free solutions for static graphs, i.e., SpeedPPR, could

easily handle the dynamic scenarios on their own right, but they may suffer from query efficiency

issues since they need to perform a number of random walks for each query. On the other hand, as

aforementioned, existing index-based approaches for ASSPPR problems on evolving graphs, have a

notable time cost to maintain their index. Even the state-of-the-art solution, Agenda, needs a time

linearly correlating to the graph size for each update. Since many real-world graphs, especially
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(a) Initial graph 𝐺0 (b) 𝐺1 after insertion (c) 𝐺2 after deletion

Fig. 1. A Tiny Evolving Graph.

the social networks are colossal, there will be a prohibitively computational overhead for index

maintenance if update events happen frequently (unluckily, it is the usual case). Therefore, it

deserves our effort to design a better index-based solution to tackle the challenges.

Solution overview. Generally speaking, our goal is also to find an efficient way to maintain the

index of FORA+. However, different from Agenda, our proposal uses an eager-update strategy.

Compared to the lazy-update strategy used by Agenda, our solution has a query efficiency almost

the same as the solutions on static graphs because we make no trade-off between update and

query efficiency. More importantly, by carefully tracing and minimally adjusting the random walks

affected by each update, our solution has a constant time cost per update in expectation so that it

can be applied to massive-scale and highly-frequently evolving graphs.

To achieve efficient tracing, we should maintain more information on each random walk instead

of its starting and terminal nodes. More specifically, each element𝑤 of our index (denoted as 𝐻 )

is a completed path ⟨𝑣0, 𝑣1, ..., 𝑣𝑙 ⟩ starting from 𝑣0, crossing 𝑣1, ..., 𝑣𝑙−1 in order, and terminating at

𝑣𝑙 . Besides, we use 𝐻 (𝑢) to denote the subset of 𝐻 that contains all random walks starting from

𝑢. Next, we will introduce details of our solutions, which take an expected constant index update

time for both edge insertion and deletion.

Remark. As a node without any incident edge on it has no effect on PPR values of other nodes, we

can handle the node insertion case in this way: a new node is automatically inserted, exactly when

the first edge which is incident on the new node arrives. Then, we proceed with remaining added

edges following our edge insertion algorithm. In the case of node deletion, we can delete a node by

deleting all edges incident to the node one by one, and the node will be deleted automatically once

the last incident edge is removed.

4.1 Edge Insertion
Intuitively, assuming that an edge ⟨𝑢𝜏 , 𝑣𝜏 ⟩ is inserted, we need to update the pre-stored random

walks to guarantee that they are sampled according to the current graph structure. Meanwhile, the

insertion only makes a slight change to the graph structure and hence it should affect only slightly

the random walks. More specifically, we will show that if a pre-stored random walk does not cross

node 𝑢𝜏 , then the random walk does not need to be updated. Notice that here we only consider

random walks that cross 𝑢𝜏 and do not include random walks that only terminate at 𝑢𝜏 (but have

not crossed 𝑢𝜏 ). A quick explanation is that if the random walk just stops at node 𝑢𝜏 , which means

it does not cross 𝑢𝜏 , it is still not affected as it is not dependent on the newly inserted edge ⟨𝑢𝜏 , 𝑣𝜏 ⟩.
Algorithm 2 shows the pseudo-code of our Update-Insert algorithm to handle index update with

an edge insertion. The symbol 𝐶𝑉
denotes an auxiliary data structure of index 𝐻 . Each element

𝑐={𝑖𝑑, 𝑠𝑡𝑒𝑝} ∈ 𝐶𝑉 (𝑢) is a crossing record, representing that the random walk with ID 𝑐.𝑖𝑑 crosses

𝑢 at step 𝑐.𝑠𝑡𝑒𝑝 . We update 𝐻𝜏-1 to 𝐻𝜏 after the insertion of 𝑒𝜏= ⟨𝑢𝜏 , 𝑣𝜏 ⟩ by (i) sampling records

in 𝐶𝑉 (𝑢𝜏 ) with probability 1/𝑑𝜏 (𝑢𝜏 ); (ii) updating sampled random walks on the evolved graph.

In particular, for each sampled record 𝑐 from 𝐶𝑉
𝜏-1
(𝑢𝜏 ), we first redirect the random walk with ID

𝑐.𝑖𝑑 to the newly inserted edge 𝑒𝜏 at its (𝑐.𝑠𝑡𝑒𝑝+1)-th step (Line 5), and then make it continue to
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ID: walking path

𝐻0 (𝑣1) 1 : 𝑣1 → 𝑣2 → 𝑣4, 2 : 𝑣1 → 𝑣2

𝐻0 (𝑣2) 3 : 𝑣2 → 𝑣4, 4 : 𝑣2 → 𝑣4 → 𝑣3 → 𝑣1

𝐻0 (𝑣3) 5 : 𝑣3 → 𝑣1 → 𝑣2, 6 : 𝑣3 → 𝑣2 → 𝑣4, 7 : 𝑣3 → 𝑣1

𝐻0 (𝑣4) 8 : 𝑣4 → 𝑣3 → 𝑣1, 9 : 𝑣4 → 𝑣3

(a) Index structure 𝐻0

record 𝑐 = {𝑖𝑑, 𝑠𝑡𝑒𝑝}
𝐶𝑉

0
(𝑣1) {1, 0}, {2, 0}, {5, 1}

𝐶𝑉
0
(𝑣2) {1, 1}, {3, 0}, {4, 0}, {6, 1}

𝐶𝑉
0
(𝑣3) {4, 2}, {5, 0}, {6, 0}, {7, 0}, {8, 1}

𝐶𝑉
0
(𝑣4) {4, 1}, {8, 0}, {9, 0}

(b) Auxiliary structure 𝐶𝑉
0

Table 2. An example of the index and auxiliary structures.

randomly traverse until it has the same hops as the random walk with ID 𝑐.𝑖𝑑 in 𝐻𝜏-1 (Line 6). After

updating existing random walks, we further add additional random walks starting at 𝑢𝜏 into 𝐻𝜏

(Lines 8-10) to increase the size of 𝐻𝜏 (𝑢𝜏 ) to fulfill conditions in Lemma 3.2 and finish the update.

Example 4.1. Consider an original graph 𝐺0 as shown in Fig. 1(a), then assume that the initial

index structure 𝐻0 and auxiliary structures 𝐶𝑉
0
are as shown in Table 2. In Table 2(a), the row

labeled with 𝐻0 (𝑣𝑖 ) stores the random walks which start from 𝑣𝑖 . For example, there are two

random walks (which have IDs 1 and 2) starting from 𝑣1. To simplify the description, we use RWi

as the representation of the random walk with ID 𝑖 . In Table 2(b), the row labeled with 𝐶𝑉
0
(𝑣𝑖 )

records which random walks visit node 𝑣𝑖 . In the case as Table 2 shows, there are three records:

{1, 0}, {2, 0}, {5, 1} in the row corresponding to 𝑣1. The record of {5, 1} represents that RW5 visits

𝑣1 at its 1st step, which can be verified by the detail of RW5 showed in Table 2(a). Now, when an

edge insertion ⟨𝑣4, 𝑣1⟩ comes as shown in Fig. 1(b), the index will be updated by following steps:

(i) Sample random walks in 𝐶𝑉
0
(𝑣4) with probability 1/2 (as the out-degree of 𝑣4 at timestamp 1 is

2) and then add sampled random walks to 𝐶 . We assume that RW4 and RW8 are chosen to be

updated as 𝐶𝑉
0
(𝑣4) contains records {4, 1}, {8, 0}, {9, 0}.

(ii) Redirect RW4 to 𝑣1 at its 2nd step and re-sample from its 3rd step, since the only out-neighbour

of 𝑣1 is 𝑣2, RW4 will visit 𝑣2 at step 3. Then RW4 has a length of 3 that is equal to the number of

hops it held in 𝐻0, so it will stop. A similar process is applied to RW8 as well. Table 3(a) shows a

possible repaired index where the adjusted part is shown in boldface.

(iii) Add one more random walk (underlined) to fulfill the requirement as the out-degree of 𝑣4 is

incremented by 1.

(iv) 𝐶𝑉
gets updated to reflect changes of RW4, RW8 and the new random walk RW10. For example,

{8, 1} in 𝐶𝑉
0
(𝑣3) is moved into 𝐶𝑉

1
(𝑣1). Table 3(b) shows the updated 𝐶𝑉

1
, where new records are

in boldface and obsoleted records are scratched.

