
45

An Efficient Algorithm for Distance-based Structural Graph
Clustering

KAIXIN LIU, Tsinghua University, China
SIBO WANG∗, The Chinese University of Hong Kong, China

YONG ZHANG∗ and CHUNXIAO XING, Tsinghua University, China

Structural graph clustering (SCAN) is a classic graph clustering algorithm. In SCAN, a key step is to compute

the structural similarity between vertices according to the overlap ratio of one-hop neighborhoods. Given two

vertices 𝑢 and 𝑣 , existing studies only consider the case when 𝑢 and 𝑣 are neighbors. However, the structural

similarity between non-neighboring vertices in SCAN is always zero, and using only one-hop neighbors on

weighted graphs discards the weights on each edge. Both may not reflect the true closeness of two vertices

and may fail to return high-quality clustering results.

To tackle this issue, we define and study the distance-based structural graph clustering problem. Given a

distance threshold 𝑑 and two vertices 𝑢 and 𝑣 , the structural similarity between 𝑢 and 𝑣 is defined as the

ratio of their respective neighbors within a distance of no more than 𝑑 . We show that the newly defined

distance-based SCAN achieves better clustering results compared to the vanilla version of SCAN. However, the

new definition brings challenges in the computation of final clustering results. To tackle this efficiency issue,

we propose DistanceSCAN, an efficient approximate algorithm for solving the distance-based SCAN problem.

The main idea of DistanceSCAN is to use all-distances bottom-𝑘 sketches (ADS) to speed up the computation of

similarities. Given the ADS, we can derive the similarity between two vertices with a bounded cost of 𝑂 (𝑘).
However, to ensure that the estimated similarity has an approximation guarantee, the value of 𝑘 still needs to

be set to as large as thousands. This brings high computational costs when computing the similarities between

neighboring vertices. To tackle this issue, we further construct histograms to prune the structural similarity

computations of vertices pairs. Extensive experiments on real datasets validate the effectiveness and efficiency

of DistanceSCAN.

CCS Concepts: • Theory of computation→ Graph algorithms analysis.

Additional Key Words and Phrases: structural clustering, weighted graph, all-distances sketches

ACM Reference Format:
Kaixin Liu, Sibo Wang, Yong Zhang, and Chunxiao Xing. 2023. An Efficient Algorithm for Distance-based

Structural Graph Clustering. Proc. ACM Manag. Data 1, 1, Article 45 (May 2023), 25 pages. https://doi.org/10.

1145/3588725

1 INTRODUCTION
Graph clustering is the task to group vertices into clusters by taking the topology into consideration

and has wide applications, such as community detection in social networks [22], load balancing

in distributed systems [2] and biological network analysis [14]. Different from many existing

∗
Sibo Wang and Yong Zhang are the corresponding authors.

Authors’ addresses: Kaixin Liu, Tsinghua University, Beijing, China, lkx17@mails.tsinghua.edu.cn; Sibo Wang, The Chi-

nese University of Hong Kong, Hong Kong, China, swang@se.cuhk.edu.hk; Yong Zhang, zhangyong05@tsinghua.edu.cn;

Chunxiao Xing, Tsinghua University, Beijing, China, xingcx@tsinghua.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/5-ART45 $15.00

https://doi.org/10.1145/3588725

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

HTTPS://ORCID.ORG/0000-0003-4939-0313
HTTPS://ORCID.ORG/0000-0003-1892-6971
HTTPS://ORCID.ORG/0000-0001-8803-2055
HTTPS://ORCID.ORG/0000-0001-9390-3097
https://doi.org/10.1145/3588725
https://doi.org/10.1145/3588725
https://orcid.org/0000-0003-4939-0313
https://orcid.org/0000-0003-1892-6971
https://orcid.org/0000-0001-8803-2055
https://orcid.org/0000-0001-9390-3097
https://doi.org/10.1145/3588725

45:2 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

solutions, e.g., [11, 22], structural graph clustering (SCAN) [31] can not only detect clusters, but

also hubs and outliers. Hubs and outliers do not belong to any cluster, but hubs bridge different

clusters. It is of great significance to identify hubs in many fields such as viral marketing [12],

epidemiology [28] and graph compression [19]. Therefore, many researches on SCAN have recently

emerged, e.g., [6, 24, 29].

The idea of SCAN is derived from the famous density-based clustering algorithm DBSCAN [13].

For a given vertex 𝑢 and its neighbor 𝑣 , the structural similarity is computed according to the ratio

of the common neighbors in the one-hop neighborhoods of the two vertices. If a vertex 𝑢 has many

neighbors with high structural similarity, 𝑢 will be classified as a core vertex. For the currently

discovered core vertex, SCAN traverses its one-hop neighborhood and add neighbors with high

structural similarity to the cluster containing the current core vertex. However, it may not be a

good option to consider only one-hop neighbor on weighted graphs where the weight on each edge

indicates the closeness between these two vertices. Thus, on such graphs, it is difficult for SCAN

to make full use of the weight information, and the quality of the clustering results computed by

SCAN is often unsatisfactory.

In order to obtain high-quality clustering results on weighted graphs, we define distance-based

structural graph clustering. Given a distance threshold 𝑑 and two vertices with distance no more

than 𝑑 , we compute the similarity of two vertices according to the overlap of their 𝑑-neighborhoods,

where the 𝑑-neighborhood of a vertex 𝑢 is the set of all vertices whose distance to the vertex 𝑢

does not exceed 𝑑 . The ratio of common neighbors in 𝑑-neighborhood better reflects the closeness

between vertices on weighted graphs. Below we give several examples.

Example 1.1. According to the statistical results of the academic network DBLP
1
as of March 5,

2022, Christian S. Jensen and Richard T. Snodgrass have 114 co-published articles, but only 69 of their

590 neighbors are common neighbors, and the Jaccard similarity is 0.117 and the Cosine similarity

is 0.234, which are tended to be regarded as dissimilar by SCAN. The more co-published articles, the

closer the distance between the two vertices. If the structural similarity is calculated based on the

𝑑-neighborhood, the structural similarity of Christian S. Jensen and Richard T. Snodgrass tends to be

high. Also according to DBLP, Philip S.Yu and Jiawei Han have 63 co-published articles, Xiang Ren

and Jiawei Han have 76 co-published articles, but Philip S.Yu and Xiang Ren have no co-published

articles. Since the structural similarity is only calculated for vertices in one-hop neighborhood,

SCAN is difficult to deal with such structures, and can not give the proper structural similarity

between Xiang Ren and Philip S. Yu. As Xiang Ren and Philip S. Yu are both close to Jiawei Han,

their neighbors in the 𝑑-neighborhood tend to have a lot of overlap. Thus, the structural similarity

between Xiang Ren and Philip S. Yu calculated by 𝑑-neighborhood tends to be high.

Challenges. Existing work mainly studies SCAN by considering one-hop neighbors. To the best of

our knowledge, this is the first work on distance-based structural graph clustering. There are several

challenges to solve the distance-based structural graph clustering problem. The computations of

structural similarity need to use the information of 𝑑-neighborhood. However, unlike the one-hop

neighborhood, the 𝑑-neighborhoods of vertices in a weighted undirected graph are difficult to be

obtained directly. Therefore, it is difficult to simply apply the structural graph clustering algorithms

to the distance-based structural graph clustering problem. Computing 𝑑-neighborhoods for all

vertices in an online manner requires performing shortest path computations for𝑂 (𝑛) vertices (𝑛 is

the number of vertices in the graph), which incurs prohibitive computational costs and is infeasible

on large graphs. If we pre-compute and save the 𝑑-neighborhoods of all vertices, we need to choose

a large value of 𝑑 to handle most queries, since the value of 𝑑 for each query cannot be known

1
https://dblp.uni-trier.de/

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

https://dblp.uni-trier.de/

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:3

in advance. In the worst case, the space complexity of the saved 𝑑-neighborhood of all vertices

can reach 𝑂 (𝑛2). There is no explicit correlation between the structural similarity and the distance

threshold 𝑑 . As the value of the distance threshold 𝑑 changes, the structural similarity between

two vertices may increase or decrease, which makes it difficult to reuse the structural similarity

results corresponding to different distance thresholds 𝑑 . Therefore, the space complexity of directly

caching the similarity results is also very high.

Our solution. To address the above challenges, we propose the DistanceSCAN algorithm. Dis-

tanceSCAN quickly calculates the clustering results of distance-based structural graph clustering

through the following three aspects. First, in order to improve the efficiency of DistanceSCAN, we

compute the structural similarity by bottom-𝑘 sketches [9] and all-distances bottom-𝑘 sketches [10].

Even though bottom-𝑘 sketches and all-distances bottom-𝑘 sketches are not new ideas, we make

a connection to our studied distance-based SCAN problem and tackle the challenging task of

structural similarity estimation. Second, we use histograms to quickly identify if the structural

similarities of vertex pairs with small distances are above the given threshold, saving much compu-

tational cost of traversing the 𝑘 sketch elements in bottom-𝑘 sketches. In each algorithm step, the

structural similarity is preferentially calculated for vertex pairs with small distances. Finally, in

order to reduce the number of structural similarity calculations, we immediately stop the correlation

computation of each vertex after determining whether it is a core vertex. After all vertices are

classified, the connectivity between the core vertices is checked to obtain the final clustering result.

Contributions. The contributions can be summarized as follows:

• The distance-based structural graph clustering is proposed and defined for the first time. By using

the 𝑑-neighborhood as the basis for calculating the structural similarity, the distance information

can be effectively utilized. The distance-based SCAN is a generalized definition of SCAN on

weighted graphs. If all the weights of the graph and the value of 𝑑 are equal, the distance-based

SCAN can obtain the same clustering result as SCAN.

• We devised DistanceSCAN, an efficient algorithm for approximately computing clusters on

weighted graphs. DistanceSCAN quickly computes structural similarities based on histograms

and all-distances bottom-𝑘 sketches. After reading the graph and sketches, DistanceSCAN first

detects core vertices and then classifies non-core vertices, hubs, and outliers. In order to reduce

the calculation time of structural similarity, vertex pairs with small distances are preferentially

calculated in each step.

• Extensive experiments show that the clustering results of distance-based SCAN achieve better

clustering results compared to SCAN in terms of modularity and the proposed DistanceSCAN

algorithm is more efficient than that of the baseline methods.

2 PRELIMINARIES
2.1 Problem Definition
In this paper, we focus on a weighted undirected graph𝐺 = (𝑉 , 𝐸,𝑤), where𝑉 is the set of vertices,

𝐸 ∈ 𝑉 ×𝑉 is the set of edges, and𝑤 : 𝐸 → 𝑅+ is the weight function of edges. The sizes of vertices

and edges are respectively represented by 𝑛,𝑚, that is, 𝑛 = |𝑉 |,𝑚 = |𝐸 |. The weight function 𝑤

attaches a positive value to each edge to represent the distance between the two vertices. The

smaller the distance, the closer the relationship between the two vertices. For a vertex 𝑣 ∈ 𝑉 , the
one-hop neighborhood of 𝑣 (denoted as 𝑁 (𝑣)) refers to the neighbors that are directly connected

by edges, that is, 𝑁 (𝑣) = {𝑢 | (𝑢, 𝑣) ∈ 𝐸}. In the following, for ease of presentation, we simply refer

to a weighted undirected graph as a graph. The weight of a path is the sum of the weights of all the

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

45:4 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

edges on the path. The distance 𝛿 (𝑢, 𝑣) between vertices 𝑢 and 𝑣 is the weight of the shortest path

between vertices 𝑢 and 𝑣 , which is formally defined as follows:

Definition 1 (Distance). The distance between 𝑢, 𝑣 ∈ 𝑉 is:

𝛿 (𝑢, 𝑣) =
{

min{𝑤 (𝑝) : 𝑢
𝑝
⇝ 𝑣}, if there is a path from 𝑢 to 𝑣 .