To show the correctness of Update-Insert, we first make a review of FORA-like approaches in

Section 3.1. Such methods roughly approximate PPR scores in Forward-Push phase and then refine

the estimation using the sampled random walks. Thus, we have:

Lemma 4.2. An index-based FORA-like solution gives a guarantee of (𝜖, 𝛿)-approximation for the
result if the following conditions hold:
• Independence. The random walks in 𝐻 are independent.
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𝐻1 (𝑣1) 1 : 𝑣1 → 𝑣2 → 𝑣4, 2 : 𝑣1 → 𝑣2

𝐻1 (𝑣2) 3 : 𝑣2 → 𝑣4, 4 : 𝑣2 → 𝑣4 → 𝒗1 → 𝒗2
𝐻1 (𝑣3) 5 : 𝑣3 → 𝑣1 → 𝑣2, 6 : 𝑣3 → 𝑣2 → 𝑣4, 7 : 𝑣3 → 𝑣1

𝐻1 (𝑣4) 8 : 𝑣4 → 𝒗1 → 𝒗2, 9 : 𝑣4 → 𝑣3, 10 : 𝑣4 → 𝑣3

(a) The index structure 𝐻1

𝐶𝑉
1
(𝑣1) {1, 0}, {2, 0}, {4, 2}, {5, 1}, {8, 1}

𝐶𝑉
1
(𝑣2) {1, 1}, {3, 0}, {4, 0}, {6, 1}

𝐶𝑉
1
(𝑣3) ���H

HH{4, 2}, {5, 0}, {6, 0}, {7, 0}, ���H
HH{8, 1}

𝐶𝑉
1
(𝑣4) {4, 1}, {8, 0}, {9, 0}, {10, 0}

(b) The updated entries in auxiliary structure 𝐶𝑉
1

Table 3. Updated index and 𝐶𝑉 after Insertion.

• Adequateness. For each node 𝑠 , the set 𝐻 (𝑠) of pre-stored random walks starting from 𝑠 satisfies
Lemma 3.2.
• Unbiasedness. Let 𝐻 (𝑠, 𝑡) denote the subset of 𝐻 (𝑠) where𝑤 ∈ 𝐻 (𝑠, 𝑡) means𝑤 starting from 𝑠

terminates at 𝑡 . For arbitrary nodes 𝑠, 𝑡 ∈ 𝑉 , |𝐻 (𝑠, 𝑡) |/|𝐻 (𝑠) | is an unbiased estimation of 𝜋 (𝑠, 𝑡).

Proof Sketch. The adequateness condition directly comes from Lemma 3.2, and Lemma 3.2 is

derived from a concentration bound (more precisely, Theorem 5 in [9]), of which the independence

and unbiasedness conditions are preconditions. We need to meet these conditions so that the

accuracy of PPR scores can be guaranteed. □

Hence, if we build an initial index𝐻0 which is directly sampled independently on𝐺0 that contains a

sufficient number of random walks from each node to satisfy the above conditions, the correctness

of Update-Insert can be derived from the following result:

Theorem 4.3. 𝐻𝜏 provided by Algorithm 2 satisfies the independence, adequateness, and unbiasedness
if 𝐻𝜏-1 holds these properties.

The above results indicate that the updated index still satisfies three conditions and provides the

approximation guarantee. Notably, the update cost to the random walk index is very light and can

be bounded with 𝑂 (1) in expectation as shown in Theorem 4.4.

Theorem 4.4. Given an inserted edge that follows the random arrival model (Definition 2.3), Algorithm
2 takes 𝑂 (1) expected time to update the index when 𝑟𝑚𝑎𝑥 ·𝜔=Θ(1).

For ease of exposition, all proofs are deferred to Section 5.

4.2 Edge Deletion
When an edge deletion to ⟨𝑢𝜏 , 𝑣𝜏 ⟩ occurs, the main idea to update the random walks with an edge

deletion is similar to that of edge insertion, by updating the affected random walks that cross 𝑢𝜏 .

Algorithm 3 shows the pseudo-code of Update-Delete. We use the symbol 𝐶𝐸
to denote the

auxiliary structure of 𝐻 where each 𝑐 ∈ 𝐶𝐸 (𝑒) is a crossing record where 𝑐={𝑖𝑑, 𝑠𝑡𝑒𝑝} denotes
the random walk 𝑐.𝑖𝑑 passes through 𝑒 between step 𝑐.𝑠𝑡𝑒𝑝 and 𝑐.𝑠𝑡𝑒𝑝+1. Note that we require a
smaller number of random walks starting from 𝑢𝜏 after the deletion of 𝑒𝜏= ⟨𝑢𝜏 , 𝑣𝜏 ⟩. That means

some random walks in𝐻𝜏-1 (𝑢𝜏 ) are no longer needed. To avoid the waste of space to store the index,
we uniformly select some random walks𝑤∗ ∈ 𝐻𝜏-1 (𝑢) and remove them before adjusting the index

(Lines 3-7). Then, for each record 𝑐 ∈ 𝐶𝐸
𝜏-1 (𝑒𝜏 ) (except records corresponding to recently trimmed

random walks, denoted as 𝐶𝐸
𝜏-1 (𝑊 ∗)), the corresponding random walk 𝑐.𝑖𝑑 must be repaired since
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Algorithm 3: Update-Delete
Input: Graph 𝐺𝜏 = (𝑉𝜏 , 𝐸𝜏 ), past index 𝐻𝜏-1, edge 𝑒𝜏 = ⟨𝑢𝜏 , 𝑣𝜏 ⟩;
Output: New index 𝐻𝜏 ;

1 𝐻𝜏 ← 𝐻𝜏-1;

2 𝑊 ∗ ← ∅;
3 while |𝐻𝜏 (𝑢𝜏 ) | > ⌈𝑑𝜏 (𝑢𝜏 ) · 𝑟𝑚𝑎𝑥 · 𝜔⌉ do
4 𝑤∗ ← Sample-Uniform(𝐻𝜏 (𝑢𝜏 ));
5 𝐻𝜏 ← 𝐻𝜏 \ {𝑤∗};
6 𝑊 ∗ ←𝑊 ∗ ∪ {𝑤∗}
7 end
8 foreach 𝑐 ∈ 𝐶𝐸

𝜏-1 (𝑒𝜏 ) \𝐶𝐸
𝜏-1 (𝑊 ∗) do

9 𝑤 ← 𝐻𝜏 [𝑐.𝑖𝑑];
10 𝐻𝜏 [𝑐.𝑖𝑑] ←Walk-Restart(𝐺 ′,𝑤, 𝑐.𝑠𝑡𝑒𝑝)};
11 end
12 return 𝐻𝜏 ;

𝑒𝜏 no longer exists in𝐺𝜏 . Let such a random walk restart at step 𝑐.𝑠𝑡𝑒𝑝 where it hits node 𝑢𝜏 before

passing through edge 𝑒𝜏 (Lines 8-11). Then, it randomly traverses on 𝐺𝜏 until it has the same hops

as the 𝑐.𝑖𝑑 random walk in 𝐻𝜏-1. For other random walks, we keep them as they are in 𝐻𝜏-1.

Example 4.5. Assume that the current graph is 𝐺1 as shown in Figure 1(b) after the insertion in

Example 4.1. Then, when the deletion of edge ⟨𝑣3, 𝑣2⟩ comes, it will evolve to 𝐺2 as shown in

Figure 1(c). To simplify the description, we omit the auxiliary structure 𝐶𝑉
on nodes as it is not

used in deletion and it will be maintained in the same way as we described in Example 4.1. After

the edge deletion, we will update the index with the following steps:

(i) Remove one random walk in 𝐻2 (𝑣3) to save space. We are allowed to do it as the out-degree of

𝑣3 is decreased by 1. Assume that RW7 is removed (crossed-out as shown in Table 4(a)).

(ii) Repair RW6 since it passes through edge ⟨𝑣3, 𝑣2⟩ between its step 0 and step 1. We simulate

the restarting part of RW6 from its step 0. A possible repaired index is as shown in Figure 4(b)

where the newly removed random walk is crossed-out and the repaired parts of existing random

walks are marked in boldface. The other entries 𝐻 (·) that are not changed are omitted.

(iii) To match the updated random walks, the auxiliary structure𝐶𝐸
needs to be updated accordingly.

For example, since RW6 is changed from 𝑣3→𝑣2→𝑣4 to 𝑣3→𝑣1→𝑣2, the records {6, 0} and {6, 1}
are moved into 𝐶𝐸

2
(𝑣3, 𝑣1) and 𝐶𝐸

2
(𝑣1, 𝑣2) from 𝐶𝐸

1
(𝑣3, 𝑣2) and 𝐶𝐸

1
(𝑣2, 𝑣4), respectively. Table 4(c)

shows the updated 𝐶𝐸
2
where the new records are boldfaced and the obsoleted records are

scratched. Note that we also scratch the entry 𝐶𝐸
2
(𝑣3, 𝑣2) in Table 4(c) as it is stale due to the

deletion of edge ⟨𝑣3, 𝑣2⟩.

Similar as we described in Section 4.1, the following result gives the correctness of Update-Delete
since we can build an initial index 𝐻0 satisfying independence, adequateness, and unbiasedness.

Theorem 4.6. 𝐻𝜏 provided by Algorithm 3 satisfies the independence, adequateness, and unbiasedness
if 𝐻𝜏-1 holds these properties.

Just like the edge insertion case, the update cost will be light if an edge deletion follows the random

arrival model. As Theorem 4.7 shows, the cost can be bounded by 𝑂 (1).
Theorem 4.7. Given an edge deletion that follows the random arrival model (Definition 2.3), Algorithm
2 takes 𝑂 (1) expected time to update the index when 𝑟𝑚𝑎𝑥 ·𝜔=Θ(1).
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𝐶𝐸
1
(𝑣1, 𝑣2) {1, 0}, {2, 0}, {4, 2}, {5, 1}, {8, 1}

𝐶𝐸
1
(𝑣2, 𝑣4) {1, 1}, {3, 0}, {4, 0}, {6, 1}

𝐶𝐸
1
(𝑣3, 𝑣1) {5, 0}, {7, 0} 𝐶𝐸

1
(𝑣3, 𝑣2) {6, 0}

𝐶𝐸
1
(𝑣4, 𝑣1) {4, 1}, {8, 0} 𝐶𝐸

1
(𝑣4, 𝑣3) {9, 0}, {10, 0}

(a) Auxiliary Structure 𝐶𝐸
1

𝐻2 (𝑣3) 5 : 𝑣3 → 𝑣1 → 𝑣2, 6 : 𝑣3 → 𝒗1 → 𝒗2, (((((hhhhh7 : 𝑣3 → 𝑣1

(b) The updated index entries in 𝐻2

𝐶𝐸
2
(𝑣1, 𝑣2) {1, 0}, {2, 0}, {4, 2}, {5, 1}, {6, 1}, {8, 1}

𝐶𝐸
2
(𝑣2, 𝑣4) {1, 1}, {3, 0}, {4, 0}, ���H

HH{6, 1}
𝐶𝐸

2
(𝑣3, 𝑣1) {5, 0}, {6, 0}, ���H

HH{7, 0} ����XXXX𝐶𝐸
2
(𝑣3, 𝑣2) ���H

HH{6, 0}
𝐶𝐸

1
(𝑣4, 𝑣1) {4, 1}, {8, 0} 𝐶𝐸

1
(𝑣4, 𝑣3) {9, 0}, {10, 0}

(c) The updated entries in auxiliary structure 𝐶𝐸
2

Table 4. Index and Auxiliary Structures after Deletion.

For ease of exposition, all proofs are deferred to Section 5.

4.3 A New Sampling Scheme for Index Update
Up to now, we have shown the general framework of our solution which updates the index within

constant time for each edge insertion/deletion. However, a simple implementation of Algorithm 2

and Algorithm 3 will result in several times space over existing solutions, if we maintain auxiliary

structures in views of both nodes and edges. Next, we show a new sampling scheme for index

updates to reduce the space consumption of auxiliary structures.

Main Challenge. As we described in Sections 4.1 and 4.2, our solution achieves superb update

efficiency since the expected number of random walks affected by an edge update is𝑂 (1). However,
it means that we need to trace each affected random walk within𝑂 (1) time as well. To achieve this,

we maintain auxiliary structures in the view of nodes (denoted as 𝐶𝑉
) in Algorithm 2 and in the

view of edges (denoted as 𝐶𝐸
) in Algorithm 3, and thus our solution requires several times space to

save the index. Therefore, it deserves our effort to use only one auxiliary structure to support both

sampling among random walks crossing a node 𝑢 and finding all random walks passing through an

updated edge 𝑒= ⟨𝑢, 𝑣⟩.
Since we need to exactly find all random walks passing through the edge 𝑒𝜏 in Algorithm 3, it is

difficult to use only 𝐶𝑉
to achieve our goal. Thus, we turn to find an alternative sampling scheme

for index update to sample random walks using 𝐶𝐸
in Algorithm 2.

Before we introduce how to sample with 𝐶𝐸
in the insertion case, there is an issue that a random

walk starting from 𝑠 maybe terminate directly with probability 𝛼 so that it does not pass through

any edge and therefore cannot be recorded by any edge. To fix the problem, consider a variant of

Equation 3 derived in [41]:

𝜋 (𝑠, 𝑡) = 𝜋 (𝑠, 𝑡) +
∑︁
𝑣∈𝑉

𝑟 (𝑠, 𝑣) · (
∞∑︁
𝑙=0

𝜋𝑙 (𝑣, 𝑡))

= 𝜋 (𝑠, 𝑡) +
∑︁
𝑣∈𝑉

𝑟 (𝑠, 𝑣) · (𝜋0 (𝑣, 𝑡) + 𝜋+ (𝑣, 𝑡)),

where 𝜋𝑙 (𝑣, 𝑡) is the 𝑙-hop PPR which denotes the random walk starting from 𝑣 stops at 𝑡 exactly at

its 𝑙-th step, and 𝜋+ (𝑣, 𝑡) is the sum of 𝜋𝑙 (𝑣, 𝑡) for all non-zero 𝑙 . Note that, 𝜋0 (𝑣, 𝑡)=𝛼 only when

𝑣=𝑡 , and 𝜋0 (𝑣, 𝑡)=0 otherwise. Because of the certainty of 𝜋0 (𝑣, ·), we need not store the random
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Algorithm 4: Edge-Sampling

Input: Node 𝑢, record lists on edges 𝐶𝐸
;

Output: Sampled records 𝐶;

1 𝐶 ← ∅;
2 𝑘 ∼ 𝐵(𝒸𝜏 (𝑢𝜏 ), 1

𝑑𝜏 (𝑢𝜏 ) );
3 for 𝑖 from 1 to 𝑘 do
4 E← Active-Edges(𝑢𝜏 );
5 𝑒 ← Sample-Uniform(E);
6 𝑐 ← Sample-Uniform(𝐶𝐸 (𝑒));
7 𝐶 ← 𝐶 ∪ {𝑐};
8 end
9 return 𝐶;

walks which terminate at their source node immediately, and thus 𝐶𝐸 (𝑒) is complete to tracing all

random walks we need to maintain.

Recall that after the edge 𝑒𝜏= ⟨𝑢𝜏 , 𝑣𝜏 ⟩ is inserted, we need to sample each record crossing 𝑢𝜏 with

probability 1/𝑑𝜏 (𝑢𝜏 ). For the convenience of description, we will use the symbol 𝐶𝑉
and 𝐶𝐸

which

have no subscript to represent 𝐶𝑉
𝜏-1

and 𝐶𝐸
𝜏-1 respectively, and then let 𝑐𝑉 (𝑢) and 𝑐𝐸 (𝑒) denote the

size of 𝐶𝑉 (𝑢) and 𝐶𝐸 (𝑒) respectively. The naive way is to generate random numbers for every

record in 𝐶𝑉 (𝑢𝜏 ) to decide whether a record will be adjusted or not. This approach can be easily

implemented with 𝐶𝐸
where we can access the records in each 𝐶𝐸 (𝑒) for 𝑒 ∈ E𝜏-1 (𝑢𝜏 ) and then

roll the dice. However, such a method uses 𝑂 (𝑐𝑉 (𝑢𝜏 )) time which will be 𝑂 (𝑑𝜏-1 (𝑢𝜏 ))=𝑂 (𝑑𝜏 (𝑢𝜏 ))
in expectation to select the random walks to be adjusted while only 𝑂 (1) random walks will be

selected as we claimed in Section 4.1.

An alternative approach is geometric sampling. We number the records in𝐶𝑉 (𝑢𝜏 ) from 1 to 𝑐𝑉 (𝑢𝜏 ),
and use an iterator to indicate which record we are visiting. Geometric sampling works as follows:

assume the iterator currently points to 𝑖 (initially 𝑖=0), it generates a random number 𝑗 from

geometric distribution 𝐺𝑒𝑜𝑚(1/𝑑𝜏 (𝑢𝜏 )), then it (i) stops if 𝑖+ 𝑗>𝑐𝑉 (𝑢𝜏 ); or (ii) jumps to 𝑖+ 𝑗 and
selects the pointed record. It is proved that this approach can sample each record with probability

1/𝑑𝜏 (𝑢𝜏 ), and since the iterator has only visited the records which will be selected, the expected time

for sampling will be𝑂 (1). Nonetheless, it is hard to apply the approach to𝐶𝐸
efficiently. To explain,

if we only maintain the auxiliary structure 𝐶𝐸
on edges but not 𝐶𝑉

on nodes, we need to find all

random walks that pass through each edge 𝑒 ∈ E𝜏-1 (𝑢𝜏 ) and then apply the geometric sampling

approach to select the random walks to be adjusted. However, by examining each out-going edge of