∞, otherwise.

In particular, we define the distance from the vertex to itself to be 0, that is, ∀𝑣 ∈ 𝑉 , 𝛿 (𝑣, 𝑣) = 0.

As mentioned before, computing structural similarity based on 𝑑-neighborhood tends to get better

clustering results. The definition of 𝑑-neighborhood is as follows:

Definition 2 (𝑑-neighborhood). For a vertex 𝑣 ∈ 𝑉 , the 𝑑-neighborhood of 𝑣 , 𝑁𝑑 (𝑣), is the set of
all vertices in the graph whose distance to vertex 𝑣 does not exceed 𝑑 , formally:

𝑁𝑑 (𝑣) = {𝑢 ∈ 𝑉 |𝛿 (𝑢, 𝑣) ≤ 𝑑}. (1)

Note that the vertex itself must be in the𝑑-neighborhood of the vertex. In this paper, the structural

similarity, 𝜎 (𝑢, 𝑣), of vertices 𝑢, 𝑣 is measured using the Jaccard coefficient [18] of 𝑁𝑑 (𝑢) and 𝑁𝑑 (𝑣).
In addition, the structural similarity can also be calculated using Cosine similarity or Dice similarity.

Definition 3 (Structural Similarity).

𝜎 (𝑢, 𝑣) = |𝑁𝑑 (𝑢) ∩ 𝑁𝑑 (𝑣) |
|𝑁𝑑 (𝑢) ∪ 𝑁𝑑 (𝑣) |

(2)

Given a threshold 𝜖 ∈ (0, 1), if the structural similarity between two vertices is no less than

𝜖 , we call these two vertices structurally similar, or simply similar if the context is clear.

Structural similarity is also referred to simply as similarity. If the number of similar vertices in

the 𝑑-neighborhood of a vertex 𝑣 is large, the vertex 𝑣 has a high "density" in the nearby area, and

vertex 𝑣 is likely to become a core vertex in a cluster.

Definition 4 (Core Vertex). Given a similarity threshold 𝜖 ∈ 𝑅, a threshold of similar neighbors
𝜇 ∈ 𝑁 and a distance threshold 𝑑 ∈ 𝑅, if there are no less than 𝜇 similar neighbors in 𝑁𝑑 (𝑣), the vertex
𝑣 is called a core vertex, denoted as 𝐶𝑂𝑅𝐸𝑑,𝜖,𝜇 (𝑣). The formal definition is as follows:

𝐶𝑂𝑅𝐸𝑑,𝜖,𝜇 (𝑣) ⇐⇒ |{𝑢 |𝑢 ∈ 𝑁𝑑 (𝑣)&𝜎 (𝑢, 𝑣) ≥ 𝜖}| ≥ 𝜇 (3)

The definitions of direct structural reachability and structural reachability are given below. Note

that in order to ensure the connectivity of clusters, only the one-hop neighbors of the core vertex

can be directly structurally reachable from the core vertex.

Definition 5 (Direct Structural Reachability). If the distance between a core vertex 𝑢 and a
one-hop neighbor 𝑣 is no greater than 𝑑 and they are similar, we say the vertex 𝑣 is directly structurally
reachable from the core vertex 𝑢, which is formally defined as follows:

𝐷𝑖𝑟𝑅𝐸𝐴𝐶𝐻𝑑,𝜖,𝜇 (𝑢, 𝑣) ⇐⇒ 𝐶𝑂𝑅𝐸𝑑,𝜖,𝜇 (𝑢)∧
𝑣 ∈ 𝑁𝑑 (𝑢) ∩ 𝑁 (𝑢) ∧ 𝜎 (𝑢, 𝑣) ≥ 𝜖.

(4)

Definition 6 (Structural Reachability). If there is a directly structurally reachable path from
a core vertex 𝑢 to a vertex 𝑣 , the vertex 𝑣 is structurally reachable from the core vertex 𝑢, which is
formally defined as follows:

𝑅𝐸𝐴𝐶𝐻𝑑,𝜖,𝜇 (𝑢, 𝑣) ⇐⇒ ∃𝑣1, ..., 𝑣𝑛 ∈ 𝑉 : 𝑣1 = 𝑢 ∧ 𝑣𝑛 = 𝑣

∧∀𝑖 ∈ 1, ..., 𝑛 − 1 : 𝐷𝑖𝑟𝑅𝐸𝐴𝐶𝐻𝑑,𝜖,𝜇 (𝑣𝑖 , 𝑣𝑖+1).
(5)

Definition 7 (Cluster). Given a similarity threshold 𝜖 ∈ 𝑅, a threshold of similar neighbors
𝜇 ∈ 𝑁 and a distance threshold 𝑑 ∈ 𝑅, cluster 𝐶 ⊆ 𝑉 satisfies:

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:5

• (Maximality) If a core vertex 𝑢 ∈ 𝐶 , all vertices structural reachable from the vertex 𝑢 belong to the
cluster 𝐶 .
• (Connectivity) For any vertices 𝑣1, 𝑣2 ∈ 𝐶 , there exists a core vertex 𝑢 ∈ 𝐶 such that both 𝑣1 and 𝑣2

are structural reachable from 𝑢.

A cluster contains core vertices and vertices structural reachable from the core vertices. The

vertices that do not belong to any cluster are called hubs and outliers, which are defined as follows:

Definition 8 (Hubs and Outliers). For a vertex 𝑢 ∈ 𝐺 that does not belong to any cluster, if
𝑁 (𝑢) contains vertices in two or more clusters, 𝑢 is a hub, otherwise, 𝑢 is an outlier.

Problem definition. Given a weighted undirected graph 𝐺 = (𝑉 , 𝐸,𝑤), a similarity threshold

𝜖 ∈ 𝑅, a threshold of similar neighbors 𝜇 ∈ 𝑁 and a distance threshold 𝑑 ∈ 𝑅, the distance-based
structural graph clustering problem aims to calculate the set C containing all clusters, hubs and

outliers in 𝐺 .

Note that SCAN is a special case of distance-based SCAN. When all weights in𝐺 are the same as

𝑑 , distance-based SCAN and SCAN obtain the same clustering result. Similarly, when all weights

are the same and 𝑑 is a multiple of the weight, distance-based SCAN can perform graph clustering

based on multi-hop neighbors.

2.2 Existing Solutions
2.2.1 Structural Graph Clustering. To the best of our knowledge, this is the first work to study

the distance-based SCAN problem. The most relevant research work is algorithms for structural

graph clustering. There are two state-of-the-art algorithms for solving structural graph clustering,

namely GS*-Index [29] and pSCAN [6].

GS*-Index. GS*-Index pre-computes similarities and builds indices to quickly answer clustering

queries. GS*-index takes advantage of the fact that the structural similarity on the unweighted

graph is not related to 𝜇, and caches the similarity of all edges and arranges them reasonably to

deal with clustering queries. However, this method is not suitable for distance-based structural

graph clustering. For different values of 𝑑 , the structural similarity of vertices will change, which

makes it difficult to reuse the structural similarity. If the structural similarity of all neighbors

in 𝑑-neighborhoods is cached for each vertex in the graph for different values of 𝑑 , the space

complexity is unacceptable.

The pSCANmethod. The pSCANmethod designs pruning techniques to speed up the computation

of clusters. It maintains the upper and lower bounds of the number of similar neighbors for each

vertex. When the lower bound of vertex 𝑣 is no lower than 𝜇, 𝑣 becomes a core vertex. When

the upper bound of vertex 𝑣 is lower than 𝜇, 𝑣 cannot be a core vertex. It detects core vertices

in descending order of the upper bound of similar neighbors of vertices. If it can be determined

whether the current vertex is a core vertex, the calculation of the structural similarity will be

stopped. It reduces the number of edges required to calculate the structural similarity and improves

efficiency. But it also can not be directly applied to distance-based structural graph clustering.

Because both the similarity calculation and the initialization of the upper bound of similar neighbors

need to calculate 𝑑-neighborhood. The worst-case time complexity of online computation of 𝑑-

neighborhood is 𝑂 (𝑛2
log(𝑛)). The worst-case space complexity for caching the 𝑑-neighborhood is

𝑂 (𝑛2). These time and space complexities are unacceptable for large networks.

WeightedSCAN. Some existing work, e.g. WeightedSCAN [16] generalizes structural graph clus-

tering to weighted graphs. They use weighted Cosine similarity to calculate structural similarity.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

45:6 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

However, the clustering result of WeightedSCAN is not as good as the distance-based SCAN we

defined, which is verified by the experimental results in Section 5.

2.2.2 Jaccard Coefficient Calculation. Bottom-𝑘 sketches [9] are often used to efficiently calculate

the Jaccard coefficient. Bottom-𝑘 sketches use a single hash function to calculate the 𝑘 elements

with the smallest hash value in the given sets. The formal definition of bottom-𝑘 sketches is shown

in Definition 9.

Definition 9 (Bottom-𝑘 sketches [9]). Given a graph𝐺 , a hash function ℎ𝑎𝑠ℎ(·) and a distance
threshold 𝑑 , the bottom-𝑘 sketch 𝐵(𝑢) of a vertex 𝑢 ∈ 𝐺 is a list of entries {ℎ𝑎𝑠ℎ(𝑣1), ℎ𝑎𝑠ℎ(𝑣2), ..., ℎ𝑎𝑠ℎ
(𝑣𝑘)}, where 𝑣𝑖 is the vertex with 𝑖-th smallest hash value in 𝑁𝑑 (𝑢).

For distance-based structural graph clustering, different values of 𝑑 correspond to different

𝑑-neighborhoods. The time complexity of creating sketches for all possible distances is very high.

Edith Cohen et al. [10] propose the all-distance bottom-𝑘 sketches (ADS) to solve this problem.

ADS can encode all neighborhoods with small space complexity, from which bottom-𝑘 sketches of

𝑑-neighborhood can be quickly retrieved. The definition of all-distances bottom-𝑘 sketches is given
in Definition 10. We will make full use of ADS to improve our algorithm efficiency and optimize

the construction and extraction of sketches.

Definition 10 (All-distances bottom-𝑘 sketches). Given a graph𝐺 and a hash function ℎ𝑎𝑠ℎ,
the all distances bottom-𝑘 sketches B(𝑢) of a vertex 𝑣 ∈ 𝐺 is a list of entries {(ℎ𝑎𝑠ℎ(𝑣), 𝛿 (𝑢, 𝑣))} where
ℎ𝑎𝑠ℎ(𝑣) is smaller than the 𝑘-th lowest hash value amongst vertices within distance at most 𝛿 (𝑢, 𝑣)
from 𝑢.

3 STRUCTURAL SIMILARITY CALCULATION
Structural similarity calculation is the main bottleneck of DistanceSCAN. In order to quickly

calculate similarities between vertices pairs, we simultaneously construct histograms and ADS.

Histograms can be used as the basis for pruning similarity calculation. If the similarity cannot be

determined according to histograms, bottom-𝑘 sketches corresponding to any distance threshold

can be extracted from ADS to quickly calculate the similarity. In this section, we first explain the

construction process of the sketches, then introduce how to quickly calculate the similarity based

on bottom-𝑘 sketches and histograms.

3.1 Construct Sketches
We first introduce algorithms for constructing histograms and ADS. Note that ADS cannot be

directly used to calculate similarity. So we also provide an algorithm to extract bottom-𝑘 sketches

from ADS. The upper and lower bounds of the similarity can be derived from the size of the

𝑑-neighborhood, which is described in detail in Section 3.2. In order to preserve the size information

of the 𝑑-neighborhoods of each vertex, we construct histograms. The formal definition of the

histogram index is as follows.

Definition 11 (Histogram). Given the width of bin 𝜔 ∈ 𝑅, for any vertex 𝑢 in the graph, the
histogram 𝐻 [𝑢] contains the vector (𝐻 [𝑢] [𝑖]), 𝑖 = 1, 2, 3..., where 𝐻 [𝑢] [𝑖] is the size of the (𝑖 × 𝜔)-
neighborhood of the vertex 𝑢.

The 𝑑-neighborhoods are the basis for the construction of histograms and ADS. We traverse

the 𝑑-neighborhood of each vertex 𝑣 ∈ 𝑉 based on the Dijkstra algorithm. During the traversal,

we update the histograms and ADS by 𝛿 (𝑢, 𝑣) and the hash value of the scanned vertex 𝑢. While

building sketches, we can traverse all the vertices reachable by vertex 𝑣 in the graph. However, if

the value of 𝑑 is too large, it will cause the 𝑑-neighborhoods sizes of most vertices in the graph to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:7

be 𝑂 (𝑛), and most of the vertices are similar. Obviously, the clustering results obtained in this case

have no practical significance. Therefore, we set the parameter 𝑑𝑚𝑎𝑥 . For each vertex 𝑣 ∈ 𝑉 in the

graph, we only compute the vertices whose distance to vertex 𝑣 does not exceed 𝑑𝑚𝑎𝑥 .

Algorithm 1 shows the pseudo-code to construct sketches. It traverses the 𝑑-neighborhood of

each vertex in the graph by the Dijkstra algorithm with pruning conditions. Firstly, it initializes

histograms and ADS (Line 1). Then, it constructs sketches for each vertex (Lines 2-14). The algorithm

for constructing ADS in [8] traverses vertices in ascending hash value order. However, this method

cannot construct histograms that can greatly improve efficiency. Algorithm 1 utilizes the process of

the Dijkstra algorithm to traverse the 𝑑-neighborhood in ascending order of distance (Lines 3-8,11-

14), which can build histograms and ADS (Lines 9-10) at the same time. In particular, Algorithm 1

initializes the distances from the current vertex 𝑢 to each vertex in the graph (Lines 3-5). Next, it

pushes 𝑢 into the empty priority queue 𝑃𝑄 (Line 6). For each vertex 𝑣 in 𝑃𝑄 , it updates sketches

(Lines 9-10) and pushes vertices whose distances to the vertex 𝑢 are less than 𝑑𝑚𝑎𝑥 into the priority

queue 𝑃𝑄 (Lines 11-14).

The time complexity of traversing the 𝑑-neighborhood of each vertex is 𝑂 (𝑛Δ log(Δ)), where Δ
represents the maximum size of the 𝑑𝑚𝑎𝑥 -neighborhood. Line 9 updates histograms. The number

of bins ℎ in the histogram of each vertex can be obtained from the ratio of 𝑑𝑚𝑎𝑥 to the width of

bins 𝜔 . Since ℎ is much smaller than the number of vertices in the graph, that is, ℎ ≪ 𝑛, the space

complexity of histograms is 𝑂 (𝑛) and the time complexity of updating histograms is 𝑂 (1). Line
10 updates ADS. ADS can be stored using persistent balanced binary trees [10]. For a persistent

balanced binary tree, the time and space complexity of creating a new tree is 𝑂 (1), and the time

and space complexities of insertion and deletion are 𝑂 (log(𝑘)). If the number of vertices in the

current binary tree is less than 𝑘 when a vertex 𝑣 arrives, a new binary tree is directly created, and

the vertex 𝑣 is inserted into the new tree. Suppose the size of the current binary tree is equal to 𝑘

and the hash value of vertex 𝑣 is less than the maximum value in the current binary tree. In that

case, we create a new tree, delete the vertex with the largest hash value in the new tree and insert

vertex 𝑣 into the new tree. Given a vertex 𝑣 ∈ 𝑉 , we use the maximum distance from the vertex in

a bottom-𝑘 sketch to 𝑣 to represent the distance from the bottom-𝑘 sketch to 𝑣 . Bottom-𝑘 sketches

in B(𝑣) are arranged in increasing order of distance from bottom-𝑘 sketches to the vertex 𝑣 . Given

a distance threshold 𝑑 , bottom-𝑘 sketches can be retrieved in 𝑂 (𝑘) time after obtaining the indices

by binary search from ADS.

Although bottom-𝑘 sketches can be quickly retrieved using persistent balanced binary trees,

persistent balanced binary trees still result in high space complexity. In order to reduce the space

complexity, we directly save the hash values and distances of vertices in bottom-𝑘 sketches as

a list and use the max-heap to insert, modify, and return bottom-𝑘 sketches. Algorithm 2 shows

the pseudo-code for updating ADS. 𝑃𝑄 is the priority queue that holds the current bottom-𝑘 hash

values (Line 1). Since the vertices arrive in the order of increasing distance, when the size of 𝑃𝑄 is

less than 𝑘 , Lines 3-5 directly push the information of a vertex 𝑣 into B(𝑢) and 𝑃𝑄 . When the size

of 𝑃𝑄 is equal to 𝑘 and the hash value of 𝑣 is less than the max value in 𝑃𝑄 , Lines 6-9 first delete

the vertex with the largest hash value in 𝑃𝑄 and then push the information of vertex 𝑣 to 𝑃𝑄 and

B(𝑢). The space complexity of each update of ADS is 𝑂 (1) and the time complexity is 𝑂 (log(𝑘)).
To compute the similarity, we need to get bottom-𝑘 sketches from ADS based on a given distance

threshold. Getting the bottom-𝑘 sketches from ADS also utilizes the max-heap. Algorithm 3 shows

the pseudo-code. Line 1 initializes an empty priority queue. For items in B(𝑢) whose distance is
not greater than 𝑑 , Lines 3-9 take out the 𝑘 items with the smallest hash value. Line 10 updates

the bottom-𝑘 sketch of the vertex 𝑢. The time complexity of computing bottom-𝑘 sketches for all

vertices in the graph is 𝑂 (𝑛Δ log(𝑘)), where Δ represents the max size of 𝑑-neighborhood.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

45:8 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

Algorithm 1: ConstructSkeches
Input: Graph 𝐺 (𝑉 , 𝐸,𝑤) and parameters 𝑑𝑚𝑎𝑥 , 𝑘, 𝜔

Output: Histograms 𝐻 , ADS B
1 𝐻 ← ∅,B← ∅;
2 foreach 𝑢 ∈ 𝑉 do
3 foreach 𝑣 ∈ 𝑉 do
4 𝛿 (𝑢, 𝑣) ← ∞;
5 𝛿 (𝑢,𝑢) ← 0;

6 𝑃𝑄.𝑝𝑢𝑠ℎ(𝑢);
7 while 𝑃𝑄 ≠ ∅ do
8 𝑣 ← 𝑃𝑄.𝑝𝑜𝑝 ();
9 Increase the frequencies of the bins corresponding to 𝛿 (𝑢, 𝑣) in 𝐻 [𝑢] by 1;

10 UpdateADS(B, 𝑢, 𝑣, 𝛿 (𝑢, 𝑣)) (Algo. 2);
11 foreach 𝑣𝑛𝑒𝑖 ∈ 𝑁 (𝑣) do
12 if 𝛿 (𝑢, 𝑣) +𝑤 (𝑣, 𝑣𝑛𝑒𝑖) < min{𝑑𝑚𝑎𝑥 , 𝛿 (𝑢, 𝑣𝑛𝑒𝑖)} then
13 𝛿 (𝑢, 𝑣𝑛𝑒𝑖) ← 𝛿 (𝑢, 𝑣) +𝑤 (𝑣, 𝑣𝑛𝑒𝑖);
14 𝑃𝑄.𝑝𝑢𝑠ℎ(𝑣𝑛𝑒𝑖);

15 return 𝐻,B;

Algorithm 2: UpdateADS
Input: ADS B, vertices 𝑢, 𝑣 and distance 𝛿 (𝑢, 𝑣)
Output: ADS B

1 Let 𝑃𝑄 be the priority queue saving the bottom-𝑘 sketch of vertex 𝑢;

2 Let ℎ𝑎𝑠ℎ(𝑣) be the hash value of vertex 𝑣 ;

3 if |𝑃𝑄 | < 𝑘 then
4 𝑃𝑄 .push(ℎ𝑎𝑠ℎ(𝑣));
5 B(𝑢).push((ℎ𝑎𝑠ℎ(𝑣), 𝛿 (𝑢, 𝑣)));
6 else if 𝑃𝑄 .top()>ℎ𝑎𝑠ℎ(𝑣) then
7 𝑃𝑄 .pop();

8 𝑃𝑄 .push(ℎ𝑎𝑠ℎ(𝑣));
9 B(𝑢).push((ℎ𝑎𝑠ℎ(𝑣), 𝛿 (𝑢, 𝑣)));

10 return B;

3.2 Estimating Structural Similarity
Similar to SCAN, similarity calculation is the main procedure of the distance-based SCAN and the

bottleneck of the algorithm efficiency. We speed up the computation of similarity by histograms

and bottom-𝑘 sketches computed by Algorithm 1 and Algorithm 3 in Section 3.1, respectively.

We first give some theoretical analysis of calculating similarity using histograms and bottom-𝑘

sketches, and then show the algorithm for similarity calculation. Lemma 3.1 and Lemma 3.2 give

upper and lower bounds on the similarity.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:9

Lemma 3.1. Given a vertex 𝑢 ∈ 𝑉 and a vertex 𝑣 ∈ 𝑁𝑑 (𝑢), the similarity of vertices 𝑢 and 𝑣 satisfies:

𝜎 (𝑢, 𝑣) ≤ min

{
|𝑁𝑑 (𝑢) |
|𝑁𝑑 (𝑣) |

,
|𝑁𝑑 (𝑣) |
|𝑁𝑑 (𝑢) |

}
(6)

Proof. If the amount of vertices in 𝑁𝑑 (𝑢) is not less than 𝑁𝑑 (𝑣), when 𝑁𝑑 (𝑣) ⊆ 𝑁𝑑 (𝑢), |𝑁𝑑 (𝑢) ∩
𝑁𝑑 (𝑣) | takes the maximum value |𝑁𝑑 (𝑣) | and |𝑁𝑑 (𝑢) ∪ 𝑁𝑑 (𝑣) | takes the minimum value 𝑁𝑑 (𝑢).
Therefore 𝜎 (𝑢, 𝑣) is not greater than |𝑁𝑑 (𝑣) |/|𝑁𝑑 (𝑢) |. If the amount of vertices in 𝑁𝑑 (𝑣) is not less
than 𝑁𝑑 (𝑢), when 𝑁𝑑 (𝑢) ⊆ 𝑁𝑑 (𝑣), we have 𝜎 (𝑢, 𝑣) ≤ |𝑁𝑑 (𝑢) |/|𝑁𝑑 (𝑣) |. □

Lemma 3.2. Given a vertex 𝑢 ∈ 𝑉 and a vertex 𝑣 ∈ 𝑁𝑑 (𝑢), the similarity of vertices 𝑢 and 𝑣 satisfies:

𝜎 (𝑢, 𝑣) ≥ max

{
|𝑁𝑑−𝛿 (𝑢,𝑣) (𝑢) |

|𝑁𝑑 (𝑢) |+|𝑁𝑑 (𝑣) |− |𝑁𝑑−𝛿 (𝑢,𝑣) (𝑢) | ,
|𝑁𝑑−𝛿 (𝑢,𝑣) (𝑣) |

|𝑁𝑑 (𝑢) |+|𝑁𝑑 (𝑣) |− |𝑁𝑑−𝛿 (𝑢,𝑣) (𝑣) |

} (7)

Proof. As 𝑣 ∈ 𝑁𝑑 (𝑢), we have 𝛿 (𝑢, 𝑣) ≤ 𝑑 . According to the triangle inequality of distance,

for vertex 𝑥 ∈ 𝑁𝑑−𝛿 (𝑢,𝑣) (𝑢), the distance from vertex 𝑥 to 𝑣 satisfies 𝛿 (𝑥, 𝑣) ≤ 𝛿 (𝑥,𝑢) + 𝛿 (𝑢, 𝑣) ≤
(𝑑 − 𝛿 (𝑢, 𝑣)) + 𝛿 (𝑢, 𝑣) = 𝑑 . It can be seen that the vertices in 𝑁𝑑−𝛿 (𝑢,𝑣) (𝑢) must also be in the

𝑑-neighborhood of 𝑣 , that is, 𝑁𝑑−𝛿 (𝑢,𝑣) (𝑢) ⊆ 𝑁𝑑 (𝑣). Therefore, 𝑁𝑑−𝛿 (𝑢,𝑣) (𝑢) ⊆ 𝑁𝑑 (𝑢) ∩ 𝑁𝑑 (𝑣).
So, |𝑁𝑑 (𝑢) ∩ 𝑁𝑑 (𝑣) | ≥ |𝑁𝑑−𝛿 (𝑢,𝑣) (𝑢) |, and |𝑁𝑑 (𝑢) ∪ 𝑁𝑑 (𝑣) | ≤ |𝑁𝑑 (𝑢) | + |𝑁𝑑 (𝑣) | − |𝑁𝑑−𝛿 (𝑢,𝑣) (𝑢) |.
We have 𝜎 (𝑢, 𝑣) ≥ |𝑁𝑑−𝛿 (𝑢,𝑣) (𝑢) |/(|𝑁𝑑 (𝑢) | + |𝑁𝑑 (𝑣) | − |𝑁𝑑−𝛿 (𝑢,𝑣) (𝑢) |). Similarly, 𝑁𝑑−𝛿 (𝑢,𝑣) (𝑣) ⊆
𝑁𝑑 (𝑢) ∩ 𝑁𝑑 (𝑣), and 𝜎 (𝑢, 𝑣) ≥ |𝑁𝑑−𝛿 (𝑢,𝑣) (𝑣) |/(|𝑁𝑑 (𝑢) | + |𝑁𝑑 (𝑣) | − |𝑁𝑑−𝛿 (𝑢,𝑣) (𝑣) |). □

If the upper bound of 𝜎 (𝑢, 𝑣) is lower than the threshold 𝜖 , we can directly conclude that vertex

𝑢 and vertex 𝑣 are not similar. If the lower bound of 𝜎 (𝑢, 𝑣) is higher than the threshold 𝜖 , we

can directly conclude that vertex 𝑢 and vertex 𝑣 are similar. The histograms save the number of

neighbors at different distances for each vertex. We can query the upper and lower bounds of

𝑁𝑑 (𝑢), 𝑁𝑑 (𝑣), 𝑁𝑑−𝛿 (𝑢,𝑣) (𝑣), 𝑁𝑑−𝛿 (𝑢,𝑣) (𝑢) in𝑂 (1) time and then judge whether vertices 𝑢, 𝑣 are simi-

lar. The size of 𝑑-neighborhood is monotonically non-decreasing with the growth of 𝑑 . Combining

with Lemma 3.2, it can be known that if the distance 𝛿 (𝑢, 𝑣) between vertices 𝑢 and 𝑣 is small, the

similarity may be high. In order to prune similarity computations based on the histogram as much

as possible, DistanceSCAN at each step preferentially computes the similarity of pairs of vertices

that are close together.

For vertices𝑢 ∈ 𝑉 , 𝑣 ∈ 𝑁𝑑 (𝑢), when the upper and lower bounds of the similarity provided by his-

tograms cannot directly determine whether they are similar or not, we get a more accurate estimate

of the similarity using bottom-𝑘 sketches. Let 𝜎̂ (𝑢, 𝑣) = |𝐵(𝐵(𝑢) ∪ 𝐵(𝑣)) ∩ 𝐵(𝑢) ∩ 𝐵(𝑣) |/|𝐵(𝐵(𝑢) ∪
𝐵(𝑣)) | represent the approximate similarity computed by bottom-𝑘 sketches, Theorem 3.3 shows

that the 𝜎̂ (𝑢, 𝑣) is an unbiased estimate of the similarity 𝜎 (𝑢, 𝑣). The complexity of estimating

similarity using bottom-𝑘 sketches is𝑂 (𝑘). If 𝑘 is set too small, it will bring a large error bound, and

if 𝑘 is too large, it will increase the computational cost. Given the relative error 𝜌 and the failure

probability 𝑝 𝑓 , according to Theorem 3.4, we can get the required size of 𝑘 . Although Theorem 3.4

computes a high value of 𝑘 , experiments in Section 5 show that very accurate clustering results

can be obtained even when 𝑘 is small.

Theorem 3.3. Given sets 𝐴1, 𝐴2 and a hash function, let 𝐵(𝐴) denote the bottom-𝑘 sketch of set 𝐴.
When the number of elements in 𝐴 is less than 𝑘 , 𝐵(𝐴) contains all the elements in 𝐴. An unbiased
estimate of the Jaccard coefficient of sets 𝐴1, 𝐴2 can be obtained based on bottom-𝑘 sketches, namely:

E

[
|𝐴1 ∩𝐴2 |
|𝐴1 ∪𝐴2 |

]
= E

[
|𝐵(𝐵(𝐴1) ∪ 𝐵(𝐴2)) ∩ 𝐵(𝐴1) ∩ 𝐵(𝐴2) |

|𝐵(𝐵(𝐴1) ∪ 𝐵(𝐴2)) |

]
(8)

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

45:10 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

Algorithm 3: GetBottom-𝑘Sketches

Input: ADS B, parameters 𝑑, 𝑘

Output: Bottom-𝑘 sketches 𝐵

1 foreach 𝑢 ∈ 𝑉 do
2 𝑃𝑄 ← ∅;
3 foreach (ℎ𝑎𝑠ℎ(𝑣), 𝛿 (𝑢, 𝑣)) ∈ B(𝑢) do
4 if 𝛿 (𝑢, 𝑣) ≤ 𝑑 then
5 if |𝑃𝑄 | < 𝑘 then
6 𝑃𝑄 .push(𝑣);

7 else if 𝑃𝑄 .top()>ℎ𝑎𝑠ℎ(𝑣) then
8 𝑃𝑄 .pop();

9 𝑃𝑄 .push(𝑣);

10 𝐵(𝑢) ← hash values in 𝑃𝑄 ;

11 return 𝐵;

Proof. Let ℎ𝑎𝑠ℎ(·) denote the hash function that generate bottom-𝑘 sketches and ℎ𝑎𝑠ℎ(𝐴)
denote the set of hash values of elements in set 𝐴. Clearly,

𝐵(𝐵(𝐴1) ∪ 𝐵(𝐴2)) = 𝑀𝐼𝑁𝑘 (ℎ𝑎𝑠ℎ(𝐴1) ∪ ℎ𝑎𝑠ℎ(𝐴2))
= 𝑀𝐼𝑁𝑘 (ℎ𝑎𝑠ℎ(𝐴1 ∪𝐴2))

(9)

where𝑀𝐼𝑁𝑘 (·) represents the 𝑘 elements with the smallest value in the set. Let 𝛼 be the smallest

value in ℎ𝑎𝑠ℎ(𝐴1 ∪𝐴2) and ℎ𝑎𝑠ℎ−1 (𝛼) be the element in 𝐴1 ∪𝐴2 whose hash value is 𝛼 , then

Pr[𝛼 ∈ 𝐵(𝐴1) ∩ 𝐵(𝐴2)] = Pr[ℎ𝑎𝑠ℎ−1 (𝛼) ∈ 𝐴1 ∩𝐴2]
=

|𝐴1∩𝐴2 |
|𝐴1∪𝐴2 |

(10)

Repeat this process for each element in 𝐵(𝐵(𝐴1) ∪ 𝐵(𝐴2)), and the theorem is proved. □

Theorem 3.4. Given an relative error parameter 𝜌 > 0, if 𝑘 ≥ log(1/𝑝𝑓) (1/2+2𝜎𝑚𝑖𝑛/3)
𝜌2𝜎2

𝑚𝑖𝑛

,

|𝜎̂ (𝑢, 𝑣) − 𝜎 (𝑢, 𝑣) | ≤ 𝜌 · 𝜎 (𝑢, 𝑣) (11)

holds with at least 1−𝑝 𝑓 probability for any 𝜎 (𝑢, 𝑣) > 𝜎𝑚𝑖𝑛 , where 𝜎̂ (𝑢, 𝑣) is the approximate similarity
calculated by bottom-𝑘 sketches.

Proof. We use the following theorem to prove Theorem 3.4.

Theorem 3.5 (Bernstein’s ineqality). [3] Let 𝑋 = (𝑥1, ..., 𝑥𝑛) be a finite population of 𝑛
points and 𝑋1, ..., 𝑋𝑘 be a random sample drawn without replacement from 𝑋 . Let 𝑎 = min1≤𝑖≤𝑛 𝑥𝑖 ,
𝑏 = max1≤𝑖≤𝑛 𝑥𝑖 and 𝜇 = 1

𝑛

∑𝑛
𝑖=1

𝑥𝑖 . The variance of 𝑋 is 𝐷 [𝑋] = 1

𝑛

∑𝑛
𝑖=1
(𝑥𝑖 − 𝜇)2. Then for all 𝜖 > 0,

Pr

[
1

𝑘

𝑘∑︁
𝑖=1

𝑋𝑖 − 𝜇 ≥ 𝜖

]
≤ exp

(
− 𝑘𝜖2

2𝐷 [𝑋] + (2/3) (𝑏 − 𝑎)𝜖

)
. (12)

Given two vertices 𝑢, 𝑣 , the bottom-𝑘 sketch 𝐵(𝐵(𝑢) ∪ 𝐵(𝑉)) contains 𝑘 random samples drawn

without replacement from 𝑁𝑑 (𝑢) ∪𝑁𝑑 (𝑣). If |𝑁𝑑 (𝑢) ∪𝑁𝑑 (𝑣) | ≤ 𝑘 , 𝜎̂ (𝑢, 𝑣) = 𝜎 (𝑢, 𝑣) and Theorem 3.4

holds. Otherwise, the error bound of 𝜎̂ (𝑢, 𝑣) is proved as follows. Let 𝑥𝑖 be a variable that takes

value 1 if 𝑁𝑑 (𝑢) ∩ 𝑁𝑑 (𝑣) contains the 𝑖-th element in 𝑁𝑑 (𝑢) ∪ 𝑁𝑑 (𝑣), and value 0 otherwise. We

have 𝑎 = min1≤𝑖≤𝑛 𝑥𝑖 = 0, 𝑏 = max1≤𝑖≤𝑛 𝑥𝑖 = 1,
1

𝑘

∑𝑘
𝑖=1

𝑥𝑖 = 𝜎̂ (𝑢, 𝑣) and 𝜇 = 1

𝑛

∑𝑛
𝑖=1

𝑥𝑖 = 𝜎 (𝑢, 𝑣).
The variance of 𝑋 is 𝐷 [𝑋] = 𝜎 (𝑢, 𝑣) − 𝜎2 (𝑢, 𝑣) ≤ 1/4. Let 𝜖 = 𝜌 · 𝜎𝑚𝑖𝑛 , we have