𝑢, it already takes𝑂 (𝑑𝜏 (𝑢𝜏 )) time. We may make use of advanced data structures (e.g. segment-tree)

to accelerate the procedure of seeking for the selected random walk among𝐶𝐸
. However, searching

on a tree structure makes a factor of𝑂 (log𝑑𝜏 (𝑢𝜏 )) increment of time complexity. More importantly,

our motivation to use one auxiliary structure to support the tracing for both edge insertion and

deletion is to reduce the space consumption of the auxiliary structure but the size of such an

auxiliary structure of auxiliary structure to handle the whole graph will also be 𝑂 (𝑚).
Our Solution. To tackle this issue, we first change the above geometric sampling approach to a

sampling approach via the binomial distribution. In particular, we sample the number of random

walk records (crossing 𝑢) from binomial distribution 𝐵(𝑐𝑉 (𝑢𝜏 ), 1/𝑑𝜏 (𝑢𝜏 )), and then sample the

records in 𝐶𝑉 (𝑢𝜏 ) without replacement. It is easy to verify that this approach is equivalent to

geometric sampling. However, the binomial sampling approach is also hard to apply to 𝐶𝐸
directly

to meet both time and space efficiency for similar reason as the geometric sampling approach.
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To further overcome the obstacle, we present the following idea. In the process of binomial sampling,

we repeat to sample a record from𝐶𝑉 (𝑢𝜏 ) without replacement. To avoid an iteration among E𝜏-1 (𝑢𝜏 )
(which takes𝑂 (𝑑 (𝑢𝜏 )) time), we can first sample an edge 𝑒 ∈ E𝜏-1 (𝑢𝜏 ) which has at least one record

(called an active edge) and then uniformly select one of the records 𝑐 ∈ 𝐶𝐸 (𝑒). It is obvious that
if we select the edge 𝑒 with probability 𝑐𝐸 (𝑒)/𝑐𝑉 (𝑢𝜏 ), we reproduce the uniformly sampling in

𝐶𝑉 (𝑢𝜏 ). However, a weighted random sampling within 𝑂 (1) time requires the help of advanced

data structures (e.g. alias array) with total size 𝑂 (𝑚). Again, we will not build any additional

data structure which has a total size of 𝑂 (𝑚) since it goes against our intention to reduce space

overheads. Instead, we turn to sample an edge 𝑒 ∈ E𝜏-1 (𝑢𝜏 ) with probability 1/𝑑 ′ (𝑢𝜏 ), where 𝑑 ′ (𝑢𝜏 )
is the number of active edges and this number can be easily maintained with a counter for each

node, saving far more space than maintaining auxiliary structure 𝐶𝑉
on nodes.

To check if the alternative binomial sampling also keeps the unbiasedness, it needs to be clarified

that we will prove the unbiasedness of 𝐻𝜏 in Section 5.1 only based on the fraction of the number

of selected records in 𝐶𝐸 (𝑒). Thus, any records passing through the same edge 𝑒 can be equivalent

for providing unbiasedness. Hence, if we select a record 𝑐 ∈ 𝐶𝐸 (𝑒), uniformly selecting another

record 𝑐′ ∈ 𝐶𝐸 (𝑒) instead will not affect the unbiasedness. Assume that 𝑐𝑉 (𝑢𝜏 )=𝓌 and 𝑑 ′ (𝑢𝜏 )=𝒹,

consider the probability that the record passing through a specific edge 𝑒 will be selected by the

original binomial sampling:

P[𝑐 ∈ 𝐶𝐸 (𝑒)] =
𝓌∑︁
𝑘=1

P[𝑐 ∈ 𝐶𝐸 (𝑒) |𝑐𝐸 (𝑒) = 𝑘] · P[𝑐𝐸 (𝑒) = 𝑘]

=

𝓌∑︁
𝑘=1

𝑘

𝓌
·
(
𝓌

𝑘

) (
1

𝒹

)𝑘 (
1 − 1

𝒹

)𝓌−𝑘
. (5)

Firstly, we have that

𝑘

𝓌
·
(
𝓌

𝑘

)
=
𝑘

𝓌
· 𝓌!

𝑘! · (𝓌 − 𝑘)! =
(𝓌 − 1)!

(𝑘 − 1)! · (𝓌 − 𝑘)! =
(
𝓌 − 1

𝑘 − 1

)
,

and thus Equation 5 will be

P[𝑐 ∈ 𝐶𝐸 (𝑒)] =
𝓌∑︁
𝑘=1

(
𝓌 − 1

𝑘 − 1

) (
1

𝒹

)𝑘 (
1 − 1

𝒹

)𝓌−𝑘
=

1

𝒹
·
𝓌−1∑︁
𝑘=0

(
𝓌 − 1

𝑘

) (
1

𝒹

)𝑘 (
1 − 1

𝒹

)𝓌−1−𝑘
=

1

𝒹
,

where the last equality is due to the fact that the cumulative term is the summation of the probability

mass function of 𝐵(𝓌−1, 1/𝒹) and thus equals to 1. Therefore, if 𝐻𝜏-1 satisfies the unbiasedness,

for any fixed 𝑐𝑉 (𝑢𝜏 ) and 𝑑 ′ (𝑢𝜏 ), the original binomial sampling method samples a record from a

particular edge 𝑒 with probability 1/𝑑 ′ (𝑢𝜏 ), which is consistent with the strategy which samples the

edges of 𝑢𝜏 uniformly. Since the unbiasedness of 𝐻𝜏-1 implies that the number of records crossing 𝑢

and the number of active out-going edges of 𝑢 are also unbiased, we can see that our strategy is

equivalent to the original binomial sampling to keep the unbiasedness of 𝐻𝜏 .

So far, we have the final solution to sample records among 𝐶𝐸 (𝑒). Algorithm 4 shows the pseudo-

code of the new sampling method, where we use 𝒸(𝑢) to denote the total number of records

crossing 𝑢. Note that 𝒸(𝑢) is equal to 𝑐𝑉 (𝑢) which is the size of 𝐶𝑉 (𝑢) but we store 𝒸(𝑢) as a
counter directly on each node, which takes Θ(𝑛) space and is much smaller than 𝑂 (𝑚) in practice.

Now return to Algorithm 4, it first generates the number of records to be selected from the binomial

distribution 𝐵(𝒸𝜏 (𝑢𝜏 ), 1/𝑑𝜏 (𝑢𝜏 )) (Line 2). To sample each record, it uniformly samples an edge

𝑒 ∈ E𝜏-1 (𝑢𝜏 ) which is active and then uniformly samples one record in 𝑐𝐸 (𝑒) (Lines 4-7). Finally, it
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returns the sampled records. We apply Algorithm 4 to Algorithm 2 instead of sampling directly in

𝐶𝑉 (𝑢𝜏 ) (Line 2) to select the affected random walks. For other parts, e.g., Lines 3-7 in Algorithm 3,

the sampling approaches are unchanged.

5 THEORETICAL ANALYSIS
5.1 Proofs of Correctness

Proof of Theorem 4.3. Firstly, Algorithm 2 samples in 𝐶𝑉
𝜏-1
(𝑢𝜏 ) and updates the sampled random

walks independently. In addition, for the newly sampled random walks (Lines 9-10), they are

sampled independently and are independent from other random walks in 𝐻𝜏 . Thus, 𝐻𝜏 satisfies the

independence property. Then, since the only difference between𝐺𝜏 and𝐺𝜏-1 is the edge 𝑒𝜏= ⟨𝑢𝜏 , 𝑣𝜏 ⟩,
we add additional random walks starting from 𝑢𝜏 to satisfy the adequateness (Lines 9-10).

Next, we focus on unbiasedness. Clearly, the additional random walks are unbiased. Thus we will

omit the clarification of them below. Consider the random walks in 𝐻𝜏-1 which never cross 𝑢𝜏 . Let

𝜋 (𝑠, 𝑡 ;𝑢) denote the contribution to 𝜋 (𝑠, 𝑡) without crossing node 𝑢. Therefore,

𝜋𝜏 (𝑠, 𝑡 ;𝑢𝜏 ) = 𝜋𝜏-1 (𝑠, 𝑡 ;𝑢𝜏 ), (6)

because the insertion of 𝑒𝜏 makes no effect on the random walks which never cross 𝑢𝜏 . Since 𝐻𝜏-1

is unbiased and Algorithm 2 makes no change to the random walks which never cross 𝑢𝜏 in 𝐻 (𝑠)
(denoted as 𝐻 (𝑠;𝑢), correspondingly, the crossing subset denoted as 𝐻 (𝑠;𝑢)), we obtain that,

E

[
𝐻𝜏 (𝑠, 𝑡 ;𝑢𝜏 )
𝐻𝜏 (𝑠)

]
= 𝜋𝜏 (𝑠, 𝑡 ;𝑢𝜏 ). (7)

For the other part of random walks that still cross 𝑢𝜏 , let 𝜋 (𝑠, 𝑡 ; 𝑒) denote the contribution to 𝜋 (𝑠, 𝑡)
with a passing through of edge 𝑒= ⟨𝑢𝜏 , 𝑣⟩. To simplify the discussion, for the present, we assume

any random walk will not cross 𝑢𝜏 more than once and will discuss how to deal with the case that

crosses 𝑢 multiple times later. Due to the memorylessness of the random walk process, we have

𝜋𝜏 (𝑠, 𝑡 ; 𝑒) = P[𝑤 ∈ 𝑇𝜏 (𝑒 |𝑠)] · 𝜋𝜏 (𝑣, 𝑡 ;𝑢𝜏 )