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:11

Algorithm 4: ComputeSimilarityBySketches

Input: Histograms 𝐻 , bottom-𝑘 sketches 𝐵, vertices 𝑢, 𝑣

Output: Vertices 𝑢, 𝑣 are similar or not

1 𝑁 𝑙𝑏
𝑑
(𝑢), 𝑁𝑢𝑏

𝑑
(𝑢), 𝑁 𝑙𝑏

𝑑−𝛿 (𝑢,𝑣) (𝑢) ← 𝐻 (𝑢);
2 𝑁 𝑙𝑏

𝑑
(𝑣), 𝑁𝑢𝑏

𝑑
(𝑣), 𝑁 𝑙𝑏

𝑑−𝛿 (𝑢,𝑣) (𝑣) ← 𝐻 (𝑢);
3 𝜎𝑙𝑏 (𝑢, 𝑣), 𝜎𝑢𝑏 (𝑢, 𝑣) ←compute lower bound and upper bound of 𝜎 (𝑢, 𝑣)(Lemma 3.1, 3.2);

4 if 𝜎𝑙𝑏 (𝑢, 𝑣) ≥ 𝜖 then
5 return True;

6 else if 𝜎𝑢𝑏 (𝑢, 𝑣) < 𝜖 then
7 return False;

8 𝜎̂ (𝑢, 𝑣) ← compute similarity by 𝐵(𝑢), 𝐵(𝑣);
9 if 𝜎̂ (𝑢, 𝑣) ≥ 𝜖 then
10 return True;

11 else
12 return False;

Pr

[
1

𝑘

∑𝑘
𝑖=1

𝑋𝑖 − 𝜇 ≥ 𝜖

]
= Pr[𝜎̂ (𝑢, 𝑣) − 𝜎 (𝑢, 𝑣) ≥ 𝜌 · 𝜎𝑚𝑖𝑛]

≤ exp

(
− 𝑘 ·𝜌2 ·𝜎2

𝑚𝑖𝑛

2𝐷 [𝑋]+(2/3) (𝑏−𝑎) ·𝜌𝜎𝑚𝑖𝑛

)
≤ exp

(
− 𝑘 ·𝜌2 ·𝜎2

𝑚𝑖𝑛

1/2+(2/3) ·𝜌𝜎𝑚𝑖𝑛

)
Since 𝑘 ≥ log(1/𝑝𝑓) (1/2+2𝜎𝑚𝑖𝑛/3)

𝜌2𝜎2

𝑚𝑖𝑛

, we can conclude that

Pr[|𝜎̂ (𝑢, 𝑣) − 𝜎 (𝑢, 𝑣) | > 𝜌𝜎𝑚𝑖𝑛] ≤ 1 − 𝑝 𝑓 .
□

Algorithm 4 shows the pseudo-code for computing similarity using histograms and bottom-𝑘

sketches. Since histograms can determine whether the vertex pairs are similar within 𝑂 (1) time,

the algorithm preferentially uses histograms for pruning. Lines 1-2 extract the upper and lower

bounds of the 𝑑-neighborhood and the lower bound of (𝑑 − 𝛿 (𝑢, 𝑣))-neighborhood of the vertices

𝑢, 𝑣 from histograms. Line 3 calculates the upper and lower bounds of the similarity according to

Lemma 3.1 and Lemma 3.2. If Line 4 or Line 6 can directly judge whether vertices 𝑢, 𝑣 are similar

or not, Algorithm 4 returns the result. Otherwise, Lines 8-12 calculate the approximate similarity

𝜎̂ (𝑢, 𝑣) using bottom-𝑘 sketches, and return the similarity result. It should be noted that our main

purpose is to judge whether 𝜎̂ (𝑢, 𝑣) is less than 𝜖 , not to calculate 𝜎̂ (𝑢, 𝑣). Therefore, in the process

of calculating 𝜎̂ (𝑢, 𝑣), when it can be determined whether 𝜎̂ (𝑢, 𝑣) is less than 𝜖 , the calculation can

be terminated in advance and return the similarity result.

As a summary, we list the relationships between the algorithms in this section. Algorithm 1 builds

histograms and ADS, which will be used in similarity computation (Algorithm 4). Algorithm 2

shows the key steps of updating ADS in the sketch construction (Algorithm 1). Given a distance

threshold, Algorithm 3 gets the bottom-𝑘 sketches from ADS, which is to be used in similarity

computation (Algorithm 4). Algorithm 4 calculates the similarity for vertex pairs according to the

histogram constructed by Algorithm 1 and the bottom-𝑘 sketches obtained by Algorithm 3.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

45:12 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

Algorithm 5: DistanceSCAN
Input: A weighted graph 𝐺 (𝑉 , 𝐸,𝑤) and parameters 𝑑, 𝜖, 𝜇

Output: The clustering result of 𝐺
1 𝐻,B← InitSketches(𝐺,𝑑) ; // Invoke Algo. 1 to construct sketches or load

pre-stored sketches

2 𝐵 ← GetBottom-𝑘Sketches(B, 𝑑) (Algo. 3);

3 𝑆 ← ∅;
4 foreach 𝑣 ∈ 𝑉 do
5 𝑙𝑏 (𝑣) ← 0;

6 𝑢𝑏 (𝑣) ← 𝑁𝑢𝑏
𝑑
(𝑣);

7 Initialize the vertex type of 𝑣 ;

8 foreach unclassified 𝑢 ∈ 𝑉 do
9 CheckCore(𝐻, 𝐵, 𝑆,𝑢) (Algo. 6);

10 C, hubs and outliers← GetClusters(𝐻, 𝐵, 𝑆);

11 return C, hubs and outliers;

4 OUR APPROACH
In this section, we design an efficient approximation algorithm DistanceSCAN to solve the distance-

based structural graph clustering problem. Structural similarity calculation is the performance

bottleneck of the algorithm, so we use histograms to support pruning techniques and use bottom-𝑘

sketches for fast computation. The main idea of DistanceSCAN is to first identify core vertices,

then check the connectivity between the core vertices, and finally classify the non-core vertices.

4.1 Algorithm Overview
As stated in Section 2.2, the main difficulty of the distance-based structural graph clustering problem

is that the 𝑑-neighborhood is unknown. In large networks, it takes a long time to perform online

computations, and the space complexity is too high to save 𝑑-neighbors directly. In order to quickly

obtain 𝑑-neighborhood information to calculate similarity with low time and space complexities,

we construct histograms and ADS for each vertex in the graph. Histograms store the size of the

𝑑-neighborhood of each vertex for different values of 𝑑 . Given vertices 𝑢, 𝑣 , we can quickly calculate

the upper and lower bounds of the similarity based on histograms 𝐻 (𝑢), 𝐻 (𝑣) and the distance

between two vertices 𝛿 (𝑢, 𝑣). When the similarity computation cannot be pruned according to

the upper and lower bounds, we calculate the approximate similarity 𝜎̂ (𝑢, 𝑣) based on bottom-𝑘

sketches retrieved from ADS. According to Section 3, it is easy to judge whether vertices with

close distance are similar or not. So the main design principle of our DistanceSCAN algorithm is to

preferentially calculate the similarity for vertices pairs with closer distance.

Algorithm 5 shows the pseudo-code for DistanceSCAN. Line 1 initializes histograms 𝐻 and

ADS B. If the sketches are pre-computed, histograms and ADS are read directly from memory or

disk. Otherwise, histograms and ADS are constructed using Algorithm 1. Bottom-𝑘 sketches 𝐵

are retrieved from ADS using Algorithm 3 (Line 2). In order to reduce repeated calculations and

prevent the space complexity from being too high, if the vertex 𝑢 is in the bottom-𝑘 sketch of vertex

𝑣 , DistanceSCAN uses a hash table 𝑆 initialized in Line 3 to cache 𝜎 (𝑢, 𝑣). For each vertex 𝑣 , the

upper bound of similar neighbors is the upper bound of 𝑁𝑑 (𝑣), and the lower bound is 0 (Lines 4-6).
If the size of 𝐵(𝑣) is less than 𝑘 , 𝑢𝑏 (𝑣) = |𝐵(𝑣) |. Otherwise, we get the upper bound of 𝑁𝑑 (𝑣) by
the histogram of vertex 𝑣 . Line 7 initializes 𝑣 as unclassified if 𝑢𝑏 (𝑣) ≥ 𝜆, otherwise non-core. Lines

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:13

Algorithm 6: CheckCore
Input: Histograms 𝐻 , bottom-𝑘 sketches 𝐵, similarity results 𝑆 , vertex 𝑢

Output: the vertex type of 𝑢
1 Sort the vertices in 𝐵(𝑢) in ascending order of distance;

2 foreach 𝑣 ∈ 𝐵(𝑢) do
3 CheckSimilarity(𝐻, 𝐵, 𝑆,𝑢, 𝑣) (Algo. 7);

4 if 𝑢 is not unclassified then
5 return the vertex type of 𝑢;

6 Perform Dijkstra from 𝑢 to traverse 𝑁𝑑 (𝑢) while 𝑢 is unclassified;

7 foreach 𝑣 ∈ 𝑁𝑑 (𝑢) in ascending order of 𝛿 (𝑢, 𝑣) do
8 CheckSimilarity(𝐻, 𝐵, 𝑆,𝑢, 𝑣) (Algo. 7);

9 if 𝑢 is core vertex or non-core vertex then
10 return the vertex type of 𝑢;

8-9 check whether each unclassified vertex is a core vertex. In this step, the algorithm calculates

the similarity of the neighbors in the 𝑑-neighborhood according to the distance from small to large

and updates the upper and lower bounds of similar neighbors and the vertex type. Line 10 first

detects the connectivity between core vertices, then identifies non-core vertices in clusters, hubs,

and outliers. Line 11 returns the clustering result containing clusters, hubs, and outliers.

4.2 Core Vertices Detection
Detection of core vertices in Line 9 of Algorithm 5 is a key step of DistanceSCAN. During the

detection of core vertices, there are three types of vertices, namely core vertices, non-core vertices,

and unclassified vertices. All vertices are initially unclassified. When calculating the similarities of

edges, the upper and lower bounds of similar neighbors are updated at the same time. For a vertex

𝑣 ∈ 𝑉 , if the upper bound of similar neighbors is lower than 𝜇, classify 𝑣 as a non-core vertex. If

the lower bound of similar neighbors is no less than 𝜇, the vertex 𝑣 is classified as a core vertex.

In this step, we traverse each vertex in the graph to check if it is a core vertex. Detecting core

vertices requires computing similarities with neighbors in the 𝑑-neighborhood, which is unknown

in advance. We can compute the 𝑑-neighborhood using the Dijkstra algorithm, but it is relatively

time-consuming. Note that some neighbors in the 𝑑-neighborhood are saved in bottom-𝑘 sketches,

so we can first calculate the similarity with the neighbors in bottom-𝑘 sketches. Since it is easy to

judge in 𝑂 (1) time whether neighbors with small distances are similar using a histogram, we sort

the neighbors in bottom-𝑘 sketches according to their distances and calculate the neighbors with

closer distances first. If the vertex type still cannot be determined, use the Dijkstra algorithm to

traverse the neighbors in the 𝑑-neighborhood and calculate the similarity with the neighbors in

ascending order of distance.

Algorithm 6 shows the pseudo-code for core vertex detection. Lines 1-5 calculate the similarity

between the vertex 𝑢 and its neighbors in the bottom-𝑘 sketch 𝐵 [𝑢] to avoid traversing the 𝑑-

neighborhood. If the type of the vertex still cannot be determined, Line 6 uses the Dijkstra algorithm

to traverse the 𝑑-neighborhood. Lines 7-10 calculate the similarity of neighbors of vertex 𝑢 in

ascending order of distances. It terminates the traversal of the 𝑑-neighborhood of the current vertex

after the vertex has been classified. Algorithm 6 is called 𝑂 (𝑛) times by Algorithm 5 in total. Next,

we analyze its total time complexity. Algorithm 6 is mainly divided into two parts. One part is the

traversal of the 𝑑-neighborhood. For efficiency, Line 1 does a rough ordering by dividing neighbors

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

45:14 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

Algorithm 7: CheckSimilarity

Input: Histograms 𝐻 , bottom-𝑘 sketches 𝐵, similarity results 𝑆 , vertices 𝑢, 𝑣

1 if 𝜎 (𝑢, 𝑣) ∈ 𝑆 then
2 return ;

3 𝑆 (𝑢, 𝑣) ← ComputeSimilarityBySketches(𝐻, 𝐵,𝑢, 𝑣) (Algo. 4);

4 Update the vertex types for 𝑢, 𝑣 ;

5 if 𝑆 (𝑢, 𝑣) then
6 if 𝑢, 𝑣 are core vertices then
7 Merge the clusters containing 𝑢 and 𝑣 ;

8 if 𝑢 or 𝑣 becomes a core vertex then
9 Merge all clusters containing {𝑥 |𝑥 ∈ 𝑁𝑑 (𝑢) ∩ 𝑁 (𝑢)&𝜎 (𝑢, 𝑥) ≥ 𝜖} ∪ {𝑢} or

{𝑥 |𝑥 ∈ 𝑁𝑑 (𝑣) ∩ 𝑁 (𝑣)&𝜎 (𝑣, 𝑥) ≥ 𝜖} ∪ {𝑣};

in 𝐵(𝑢) into buckets, which can be done in 𝑂 (𝑛𝑘). Line 6 simply performs Dijkstra to traverse the

𝑑-neighborhood of vertex 𝑢. The time complexity is𝑂 (𝑛Δ log(Δ)), where Δ is the maximum size of

𝑑-neighborhood. The other part is the calculation of similarity. Combining with the amortized time

complexity of Algorithm 7 in Section 4.3, we can know that its time complexity is 𝑂 ((𝑛𝑘 +𝑚)Δ).
Since 𝑛𝑘 is much larger than𝑚, the total time complexity of Algorithm 6 is 𝑂 (𝑛Δ · (𝑘 + log(Δ)).
Note that since the algorithm will stop immediately after the vertex type can be determined by the

upper and lower bounds of similar neighbors, Algorithm 6 is efficient in practice.

4.3 Structural Similarity Checking
Detecting core vertices requires calculating the similarity with neighbors. To reduce redundant

computations, we not only use the hash table 𝑆 to cache the similarity but also design pruning

rules for similarity computation. The similarity between non-core vertices does not need to be

calculated, and the similarity between core vertices in the same cluster also does not need to be

calculated. To apply the above rules, we need to maintain the vertex types and clusters for each

vertex when calculating the similarity.

Algorithm 7 shows the pseudo-code for checking similarity. Line 1 detects whether the similarity

needs to be calculated. If there exists the similarity information of vertices 𝑢 and 𝑣 in the hash table

𝑆 , it will be returned directly. Line 3 calculates the similarity of vertices 𝑢, 𝑣 according to sketches

and stores the result in 𝑆 . If 𝑢, 𝑣 are not structural similar, Line 4 classifies vertices whose upper

bound of similar neighbors is lower than 𝜇 as non-core vertices. If the vertices 𝑢, 𝑣 are similar and

both are core vertices, Lines 6-7 merge the clusters containing 𝑢 and 𝑣 . The vertex 𝑢(or 𝑣) becomes

a core vertex if the number of similar neighbors of 𝑢(or 𝑣) is exactly 𝜇. If the vertex 𝑢(or 𝑣) is similar

to some core vertices in the intersection of its 𝑑-neighbors and one-hop neighbors, Lines 8-9 merge

the clusters where these core vertices and 𝑢(or 𝑣) are located. The time complexity of Line 3 is𝑂 (𝑘).
The merging of clusters is implemented by a disjoint-set data structure, and the time complexity is

𝑂 (1). Lines 8-9 traverse the one-hop neighborhood of 𝑢 or 𝑣 . The amortized time complexity of

Algorithm 7 is 𝑂 (𝑘 +𝑚/𝑛).

4.4 Clustering Result Calculation
In the core vertex detection step, core vertices in the same cluster may not be connected since we

terminate the traversal of the 𝑑-neighborhood after classifying vertices. It is necessary to calculate

the similarities of edges between core vertices of different clusters to ensure accurate clustering

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:15

results. In this step, we also follow the principle of prioritizing the calculation of the similarity

of vertex pairs that are close to each other. We first traverse all edges in the graph and extract

edges that connect to core vertices in different clusters and have not calculated the similarities. The

similarities of these edges are calculated in order of distances from small to large. If two vertices of

an edge are similar, merge the clusters where the two vertices are located. The time complexity

of this part is 𝑂 (𝑚𝑘). Finally, we traverse non-core vertices in the graph. If there is a similar core

vertex in the one-hop neighbor of the non-core vertex 𝑣 ∈ 𝑉 , assign 𝑣 to the cluster where the core

vertex is located. For a vertex 𝑣 ∈ 𝑉 that is not in clusters, if the one-hop neighborhood of 𝑣 has an

intersection with two or more clusters, the vertex 𝑣 will be classified as a hub, otherwise, it will be

classified as an outlier. Since the similarities of all edges need to be calculated in the worst case, the

time complexity of this part is also 𝑂 (𝑚𝑘).

4.5 Analysis of DistanceSCAN
DistanceSCAN needs to obtain bottom-𝑘 sketches from ADS using the distance threshold 𝑑 by

Algorithm 3. The time complexity is 𝑂 (𝑛Δ log(𝑘)) and the space complexity is 𝑂 (𝑛𝑘). Since the
number of bins of histograms is much smaller than the number 𝑛 of vertices, the space complexity

of histograms is 𝑂 (𝑛). The hash table 𝑆 only stores the similarities of vertices to their neighbors in

bottom-𝑘 sketches, so the space complexity is 𝑂 (𝑛𝑘). Combining the time complexity and space

complexity of each step of the algorithm, it can be seen that the time and space complexities of

DistanceSCAN in the worst case are 𝑂 (𝑛Δ · (log(Δ) + 𝑘) +𝑚𝑘) and 𝑂 (𝑛𝑘 +𝑚) respectively. ADS
does not need to be stored in memory. Hence, if they are in memory, the space complexity increases

by 𝑂 (𝑛Δ). Otherwise the time complexity of reading bottom-𝑘 sketches from ADS increases by

𝑂 (𝑛Δ). Note that as our algorithm sets multiple pruning strategies, a large number of redundant

calculations are reduced. So the efficiency of DistanceSCAN is very high in practice. In addition,

except for some high-degree vertices, the 𝑑-neighborhood of vertices is often much smaller than 𝑘 ,

so the space complexity of bottom-𝑘 sketches is also much lower than 𝑂 (𝑛𝑘).
To summarize the relationships between algorithms, the main algorithm DistanceSCAN (Algo-

rithm 5) first uses Algorithm 1 and Algorithm 3 to get histograms and bottom-𝑘 sketches. Then, it

invokes Algorithm 6 to classify vertices as core vertices or non-core vertices. Classifying vertices

requires a lot of computation of the similarity between vertices. An important step of Algorithm 6

is to invoke Algorithm 7 to derive the similarity and integrate pruning rules to speed up the process

of classifying core/non-core vertices.

5 EXPERIMENTS
In this section, we verify the effectiveness and efficiency of DistanceSCAN by comparing it with

multiple baseline methods through extensive experiments. The algorithms are all implemented

in C++. All experiments are conducted on a Linux machine with Intel(R) Xeon(R) Gold 6248

CPU @ 2.50GHz and 252GB main memory. This section has four parts. First, we introduce the

datasets, parameters, and baseline methods used in the experiments. Second, we verify that our

defined Distance-based SCAN can achieve high clustering quality, and the approximation algorithm

DistanceSCAN has high accuracy. Third, we verify the efficiency of DistanceSCAN and the effect

of sketches on efficiency. Finally, we compare our ADS construction algorithm with the ADS

construction method based on persistent binary search trees. We open the source code on Github
2
.

2
https://github.com/thu-west/DistanceSCAN.LKX

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

https://github.com/thu-west/DistanceSCAN.LKX

45:16 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

5.1 Experimental Settings
This section introduces the basic settings of experiments, mainly including the introduction of the

datasets, the value range of the parameters and their default values, and the baseline methods.

Datasets: Table 1 lists the statistical information such as the number of vertices, the number of

edges, the average degree, the average clustering coefficient, and the type of weights of datasets used

in experiments, where R indicates that the dataset has real weights and S indicates that the dataset

has synthetic weights. TC-T24 is short for Topic-coauthor-T24, which is from ArnetMiner [26].

UK-2002 is from the Laboratory of Web Algorithmics [4]. Other datasets are from the Stanford

Network Analysis Platform [20]. A directed graph can be converted to an undirected graph by

adding edges in the other direction. TC-T24 contains researchers and their co-authorships in the

fields of database/XML data. The weight on an edge is the number of co-published articles by the

two researchers represented by the vertices. A large number of co-published articles mean that

their research fields are similar and the distance between the vertices is close. We design a function

𝑓 = 1

log(𝑥)+1 to convert the number of articles into distance, where 𝑥 is the number of co-published

articles and 𝑓 is the distance. For other datasets, we use the Jaccard similarity of adjacent vertices

as synthesis weights. A high Jaccard similarity indicates a small distance between two vertices and

vice versa. We also design a function 𝑓 = 1 − 0.9𝑥 to convert the synthetic weights into distances.

The value range of the distances obtained by synthesis weights is [0.1, 1). The value range does not

start at 0 for two benefits. On the one hand, the size of the 𝑑-neighborhoods will not grow sharply

with the increase of parameter 𝑑 . On the other hand, it helps limit the maximum number of hops

for neighbors.

Parameters: Referring to the previous work [23], our parameters are set as follows, in which the

default values are shown in bold:

• 𝜇 = 5, 𝑑max = 1.4
• 𝜖 ∈ {0.1, 0.15, 0.2, 0.25, 0.3}, 𝑑 ∈ {0.6, 0.8, 1, 1.2, 1.4}
• 𝑘 ∈ {213, 214, 215, 216}, 𝜔 ∈ {0.05, 0.01, 0.005, 0.001}

Method: DistanceSCAN is compared with the following methods:

• SCAN [31]: Structural graph clustering algorithm.

• WeightedSCAN [16]: the SCAN algorithm based on the weighted Cosine similarity.

• EXACT: Exact algorithm for distance-based structural graph clustering. EXACT first calculates

the 𝑑-neighborhood of each vertex, performs clustering according to the process of SCAN, and

uses the 𝑑-neighborhood to compute structural similarities.

• pSCAN [6]: pSCAN for distance-based structural graph clustering after calculating the 𝑑-

neighborhood of each vertex.

• DistanceSCAN-WH, DistanceSCAN-WB: DistanceSCAN without using histograms to prune

the similarity computation, and DistanceSCANwithout using bottom-𝑘 sketches when traversing

𝑑-neighborhood in core vertex detection, respectively.