=
1

𝑑𝜏 (𝑢𝜏 )
· P[𝑤 ∈ 𝑇𝜏 (𝑢𝜏 |𝑠)] · 𝜋𝜏 (𝑣, 𝑡 ;𝑢𝜏 ), (8)

where𝑤 ∈ 𝑇 (𝑒 |𝑠) indicates the 𝑠-starting random walk𝑤 passes through edge 𝑒 and𝑤 ∈ 𝑇 (𝑢 |𝑠)
indicates such a random walk crosses node 𝑢. Notably,

P[𝑤 ∈ 𝑇𝜏 (𝑢𝜏 |𝑠)] = P[𝑤 ∈ 𝑇𝜏-1 (𝑢𝜏 |𝑠)] (9)

since a random walk must cross 𝑢𝜏 before decides to pass through 𝑒𝜏 or not. Combining Equations

6,8,9 and since 𝑑𝜏 (𝑢𝜏 )=𝑑𝜏-1 (𝑢𝜏 )+1 with the insertion of 𝑒𝜏 , for 𝑒= ⟨𝑢𝜏 , 𝑣⟩ ∈ E𝜏-1 (𝑢𝜏 ), we have

𝜋𝜏 (𝑠, 𝑡 ; 𝑒) =
𝑑𝜏-1 (𝑢𝜏 )
𝑑𝜏 (𝑢𝜏 )

· 1

𝑑𝜏-1 (𝑢𝜏 )
· P[𝑤 ∈ 𝑇𝜏-1 (𝑢𝜏 |𝑠)] · 𝜋𝜏-1 (𝑣, 𝑡 ;𝑢𝜏 )

=

(
1− 1

𝑑𝜏 (𝑢𝜏 )

)
· 𝜋𝜏-1 (𝑠, 𝑡 ; 𝑒), (10)

Lastly and clearly, the contribution of the inserted edge 𝑒𝜏 is

𝜋𝜏 (𝑠, 𝑡 ; 𝑒𝜏 ) =
1

𝑑𝜏 (𝑢𝜏 )
· P[𝑤 ∈ 𝑇𝜏 (𝑢𝜏 |𝑠)] · 𝜋𝜏 (𝑣, 𝑡 ;𝑢𝜏 )

=
1

𝑑𝜏 (𝑢𝜏 )
· P[𝑤 ∈ 𝑇𝜏-1 (𝑢𝜏 |𝑠)] · 𝜋𝜏 (𝑣, 𝑡 ;𝑢𝜏 ). (11)

In Algorithm 2, we sample each 𝑢𝜏 -crossing record with probability 1/𝑑𝜏 (𝑢𝜏 ) thus making the

1/𝑑𝜏 (𝑢𝜏 ) fraction of descent to the contribution of random walks passing through 𝑒 ∈ E𝜏-1 (𝑢𝜏 ) in
expectation which keeps pace with Equation 10. Then we force the sampled random walks to cross

the edge 𝑒𝜏 and continue randomly walking on 𝐺𝜏 which exactly matches Equation 11. Due to the
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unbiasedness of 𝐻𝜏-1, the sum among E𝜏 (𝑢𝜏 ) leads to

E

[
𝐻𝜏 (𝑠, 𝑡 ;𝑢𝜏 )
𝐻𝜏 (𝑠)

]
= 𝜋𝜏 (𝑠, 𝑡 ;𝑢𝜏 ). (12)

Equations 7 and 12 imply that 𝐻𝜏 is unbiased if a random walk will not cross node 𝑢𝜏 more than

once. To show that 𝐻𝜏 is still unbiased even if a random walk can cross 𝑢𝜏 multi-times, let us

consider a particular random walk in 𝐻𝜏 . Algorithm 2 independently samples each of 𝑢𝜏 -crossing

records with probability 𝑑𝜏 (𝑢). Once a record 𝑐 is sampled, the rest path of the random walk 𝑐.𝑖𝑑

after step 𝑐.𝑠𝑡𝑒𝑝 will be discarded. Thus if multiple records of the same random walk are sampled,

only the earliest one in the crossing order takes effect finally. Since the first time 𝑖 a random walk

will turn to 𝑒𝜏 after it crosses 𝑢𝜏 obey a geometric distribution 𝐺𝑒𝑜𝑚(1/𝑑𝜏 (𝑢𝜏 )) which consists of

the probability that the 𝑖-th crossing record of it will be the dominant item in Algorithm 2, we

finish the proof.

Proof of Theorem 4.6. Algorithm 3 first trims 𝐻𝜏-1 by uniformly sampling random walks from

𝐻𝜏-1 (𝑢𝜏 ). Let 𝐻 ′𝜏-1 denote the trimmed 𝐻𝜏-1, and the independence and unbiasedness of 𝐻 ′𝜏-1 will
be kept the same as 𝐻𝜏-1 for the property of uniform sampling. Then, the trimming stops when

the size of 𝐻 ′𝜏-1 satisfies the adequateness exactly. Next, we repair the invalid random walks which

pass through the recently deleted edge 𝑒𝜏 . According to Equation 7 and since we make no change

to the random walks without crossing 𝑢𝜏 , we have that Equation 6 also holds for the deletion case.

For the other part of random walks, the deletion of 𝑒𝜏 makes the contribution of 𝑒𝜏 become 0 and

leads to an increment in the contribution of other edges 𝑒 ∈ E𝜏 (𝑢𝜏 ). By Equations 6,8,9 and since

𝑑𝜏 (𝑢𝜏 )=𝑑𝜏-1 (𝑢𝜏 )−1 with the deletion of 𝑒𝜏 , we can see that

𝜋𝜏 (𝑠, 𝑡 ; 𝑒) =
(
1+ 1

𝑑𝜏 (𝑢𝜏 )

)
· 1

𝑑𝜏-1 (𝑢𝜏 )
· P[𝑤 ∈ 𝑇𝜏 (𝑢𝜏 |𝑠)] · 𝜋𝜏 (𝑣, 𝑡 ;𝑢𝜏 )

= 𝜋𝜏-1 (𝑠, 𝑡 ; 𝑒) +
1

𝑑𝜏-1 (𝑢𝜏 )
· 𝜋𝜏 (𝑠, 𝑡 ; 𝑒),

holds with the assumption that any random walk will not cross node 𝑢𝜏 more than once. In

Algorithm 3, we repair a random walk passing through 𝑒𝜏 by restarting it at 𝑢𝜏 , thus,

E

[
Δ𝐻𝜏 (𝑠, 𝑡 ; 𝑒)
𝐻𝜏 (𝑠)

]
= E

[
𝐻𝜏-1 (𝑠; 𝑒𝜏 )
𝐻𝜏-1 (𝑠)

]
· 1

𝑑𝜏 (𝑢𝜏 )
· 𝜋𝜏 (𝑣, 𝑡 ;𝑢𝜏 )

=
1

𝑑𝜏-1 (𝑢𝜏 )𝑑𝜏 (𝑢𝜏 )
· P[𝑤 ∈ 𝑇𝜏-1 (𝑢𝜏 |𝑠)] · 𝜋𝜏 (𝑣, 𝑡 ;𝑢𝜏 )

=
1

𝑑𝜏-1 (𝑢𝜏 )
· 𝜋𝜏 (𝑠, 𝑡 ; 𝑒),

where Δ𝐻𝜏 (𝑠, 𝑡 ; 𝑒) denotes 𝐻𝜏 (𝑠, 𝑡 ; 𝑒)−𝐻𝜏-1 (𝑠, 𝑡 ; 𝑒) which is the increment of 𝐻 (𝑠, 𝑡 ; 𝑒) at timestamp

𝜏 , the second equality is based on the unbiasedness of 𝐻𝜏-1 and the third equality comes from

Equations 8-9. As the result of the above equations, we have

E

[
𝐻𝜏 (𝑠, 𝑡 ; 𝑒)
𝐻𝜏 (𝑠)

]
= 𝜋𝜏 (𝑠, 𝑡 ; 𝑒). (13)

Thus, Equations 7 and 13 imply that 𝐻𝜏 is unbiased if a random walk will not cross 𝑢𝜏 more than

once. Finally, the correctness of Algorithm 3 comes from the fact that the deletion of 𝑒𝜏 makes

no effect on a random walk unless it passes through 𝑒𝜏 , and the rest part of such a random walk

behind the first time it passes through 𝑒𝜏 is entirely stale in the deletion case.

5.2 Proofs of Efficiency

Proof of Theorem 4.4. As Algorithm 2 shows, the cost of Update-Insert contains two parts. One
is caused by the modification of random walks whose records are sampled in set 𝐶𝑉

𝜏-1
(𝑢𝜏 ) to reflect
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the change of out-neighbors of 𝑢𝜏 due to the arrival of edge 𝑒𝜏 . Let 𝑐𝜏 denote the number of random

walks, we have

E [𝑐𝜏 ] ≤
∑︁

𝑢∈𝑉𝜏 -1
E
[
|𝐶𝑉

𝜏-1 (𝑢) |
]
· 1

𝑑𝜏 (𝑢)
· P [𝑒𝜏 ∈ E𝜏 (𝑢)] ,

where the inequality is because we will update a random walk at most once even if multiple of its

records are sampled. Then with Equation 1, it yields that

E [𝑐𝜏 ] ≤
∑︁

𝑢∈𝑉𝜏 -1
E
[
|𝐶𝑉

𝜏-1 (𝑢) |
]
· 1

𝑑𝜏 (𝑢)
· 𝑑𝜏 (𝑢)
𝑚𝜏

=
1

𝑚𝜏

·
∑︁

𝑢∈𝑉𝜏 -1
E
[
|𝐶𝑉

𝜏-1 (𝑢) |
]
.

In addition, according to Lemma 3.2, the number of random walks starting from node 𝑠 should be

⌈𝑑 (𝑠)·𝑟𝑚𝑎𝑥 ·𝜔⌉. Let ℎ𝜏-1 (𝑠,𝑢) be the expected times that an 𝑠-starting random walk crosses node 𝑢

at timestamp 𝜏-1. It holds that

ℎ𝜏-1 (𝑠,𝑢) =
1−𝛼
𝛼
· 𝜋𝜏-1 (𝑠,𝑢), (14)

where 𝜋𝜏-1 (𝑠,𝑢) is the PPR score of node 𝑢 with respect to 𝑠 on graph 𝐺𝜏-1. To explain, 𝜋𝜏-1 (𝑠,𝑢)
can be written as follows:

𝜋𝜏-1 (𝑠,𝑢) =
∞∑︁
𝑖=0

𝜋𝑖𝜏-1 (𝑠,𝑢),

where 𝜋𝑖𝜏-1 (𝑠,𝑢) is the probability that an 𝑠-starting random walk stops at 𝑢 exactly at the 𝑖-th

hop. Therefore, the probability that an 𝑠-starting random walk visits node 𝑢 at the 𝑖-th hop can be

written as 𝜋𝑖𝜏-1 (𝑠,𝑢)/𝛼 . Multiplying it by 1−𝛼 , we derive the probability that an 𝑠-starting random

walk crosses 𝑢 at the 𝑖-th hop is 𝜋𝑖𝜏-1 (𝑠,𝑢)·(1−𝛼)/𝛼 . Summing all hops together, we derive that

ℎ𝜏-1 (𝑠,𝑢), the expected times an 𝑠-starting random walk crossing 𝑢, satisfies Equation 14. Then, we

could express |𝐶𝑉
𝜏-1
(𝑢) | as follows:

E
[
|𝐶𝑉

𝜏-1 (𝑢)
]
=

∑︁
𝑠∈𝑉𝜏 -1

⌈𝑑𝜏-1 (𝑠) · 𝑟𝑚𝑎𝑥 · 𝜔⌉ · ℎ𝜏-1 (𝑠,𝑢). (15)

Let𝑉 ∗𝜏-1 denote the set of nodes with at least one out-going edge, and let 𝑛∗𝜏-1=|𝑉 ∗𝜏-1 |. Combining the

above equations, we obtain

E [𝑐𝜏 ] ≤
1

𝑚𝜏

·
∑︁

𝑢∈𝑉𝜏 -1

∑︁
𝑠∈𝑉 ∗

𝜏 -1

⌈𝑑𝜏-1 (𝑠) · 𝑟𝑚𝑎𝑥 · 𝜔⌉ ·
1−𝛼
𝛼
· 𝜋𝜏-1 (𝑠,𝑢)

≤ 1−𝛼
𝛼
· 𝑟𝑚𝑎𝑥 · 𝜔

𝑚𝜏

·
∑︁

𝑠∈𝑉 ∗
𝜏 -1

𝑑𝜏-1 (𝑠)
∑︁

𝑢∈𝑉𝜏 -1
𝜋𝜏-1 (𝑠,𝑢)

+ 1−𝛼
𝛼
· 1

𝑚𝜏

·
∑︁

𝑠∈𝑉 ∗
𝜏 -1

∑︁
𝑢∈𝑉𝜏 -1

𝜋𝜏-1 (𝑠,𝑢)

where the second equality results from that𝑑𝜏-1 (𝑠) is positive and thus ⌈𝑑𝜏-1 (𝑠)·𝑟𝑚𝑎𝑥 ·𝜔⌉ ≤𝑑𝜏-1 (𝑠)·𝑟𝑚𝑎𝑥 ·𝜔+1.

Due to the fact that

∑
𝑢∈𝑉𝜏 -1 𝜋𝜏-1 (𝑠,𝑢)=1, we have

E [𝑐𝜏 ] ≤
1−𝛼
𝛼
· 𝑟𝑚𝑎𝑥 · 𝜔

𝑚𝜏

·
∑︁

𝑠∈𝑉𝜏 -1
𝑑𝜏-1 (𝑠) +

1−𝛼
𝛼
·
𝑛∗𝜏-1
𝑚𝜏

<
1−𝛼
𝛼
· (𝑟𝑚𝑎𝑥 · 𝜔 + 1) = 𝑂 (𝑟𝑚𝑎𝑥 · 𝜔) ,

where the second inequality comes from

∑
𝑠∈𝑉𝜏 -1 𝑑𝜏-1 (𝑠)=𝑚𝜏-1=𝑚𝜏−1, and 𝑛∗𝜏-1 ≤ 𝑚𝜏-1 due to the

definition of 𝑛∗𝜏-1.
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Another part of cost is to expand 𝐻𝜏 (𝑢𝜏 ) by adding more random walks starting from 𝑢𝜏 into 𝐻𝜏 to

satisfy the adequateness, we have

|𝐻𝜏 (𝑢𝜏 ) | − |𝐻𝜏-1 (𝑢𝜏 ) | = ⌈𝑑𝜏 (𝑢𝜏 ) · 𝑟𝑚𝑎𝑥 · 𝜔⌉ − ⌈𝑑𝜏-1 (𝑢𝜏 ) · 𝑟𝑚𝑎𝑥 · 𝜔⌉
= 𝑂 (𝑟𝑚𝑎𝑥 · 𝜔)

holds since 𝑑𝜏 (𝑢𝜏 )=𝑑𝜏-1 (𝑢𝜏 )+1. Finally, by setting 𝑟𝑚𝑎𝑥 ·𝜔=Θ(1) according to SpeedPPR [44], we

achieve the result E[𝑐𝜏 ]=𝑂 (1) and |𝐻𝜏 (𝑢𝜏 ) |−|𝐻𝜏-1 (𝑢𝜏 ) |=𝑂 (1), that is, we need to update only 𝑂 (1)
random walks, and add only 𝑂 (1) new random walks.

In Section 4.3, we presented an efficient sampling technique that takes only 𝑂 (1) to sample a

random walk to update. Thus the cost of the procedure Sample (Line 2) is𝑂 (1), due to E[𝑐𝜏 ]=𝑂 (1).
When updating a random walk, we need to invoke procedureWalk-Restart (Line 6). Since the
expected length of a random walk with a decay factor 𝛼 is𝑂 (1/𝛼) =𝑂 (1), the cost ofWalk-Restart
is 𝑂 (1). Similarly, the cost of adding a new random walk is also 𝑂 (1). From the above discussions,

we know that Update-Insert takes 𝑂 (1) expected time to update the index for each insertion.

Proof of Theorem 4.7. As Algorithm 3 shows, the cost of Update-Delete also contains two parts.

First, we need to trim𝐻𝜏-1 to𝐻
′
𝜏-1 by sampling randomwalks from𝐻𝜏-1 (𝑢𝜏 ) uniformly. Since the trim-

ming process of 𝐻𝜏 (𝑢𝜏 ) in the deletion case is a reverse process of the expanding process of 𝐻𝜏 (𝑢𝜏 )
in the insertion case, we have the cost |𝐻𝜏-1 (𝑢𝜏 ) |−|𝐻𝜏 (𝑢𝜏 ) |=|𝐻𝜏-1 (𝑢𝜏 ) |−|𝐻 ′𝜏-1 (𝑢𝜏 ) |=𝑂 (𝑟𝑚𝑎𝑥 ·𝜔).
Then, a deletion of edge 𝑒𝜏= ⟨𝑢, 𝑣⟩ leads to the rebooting of all random walks (except the trimmed

random walks) that have records in 𝐶𝐸
𝜏-1 (𝑒𝜏 ). Let 𝑐𝜏 denote the number of random walks that need

to be repaired, the expectation of 𝑐𝜏 is

E [𝑐𝜏 ] ≤
∑︁

𝑒∈𝐸𝜏 -1
E
[
|𝐶𝐸

𝜏-1 (𝑒) |
]
· P [𝑒𝜏 = 𝑒] ,

where the inequality is due to the fact that we only need to update a random walk once even if it

passes through 𝑒𝜏 multi-times and the records in 𝐶𝐸
𝜏-1 that belong to trimmed random walks are

also staled. Then, for each edge 𝑒= ⟨𝑢, 𝑣⟩ ∈ 𝐸𝜏-1, as a corollary of the definition of random walk, it

follows that

E
[
|𝐶𝐸

𝜏-1 (𝑒) |
]
=

1

𝑑𝜏-1 (𝑢𝜏 )
· E

[
|𝐶𝑉

𝜏-1 (𝑢) |
]
.