5.2 ClusterQuality Verification
The experiments in this section are mainly about the clustering quality of DistanceSCAN with two

different similarity measures: Jaccard similarity and Cosine similarity, and the accuracy relative

to EXACT. Following previous work [23, 27], we use modularity [21] to measure the quality of

clusterings. One of the characteristics of modularity is that it does not need to be compared with

the ground truth, so it has a wide range of applications. The modularity of a weighted graph is the

proportion of weights of edges that fall within clusters minus the expected proportion of weights

that fall within clusters in a random graph with the same degree distribution. The formal definition

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:17

Table 1. Network Statistics

Datasets |𝑉 | |𝐸 | ¯𝑑 𝑐 𝑡

TC-T24 1127 6690 11.87 0.3297 R

Facebook 4,039 88,234 43.69 0.6055 S

Brightkite 58,228 214,078 7.35 0.1723 S

Gowalla 196,591 950,327 9.66 0.2367 S

DBLP 317,080 1,049,866 6.62 0.6324 S

Flickr 105,938 2,316,948 43.74 0.0891 S

YouTube 1,134,890 2,987,624 5.27 0.0808 S

Pokec 1,632,803 30,622,564 37.51 0.1094 S

LiveJournal 3,997,962 34,681,189 17.35 0.2843 S

Orkut 3,072,441 117,185,083 76.28 0.1666 S

UK-2002 18,520,486 298,113,762 32.19 0.6891 S

of modularity is given by Equation (13),

𝑄 =
1

2𝑚

∑︁
𝑢,𝑣∈𝑉

(
𝑤 (𝑢, 𝑣) − 𝑘𝑢𝑘𝑣

2𝑚

)
𝐼 (𝑢, 𝑣) (13)

where 𝑘𝑢 is the sum of weights of edges of vertex 𝑢, that is, 𝑘𝑢 =
∑

𝑣∈𝑁 (𝑢) 𝑤 (𝑢, 𝑣).𝑚 is the sum

of the weights of all edges in the graph, that is,𝑚 = 1

2

∑
𝑢∈𝑉 𝑘𝑢 . 𝐼 (𝑢, 𝑣) is an indicator function.

When the vertices 𝑢 and 𝑣 are in the same cluster, 𝐼 (𝑢, 𝑣) is 1. Otherwise, 𝐼 (𝑢, 𝑣) is 0. The value
range of modularity is [0, 1]. Modularity close to 0 means that the weight distribution of the edges

in clusters is similar to the weight distribution of randomly connected edges. A large modularity

indicates a good clustering quality.

Modularity using Jaccard similarity. Figure 1 shows the clustering results of SCAN, pSCAN,
EXACT, and DistanceSCAN when clustering based on Jaccard similarity. Because the Weighted-

SCAN algorithm is not suitable for Jaccard similarity, we did not compare it with EXACT. In order

to get high-quality clustering results, we can fix 𝜖 , 𝜇 and find the distance threshold that can get

high modularity results. Figures 1(a), (c), (e), (g) show the results of modularity varying distance

threshold 𝑑 when 𝜖 takes the default value of 0.2. Notice that the distance thresholds of TC-T24

and other datasets are set differently. To explain, the distances of TC-T24 are the real weights while

the distances of other datasets are adopted according to the Jaccard similarity of adjacent vertices.

Due to different physical meanings, the ranges of the weights are different. SCAN is not affected by

distance. So the modularity of SCAN remains the same. When the distance threshold 𝑑 is too small,

there are too few neighbors around the vertex, and it is difficult to meet the requirement of the

threshold 𝜇, so there are fewer vertices in the cluster and the clustering quality is poor. When 𝑑 is

too large, it is easy for vertices to be similar, so that most of the vertices are in clusters, and the

clustering quality is also poor. Hence, when 𝑑 increases, the modularity tends to increase first and

then decrease. Figures 1 (b),(d),(f),(h) show that when 𝑑 takes an appropriate value, the modularity

of EXACT, pSCAN, and DistanceSCAN are identical and are better than that of SCAN in most cases.

Modularity using Cosine similarity. Figure 2 reports the modularity of SCAN, WeightedSCAN,

and EXACT when clustering based on Cosine similarity. For the interest of space, we only show

the results for two graphs: TC-T24 and YouTube. Figures 2 (a),(c) find the most suitable distance

threshold 𝑑 under the similarity threshold 𝜖 where SCAN performs the best. The distance thresholds

that EXACT performs best on TC-T24 and YouTube are 0.45 and 1, respectively. In Figure 2 (b),(d),

with the change of 𝜖 , EXACT achieves the highest modularity in most cases, while SCAN performs

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

45:18 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

0

0.1

0.2

0.3

0.4

0.5

0.3 0.4 0.5 0.6 0.7

Modularity

d

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

Modularity

ε

0

0.2

0.4

0.6

0.6 0.8 1 1.2 1.4

Modularity

d

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

Modularity

ε

(a) TC-T24, 𝜖 = 0.2 (b) TC-T24, 𝑑 = 0.45 (c) BrightKite, 𝜖 = 0.2 (d) BrightKite, 𝑑 = 1.4

0

0.1

0.2

0.3

0.6 0.8 1 1.2 1.4

Modularity

d

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

Modularity

ε

0.3

0.4

0.5

0.6

0.7

0.6 0.8 1 1.2 1.4

Modularity

d

0.1

0.3

0.5

0.7

0.1 0.2 0.3 0.4 0.5

Modularity

ε

(e) YouTube, 𝜖 = 0.2 (f) YouTube, 𝑑 = 1.4 (g) LiveJournal, 𝜖 = 0.2 (h) LiveJournal, 𝑑 = 0.8

Fig. 1. Evaluation of modularity using Jaccard similarity

0

0.1

0.2

0.3

0.4

0.5

0.3 0.4 0.5 0.6 0.7

Modularity

d

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

Modularity

ε

0

0.1

0.2

0.6 0.8 1 1.2 1.4

Modularity

d

0

0.1

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5

Modularity

ε

(a) TC-T24, 𝜖 = 0.35 (b) TC-T24, 𝑑 = 0.45 (c) YouTube, 𝜖 = 0.1 (d) YouTube, 𝑑 = 1

Fig. 2. Evaluation of modularity using Cosine similarity

the worst. Combining results in the previous set of experiments, we find that the distance-based

structural graph clustering shows identical best performance (in terms of modularity). Regardless

of using Jaccard or Cosine similarity, the clustering results of distance-based SCAN are far better

than WeightedSCAN. This is because WeightedSCAN considers the weight information of one-hop

neighbors, but the utilization of the weight information is still not as sufficient as our proposed

idea of distance-based structural graph clustering.

ARI. Since DistanceSCAN is an approximate algorithm, we further compare the clustering result

derived by the approximation algorithm against the EXACT algorithm using the Adjusted Rand
Index (ARI) [17]. ARI measures how consistent two non-overlapping clustering results are. Distance-

based structural graph clustering results in overlapping clusters, but core vertices of clusters do

not overlap. To be able to measure using ARI, we follow previous work [23] by setting vertices that

belong to multiple clusters to the cluster where the core vertex in their one-hop neighborhood with

the highest similarity is located. Given two clustering results, ARI counts how vertices are assigned

to clusters in both clustering results. The formal definition of ARI is shown in Equation (14).

𝐴𝑅𝐼 =

∑
𝑖, 𝑗 𝐶

2

𝑛𝑖 𝑗
−
[∑

𝑖 𝐶
2

𝑛𝑖 .

∑
𝑗 𝐶

2

𝑛. 𝑗

]
/𝐶2

𝑛

1

2

[∑
𝑖 𝐶

2

𝑛𝑖 . +
∑

𝑗 𝐶
2

𝑛. 𝑗

]
−
[∑

𝑖 𝐶
2

𝑛𝑖 .

∑
𝑗 𝐶

2

𝑛. 𝑗

]
/𝐶2

𝑛

(14)

where 𝑛𝑖 𝑗 represents the number of vertices in the 𝑖-th cluster of the first clustering result and

in the 𝑗-th cluster of the second clustering result, 𝑛𝑖 . =
∑

𝑗 𝑛𝑖 𝑗 represents the number of vertices

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:19

0.996

0.997

0.998

0.999

1

0.6 0.8 1 1.2 1.4

ARI

d

0.996

0.997

0.998

0.999

1

0.1 0.15 0.2 0.25 0.3

ARI

ε

(a) 𝜖 = 0.2, vary 𝑑 (b) 𝑑 = 1,vary 𝜖

Fig. 3. The ARI of UK-2002

10
-1

10
1

10
3

10
5

TC-T24

Facebook

BrightKite

Gowalla

DBLP
Flickr

YouTube

Pokec
LiveJournal

Orkut
UK-2002

R
u

n
n
in

g
 t

im
e
 (

s)

EXACT PSCAN DistanceSCAN

Fig. 4. Running time on all datasets

of the 𝑖-th cluster of the first clustering result, 𝑛. 𝑗 =
∑

𝑖 𝑛𝑖 𝑗 represents the number of vertices of

the 𝑗-th cluster of the second clustering result. The value range of ARI is [0, 1], where the closer
it is to 1, the more consistent the two clustering results are. When 𝑘 takes the default value of

2
16
, for all datasets, the ARI of the clustering results obtained by DistanceSCAN under the default

parameters and the clustering results of EXACT are all 1. Figure 3 shows the ARI of DistanceSCAN

with varying 𝑑 and 𝜖 on the dataset UK-2002. The ground truth clustering results are derived by

pSCAN. We add pSCAN in Figure 3 as a reference. We can see that the ARI of DistanceSCAN is

always 1, which means that the clustering results of DistanceSCAN are consistent with that of the

ground truth. Although the default value of 𝑘 is smaller than the value given by Theorem 3.4, the

value of 𝑘 is already larger than the size of 𝑑-neighborhood of most vertices in the datasets, which

contributes to the accurate clustering results of DistanceSCAN.

5.3 Efficiency Evaluation
In this set of experiments, we verify the efficiency of DistanceSCAN. On one hand, the running

time under various parameters is compared with EXACT and pSCAN to verify the efficiency of

DistanceSCAN. On the other hand, we compare DistanceSCAN with DistanceSCAN-WH and

DistanceSCAN-WB to verify the effectiveness of the optimization techniques.

Efficiency evaluation on all the datasets. Figure 4 shows the running time of EXACT, pSCAN,

and DistanceSCAN on all datasets with default parameters, where results with running time longer

than two days are omitted. Note that the y-axis is in log-scale. It can be seen that DistanceSCAN

has good scalability and the shortest running time on all datasets. EXACT has the worst efficiency

because it does not take any pruning techniques. The efficiency of the three algorithms is not only

related to the number of edges in the graph, but also to the average degree of vertices. Gowalla

with a higher average degree takes longer running time than DBLP. It is worth noting that on

UK-2002 and Orkut, the running time of DistanceSCAN is only about 1/20 of pSCAN.