Combining the equations above and Equation 2, we obtain

E[𝑐𝜏 ] ≤
∑︁

𝑢∈𝑉𝜏 -1

∑︁
𝑒∈E𝜏 -1 (𝑢 )

E
[
|𝐶𝐸

𝜏-1 (𝑒) |
]
· 1

𝑚𝜏-1

=
1

𝑚𝜏-1

·
∑︁

𝑢∈𝑉𝜏 -1

∑︁
𝑒∈E𝜏 -1 (𝑢 )

1

𝑑𝜏-1 (𝑢𝜏 )
· E

[
|𝐶𝑉

𝜏-1 (𝑢) |
]

=
1

𝑚𝜏-1

·
∑︁

𝑢∈𝑉𝜏 -1
E
[
|𝐶𝑉

𝜏-1 (𝑢) |
]
.

Given the above inequality, we can follow the same analysis steps as the insertion case, i.e., Equations

14-15 and the analysis after Equation 15 in the proof of Theorem 4.4, to derive that E[𝑐𝜏 ]=𝑂 (𝑟𝑚𝑎𝑥 ·𝜔).
As 𝑟𝑚𝑎𝑥 ·𝜔=Θ(1) following SpeedPPR [44], it yields that both |𝐻𝜏-1 (𝑢𝜏 ) |−|𝐻𝜏 (𝑢𝜏 ) |=𝑂 (1) andE[𝑐𝜏 ]=𝑂 (1).
Furthermore, as we described in the proof of Theorem 4.4, the cost of maintaining the index when

updating or deleting a random walk can be bounded by 𝑂 (1). Hence, we get that Update-Delete
takes expected 𝑂 (1) time to update the index.
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6 OTHER RELATEDWORK
Personalized PageRank (PPR) was first proposed by Page et al. [32]. They present a matrix-based

definition of PPR and explore the Power-Iteration method. Given a source 𝑠 , let 𝝅 (𝑠) denote the
PPR vector of PPR scores of each node with respect to 𝑠 . Let 𝑨 be the adjacency matrix and 𝑫 be

the diagonal matrix where the (𝑢,𝑢)-th entry is the out-degree of 𝑢. The following equation holds:

𝝅 (𝒔) = 𝛼 · 𝒆𝒔 + (1 − 𝛼) · 𝝅 (𝒔) · 𝑫−1𝑨,
where 𝒆𝒔 is a one-hot vector with only the 𝑠-th entry to be 1. The Power-Iteration method is still

expensive and this motivates a series of works to solve the above linear system more efficiently [14,

22, 28, 35, 49] via matrix related tricks, e.g., matrix decomposition. However, such methods are

shown to be dominated by the Forward-Push + Monte-Carlo based methods as shown in [37, 43].

Another line of solutions are local push methods. The Forward-Push [6] algorithm can be used to

derive the answer of single-source PPR query. However, it provides no guarantee on the answers.

The Backward-Push [5, 21] is further proposed to derive the single-target PPR (STPPR) queries.

Ohsaka et al. [30] and Zhang et al. [47] further design algorithms to update the stored Forward-Push

results on dynamic graphs. In [47], Zhang et al. further present algorithms to maintain the stored

backward push results. Wang et al. [37] further present randomized Backward-Push to gain a better

trade-off between query efficiency and accuracy. However, all these methods cannot be applied to

answer ASSPPR/ASSPPR top-𝑘 queries.

To gain an approximation guarantee, Monte-Carlo methods [11] are proposed to derive approximate

estimations. However, Monte-Carlo methods alone are still too slow, which motivates existing

solutions to combine local push algorithms andMonte-Carlo methods to gain better query efficiency

while still providing approximation guarantee. In particular, Lofgren et al. [25, 26] and Wang

et al. [39, 40] present solutions to combine random walk and Backward-Push to improve the

query performance of pairwise PPR queries with approximation guarantees. Later, FORA [41],

ResAcc [23], and SpeedPPR [44] are further proposed to combine the Forward-Push and random

walks to improve the query performance for ASSPPR queries. The index-based version of FORA

and SpeedPPR, dubbed as FORA+ and SpeedPPR+, respectively, are shown to incur high update

costs as in our experiment. Besides, ResAcc is an index-free method while its query processing is

not as fast as such index-based solutions.

There also exist a line of research works, e.g., [13, 14, 41, 43] on efficient top-𝑘 PPR query processing.

The state-of-the-art approach is FORA+, which achieves the best query efficiency as shown in [41],

but it is an index-based method. Previously there exist no efficient algorithms to support dynamic

index update and our FIRM fills this gap. The state-of-the-art index-free method is TopPPR [43],

which combines Forward-Push, random walk, and Backward-Push to answer top-𝑘 PPR queries

with precision guarantees. However, TopPPR is only designed for top-𝑘 queries and cannot support

SSPPR queries. In contrast, with the same random walk index, our FIRM supports both efficient

ASSPPR and ASSPPR top-𝑘 queries.

Finally, there exist research works on parallelizing PPR computations with multi-core [38], GPU [16,

34], or in distributed environment [15, 20, 23, 27, 33]. These works are orthogonal to ours.

7 EXPERIMENTS
Next, we experimentally evaluate our FIRM against alternatives. All experiments are conducted on

an AWS x1.16xlarge cloud server with 64vCPUs clocked at 2.3GHz and 976GB memory. Source

codes [4] used in experiments are all implemented in C++ and compiled with full optimization.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 25. Publication date: May 2023.



25:20 Guanhao Hou et al.

Abbr. Name 𝒏 𝒎 Type
SF Stanford 281.9K 2.3M directed

DB DBLP 317.1K 1.0M undirected

YT Youtube 1.1M 3.0M undirected

PK Pokec 1.6M 30.6M directed

LJ LiveJournal 4.8M 69.0M directed

OK Orkut 3.1M 117.2M undirected

TW Twitter 41.7M 1.5B directed

FS Friendster 65.6M 1.8B undirected

Table 5. Datasets. (𝐾 = 10
3, 𝑀 = 10

6, 𝐵 = 10
9)
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Fig. 2. Average Update Time

7.1 Experimental Settings
We compare our method against four solutions. FORAsp is the method whose number of random

walks is set to 𝑂 (𝑚) following SpeedPPR [44] whereas its workflow is identical to the original

FORA [41] because Power-Push of SpeedPPR on evolving graphs is not as efficient as that on static

graphs. FORAsp+ is the index-based version of FORAsp. The state-of-the-art solution for evolving

graphs, Agenda [29], is also included. We further include Agenda
#
, a variant of Agenda, which has

been discussed in Section 3.2.

Datasets and Metrics. We use 8 benchmark datasets that can be obtained from public sources

SNAP[2] and Konect[1] and are frequently used in previous research works on PPR, e.g., [25, 29,

41, 44], as shown in Table 5. To measure the performance of the solutions on evolving graphs, for

each dataset, we randomly shuffle the order of edges and divide it into two parts. The first part

which has 90% edges (50% edges for Twitter and Friendster to reduce the running time on cloud

servers) will be used to build the initial graph. Then, we generate workloads each consisting of

100 updates/queries. An update will be either (i) an insertion of an edge selected randomly from

the rest part of the edges, or (ii) a deletion of an edge selected randomly from the initial graph. A

workload with update percentage 𝑥% means that it contains 𝑥 updates and (100−𝑥) queries.
Parameter Settings. Following previous work [41, 44], we set 𝛼=0.2, 𝜖=0.5, 𝛿=1/𝑛 and 𝑝 𝑓 =1/𝑛
by default. In addition, we set Agenda according to [29] such that 𝜃=0.5 and 𝑟𝑏𝑚𝑎𝑥=𝑑𝜏 (𝑢𝜏 )/𝑚𝜏 on

undirected graphs or 𝑟𝑏𝑚𝑎𝑥=1/𝑛𝜏 on directed graphs. For top-k queries, we set 𝑘=500. To speed up

query processing of index-based FORA-like methods, we balance the time cost between Forward-

Push and refining phases by setting 𝑟𝑚𝑎𝑥 ·𝜔=𝛽/𝛼 , where 𝛽 is a parameter depending on the dataset.

7.2 Performance of FIRM
Update Performance. We evaluate the efficiency of FIRM against index-based alternatives for

updating the index structure. Figure 2 shows the average processing time for each update under
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Fig. 4. Average processing time with ASSPPR queries
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Fig. 5. Average processing time with ASSPPR top-𝑘 queries.

a workload with 50% update. Observe that FORAsp+ has the worst update performance since it

simply rebuilds its index which leads to a prohibitive computation. Compared to FORAsp+, Agenda

does improve the update performance. Note that, the update process of Agenda is just to trace the

inaccuracy of its index, the affected random walks will be reconstructed during query processing.

Agenda
#
has the same update process as Agenda. Our solution, FIRM, is orders of magnitude faster

than FORAsp+ and Agenda. Moreover, FIRM has a similar time consumption among all datasets

which confirms that our solution takes𝑂 (1) time to maintain its index for each update. In contrast,

the update time of FORAsp+ and Agenda/Agenda
#
increases notably with graphs becoming larger.

General Performance. We first reveal the general performance of FIRM, Figure 4 shows the

performance under different workloads consisting of edge updates and ASSPPR queries. In a word,

our solution FIRM outperforms all alternatives under an arbitrarily mixed workload for all the

datasets. The advantage of FIRM is more prominent for workloads that consist of edge updates

and ASSPPR top-𝑘 queries as shown in Figure 5. This is because the query cost of a top-𝑘 query is

much slighter than a full ASSPPR query so the update cost will significantly affect the performance.
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Therefore, FIRM has great practical value since ASSPPR top-k query is widely used for web-search,

recommendation systems, and other scenarios. Besides, the essence of an algorithm for top-k

queries is to provide a rough but adequate precision of SSPPR. Thus, FIRM can also be applied to

the scenarios which need a loose (𝜖, 𝛿)-approximation guarantee (e.g. 𝛿=𝑂 (1)) on evolving graphs

to improve their performance.

Full Query Performance.We compare the average time for ASSPPR query processing under a

workload with an update percentage of 50 to reflect the additional cost of the lazy-update strategy

of Agenda/Agenda
#
. Figure 6 shows the average query time of ASSPPR queries. Not surprisingly,

FORAsp is the slowest one to answer ASSPPR queries because it is an index-free approach. FIRM

is as fast as FORAsp+ for query processing and achieves over 10x speed-up over FORAsp on

most datasets. Agenda is faster than FORAsp but slower than FORAsp+ and FIRM because it may

have to reconstruct some random walks before query processing, and need more computation

in Forward-Push phase to provide the same approximation guarantee since it admits inaccuracy

tolerance when updating the index. Agenda
#
takes slightly more running time than FORAsp+ and

FIRM, as it needs to apply the lazy-update scheme during query processing. However, with the

avoidance of additional computation in Forward-Push phase, it is surely faster than Agenda.

Top-𝒌 Query Performance. The situation is not quite the same when processing ASSPPR top-𝑘

queries. As Figure 7 shows, Agenda is even slower than FORAsp on some datasets. To explain, the

process to answer top-𝑘 queries in [41] repeats invoking Forward-Push with a rough 𝑟 ′𝑚𝑎𝑥>𝑟𝑚𝑎𝑥 ,

refining the temporary result to provide a (𝜖, 𝛿 ′)-approximation guarantee where 𝛿 ′>𝛿 is a rough

threshold and checking whether 𝛿 ′ is enough to bound the top-𝑘 PPR scores. After each time

Forward-Push is invoked, Agenda must check and fix the inaccuracy of its index, making the

performance analysis in [29] not applicable anymore.

Agenda
#
suffers from the same problem as well. Besides, it has to be mentioned that in Figure 5 the

query performance of Agenda
#
(with 100% query) is almost as fast as FORAsp+ and FIRM, while

in Figure 7 its performance is much worse. It seems paradoxical at first glance. To explain, it is a

tricky optimization for a workload with a low update rate. We can easily maintain an upper bound

for the total error of the current index, and then if the upper bound is below error tolerance, we

are allowed to skip the lazy-update phase. Thus, the lazy-update process is never invoked under a

pure query workload. However, under mixing workloads, the lazy-update process is frequently

invoked, thus becoming the bottleneck of Agenda
#
. In contrast, our solution still keeps the same

query performance as FORAsp+ for top-𝑘 queries and achieves over 10x speed-up over FORAsp.

Performance on Real-World Temporal Graphs. To examine the effectiveness of FIRM in real-

world scenarios, we have run FIRM and alternatives on two temporal social networks, Digg (0.28M

nodes and 1.7M edges) and Flickr (2.3M nodes and 33.1M edges), where edge timestamps (i.e.,

when the edge is built) are provided. The two graphs can also be downloaded at [1]. To simulate

the evolving process, we design the experiment as follows: We first sort all edges by the edge

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 25. Publication date: May 2023.



Personalized PageRank on Evolving Graphs with an Incremental Index-Update Scheme 25:23

FORAspFORAsp FORAsp+FORAsp+ AgendaAgenda Agenda#Agenda# FIRMFIRM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

100 75 50 25 0

Running time (s)

percentage of update

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

100 75 50 25 0

Running time (s)

percentage of update

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

100 75 50 25 0

Running time (s)

percentage of update

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

100 75 50 25 0

Running time (s)

percentage of update

(a) Digg (b) Flickr (c) Digg Top-k (d) Flickr Top-k

Fig. 7. Average processing time on temporal graphs.
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timestamp in ascending order and take the first 90% edges as the initial graph; then remaining

edges will be sequentially added to the graph according to their timestamps. Figure 7 shows the

average processing time of our FIRM and its competitors for the ASSPPR queries. From the figures,

we can see that FIRM still keeps superb efficiency on real-world evolving graphs with orders of

magnitude speedup. We further examine the update cost of FIRM and Agenda on these two graphs

which are generated under the random arrival model rather than sorted by their actual timestamps.

The results are in our technical report [3], which shows that FIRM (as well as Agenda) has similar

update performance under these two edge arrival settings, with negligible gap.

Performance of Insertion and Deletion. To compare the updating cost of edge insertion with

that of edge deletion, we respectively run 1000 insertions and 1000 deletions on each dataset,

by using FIRM and Agenda. We omit FORAsp+ because its update scheme is the same for edge

insertion and deletion. Agenda
#
is also omitted because it takes the same updating cost as Agenda

as shown in Figure 2. Figure 8 shows the average running time of edge insertion and deletion. As

we can observe, with our FIRM, the update cost for edge insertion is almost equal to that for edge

deletion, which confirms our theoretical analysis that both of them have 𝑂 (1) cost. Agenda also
has a similar trend, consistent with the analysis in [29].

Accuracy. To evaluate the accuracy performance of FIRM and its competitors, we first perform a

sufficient number of updates (5∼10 percent edges are inserted) and then measure the relative error

of ASSPPR queries. We stop the process if it cannot finish in 48 hours (thus we have no accuracy

results for Agenda/Agenda
#
on large graphs). As to FORAsp+, since its accuracy performance is

independent of the update process (it always reconstructs the whole index for each update), we can

save computational cost by constructing the index only once, after all updates have been applied.

The experimental results are shown in Figure 10, where the box (resp. bar) represents the average

(resp. maximum) relative error. FIRM has the identical precision as FORAsp/FORAsp+, which verifies

the correctness of our solution. Besides, as discussed in Section 3.2, Agenda has a practical precision

higher than other methods which comes from its conservative bound of index inaccuracy and hence

a tighter bound in FORA phase. Correspondingly, Agenda
#
gives a precision comparable to (slightly

worse than) FORAsp/FORAsp+. Even though we make an aggressive assumption on the inaccuracy

of its lazy-updated index, which means the precision of Agenda
#
will be theoretically worse than
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FORAsp/FORAsp+, the gap of average relative error between Agenda
#
and FORAsp/FORAsp+ is

not significant. As we described in Sections 4 and 3.2, 𝑂 (1) changes of random walks are adequate

to guarantee the precision. However, the lazy-update scheme renews more random walks since it

traces the inaccuracy roughly. Therefore, in most cases, the inaccuracy of the lazy-updated index

is not as large as Agenda supposed. In summary, our FIRM achieves the best query and update

efficiency when providing identical accuracy as alternatives including Agenda, where we tune

it as Agenda
#
to gain similar accuracy as FIRM. In our technical report [3], we have also done

experiments with only 1000 updates so that Agenda/Agenda
#
can finish in a reasonable time. We

have similar observations as discussed above.

Memory Consumption. Figure 11 shows the memory consumption of all methods. FORAsp needs

to maintain the evolving graph itself. Then, FORAsp+ costs about 2x memory of FORAsp to store

the terminals of pre-sampled random walks, and Agenda/Agenda
#
requires more additional space

to store the reverse graph to support Backward-Push. FIRM costs about 8x space as that of FORAsp+

to trace the random walks efficiently. However, with the new sampling scheme introduced in

Section 4.3, FIRM can still handle huge-scale graphs like Twitter and Friendster in memory. In

practice, several times more space consumption is an acceptable trade-off for orders of magnitude

times speed-up of processing performance because expanding the memory is much easier than

enhancing computing power. Moreover, there are several techniques, e.g.

√
1−𝛼 random walk [43],

to make full use of the complete path for more accurate estimation and thus can reduce the space

without loss of precision.

8 CONCLUSIONS
In this paper, we present FIRM, an efficient framework to handle approximate single source PPR

problems on evolving graphs. Theoretical analysis proves that our proposal has 𝑂 (1) time cost for

each update in expectation and experiments show that FIRM dramatically outperforms competitors

in most scenarios.
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