Efficiency with varying 𝑑 . Figure 5 shows the efficiency of algorithms as the distance threshold 𝑑

varies. Note that the y-axes of Figures 5 (b), (c), and (d) are in log-scale. The most obvious conclusion

in Figure 5 is that DistanceSCAN outperforms pSCAN and EXACT in all cases. In addition, it can

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

45:20 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

0

5

10

15

20

0.6 0.8 1 1.2 1.4

Running time (s)

d

1

10

10
2

10
3

10
4

0.6 0.8 1 1.2 1.4

Running time (s)

d

10

10
2

10
3

10
4

0.6 0.8 1 1.2 1.4

Running time (s)

d

10
2

10
3

10
4

10
5

0.6 0.8 1 1.2 1.4

Running time (s)

d

(a) BrightKite (b) YouTube (c) LiveJournal (d) UK-2002

Fig. 5. Evaluation of running time (vary 𝑑)

0

5

10

15

20

0.1 0.15 0.2 0.25 0.3

Running time (s)

ε

10

10
2

10
3

10
4

0.1 0.15 0.2 0.25 0.3

Running time (s)

ε

10
2

10
3

10
4

0.1 0.15 0.2 0.25 0.3

Running time (s)

ε

10
3

10
4

10
5

0.1 0.15 0.2 0.25 0.3

Running time (s)

ε

(a) BrightKite (b) YouTube (c) LiveJournal (d) UK-2002

Fig. 6. Evaluation of running time (vary 𝜖)

be seen that as the distance threshold 𝑑 increases, the running time of pSCAN and DistanceSCAN

both increase sharply. This is expected as the larger the 𝑑 , the larger the size of the 𝑑-neighborhood,

and the higher the time cost of calculating the similarity. After 𝑑 is greater than 1, the running time

does not increase significantly with increasing distance threshold. The reason is that the distance

distribution is not uniform and the proportion of edges with small distances is small. When 𝑑 is

greater than 0.8, the running time of EXACT is more than two days, so Figure 5 (d) omits the

relevant experimental results of EXACT.

Efficiency with varying 𝜖. Figure 6 shows the running time as the similarity threshold 𝜖 varies.

The results of EXACT on UK-2002 are omitted because the running time of EXACT is more than two

days. DistanceSCAN still achieves the best efficiency in all settings. As 𝜖 increases, the running time

of DistanceSCAN decreases slightly. A large 𝜖 will lead to large-scale clusters, and the similarities

between core vertices in the same cluster do not need to be calculated, which improves the efficiency

of algorithms.

Efficiency with varying 𝑘 . Figure 7 shows the effect of the sizes of bottom-𝑘 sketches on efficiency.

DistanceSCAN still runs much faster than pSCAN and EXACT in all parameter settings. The change

in the size of bottom-𝑘 sketches has little effect on DistanceSCAN. The main reason is that the size

of the 𝑑-neighborhood of most vertices in the graph is much smaller than the value of 𝑘 . Therefore,

in order to ensure the accuracy of DistanceSCAN, we set 2
16
as the default size of bottom-𝑘 sketches.

Efficiency with varying the width of the bins in histograms. Figure 8 shows the effect of
the width of the bins on efficiency. As the width of the bins decreases, the efficiency increases

slightly and then decreases. The main reason is that the number of similarity computations that

can be pruned by histograms is limited, and the small width will increase the space complexity of

histograms. Therefore, in order to balance the space complexity and efficiency, the default width of

the bins is 0.01.

Evaluation of optimization techniques with varying 𝑑 . When computing similarities, Dis-

tanceSCAN first uses histograms for pruning. In the step of checking core vertices, to reduce

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:21

10

10
2

10
3

10
4

2
13

2
14

2
15

2
16

Running time (s)

k

10
3

10
4

10
5

2
13

2
14

2
15

2
16

Running time (s)

k

(a) YouTube (b) UK-2002

Fig. 7. Evaluation of running time (vary 𝑘)

0

20

40

60

80

0.05 0.01 0.005 0.001

Running time (s)

ω

2K

4K

6K

8K

10K

0.05 0.01 0.005 0.001

Running time (s)

ω

(a) YouTube (b) UK-2002

Fig. 8. Evaluation of histogram (vary 𝜔)

0

1

2

3

0.6 0.8 1 1.2 1.4

Running time (s)

d

0

20

40

60

80

0.6 0.8 1 1.2 1.4

Running time (s)

d

10

10
2

10
3

0.6 0.8 1 1.2 1.4

Running time (s)

d

10
2

10
3

10
4

10
5

0.6 0.8 1 1.2 1.4

Running time (s)

d

(a) BrightKite (b) YouTube (c) LiveJournal (d) UK-2002

Fig. 9. Evaluation of optimization technique (vary 𝑑)

traversal of 𝑑-neighborhoods, DistanceSCAN first computes the similarity with neighbors in

bottom-𝑘 sketches. To verify the validity of these optimizations, Figure 9 reports the running

time of DistanceSCAN-WH, DistanceSCAN-WB and DistanceSCAN varing 𝑑 . It can be seen that

using histograms pruning and traversing the neighbors in bottom-𝑘 sketches greatly improves the

efficiency. As 𝑑 increases, DistanceSCAN has more obvious advantages in terms of efficiency.

Evaluation of optimization techniques with varying 𝜖. Figure 10 presents the running time

of DistanceSCAN-WH, DistanceSCAN and DistanceSCAN-WB varying 𝜖 . Again, DistanceSCAN

runs faster than the other two for all values of 𝜖 . As 𝜖 increases, the advantage of DistanceSCAN in

efficiency becomes more apparent.

5.4 Performance of Sketch construction
In this set of experiments, we compare the ADS construction method proposed in Section 3.1 with

the ADS construction method based on persistent search trees [10], mainly including experiments

on sketch size and construction time.

Sketch size on all datasets. Figure 11 shows the sizes of sketches constructed on all datasets.

We also add the original size of the graph for comparison. 𝐴𝐷𝑆𝑃𝑆𝑇 saves all-distances bottom-𝑘

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

45:22 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

0

1

2

3

0.1 0.15 0.2 0.25 0.3

Running time (s)

ε

0

50

100

0.1 0.15 0.2 0.25 0.3

Running time (s)

ε

250

500

750

1000

0.1 0.15 0.2 0.25 0.3

Running time (s)

ε

10
3

10
4

10
5

0.1 0.15 0.2 0.25 0.3

Running time (s)

ε

(a) BrightKite (b) YouTube (c) LiveJournal (d) UK-2002

Fig. 10. Evaluation of optimization technique (vary 𝜖)

10
-1

10
1

10
3

10
5

10
6

TC-T24

Facebook

BrightKite

Gowalla

DBLP
Flickr

YouTube

Pokec
LiveJournal

Orkut
UK-2002

S
ke

tc
h

es
 s

iz
e

(M
B

)

Graph
Histogram

ADSPST
ADS

Fig. 11. The sizes of sketches on all datasets

0

25

50

0.6 0.8 1 1.2 1.4

Sketches size (MB)

d

10

10
2

10
3

0.6 0.8 1 1.2 1.4

Sketches size (MB)

d

10
2

10
3

10
4

0.6 0.8 1 1.2 1.4

Sketches size (MB)

d

10
3

10
4

10
5

10
6

0.6 0.8 1 1.2 1.4

Sketches size (MB)

d

(a) BrightKite (b) YouTube (c) LiveJournal (d) UK-2002

Fig. 12. The sizes of sketches (vary 𝑑)

sketches by persistent balanced binary trees. The width of the bins in histograms is set to 0.01. It

can be seen that the histogram size is generally comparable to the size of the original graph because

the number of histogram bins is close to the average degree of most graphs. 𝐴𝐷𝑆 stands for saving

all-distances bottom-𝑘 sketches by our approach. It is clear that the space complexity of 𝐴𝐷𝑆 is

lower than that of 𝐴𝐷𝑆𝑃𝑆𝑇 on all datasets. The reason is that 𝐴𝐷𝑆 reduces duplications in sketches.

Sketch size with varying 𝑑 . Figure 12 shows the sizes of different sketches as the distance

threshold increases. Note that the y-axes of Figures 12 (b), (c) and (d) are in log-scale. It can be seen

that the sizes of two kinds of all-distances bottom-𝑘 sketches grow rapidly with the distance as

the size of the 𝑑-neighborhood increases rapidly with the growth of 𝑑 , which also causes frequent

updates of all-distances bottom-𝑘 sketches. 𝐴𝐷𝑆 still has lower space usage than 𝐴𝐷𝑆𝑃𝑆𝑇 under all

parameters. The size of the histogram grows linearly with the distance threshold 𝑑 since the width

of the bins is fixed, and the number of bins grows linearly with the growth of 𝑑 .

Sketch size with varying 𝑘 . Figure 13 shows the sizes of different sketches as the sample number

𝑘 of bottom-𝑘 sketches varies. The construction of histograms is independent of 𝑘 and thus remains

the same. The space usage of 𝐴𝐷𝑆 is about an order of magnitude lower than that of 𝐴𝐷𝑆𝑃𝑆𝑇 . 𝐴𝐷𝑆

and 𝐴𝐷𝑆𝑃𝑆𝑇 do not change significantly as 𝑘 varies. On one hand, the 𝑑-neighborhoods of most

vertices in the graph are much smaller than 𝑘 . On the other hand, for some high-degree vertices,

the increase of 𝑘 makes the size of bottom-𝑘 sketches larger, and also reduces the update frequency

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:23

0

250

500

750

1000

2
13

2
14

2
15

2
16

Sketches size (MB)

k

10
4

10
5

10
6

2
13

2
14

2
15

2
16

Sketches size (MB)

k

(a) YouTube (b) UK-2002

Fig. 13. The sizes of sketches (vary 𝑘)

10
-1

10
1

10
3

10
5

TC-T24

Facebook

BrightKite

Gowalla

DBLP
Flickr

YouTube

Pokec
LiveJournal

Orkut
UK-2002

R
u

n
n

in
g
 t

im
e
 (

s)

ADSPST ADS

Fig. 14. The construction time of sketches on all datasets

0

5

10

0.6 0.8 1 1.2 1.4

Running time (s)

d

0

100

200

300

400

0.6 0.8 1 1.2 1.4

Running time (s)

d

0

1500

1000

2500

2000

0.6 0.8 1 1.2 1.4

Running time (s)

d

0

20K

40K

60K

0.6 0.8 1 1.2 1.4

Running time (s)

d

(a) BrightKite (b) YouTube (c) LiveJournal (d) UK-2002

Fig. 15. The construction time of sketches (vary 𝑑)

of sketches, and keeps the sizes of sketches stable. Hence, using 2
16
as the default value of 𝑘 can not

only ensure the accuracy of the algorithm but also not cause the size of sketches to be too large.

Construction time of sketches on all datasets. Figure 14 shows the running time of sketch

construction on all datasets. Note that the y-axis is in log-scale. 𝐴𝐷𝑆 is more efficient than 𝐴𝐷𝑆𝑃𝑆𝑇 .

𝐴𝐷𝑆 can save more than 20% running time compared to 𝐴𝐷𝑆𝑃𝑆𝑇 on most datasets. While the time

complexities of updating sketches for 𝐴𝐷𝑆 and 𝐴𝐷𝑆𝑃𝑆𝑇 are both 𝑂 (log(𝑘)), 𝐴𝐷𝑆𝑃𝑆𝑇 also needs to

replicate hashes of 𝑂 (log(𝑘)) vertices.

Construction time with varying 𝑑 and 𝑘 . Figure 15 shows the time of sketch construction as

the distance threshold 𝑑 increases. It can be seen that 𝐴𝐷𝑆 still achieves better efficiency under

all parameters. While both running time grows rapidly with 𝑑 , 𝐴𝐷𝑆 grows at a slower rate than

𝐴𝐷𝑆𝑃𝑆𝑇 . This is due to the fact that as 𝑑 grows, the number of neighbors in 𝑑-neighborhoods

increases, and 𝐴𝐷𝑆𝑃𝑆𝑇 needs to replicate the hash values of more vertices. Figure 16 shows the

effect of 𝑘 on the running time of sketch construction. It can be seen that consistent with the results

of Figure 13, the running time of sketch construction does not change significantly as 𝑘 varies.

6 RELATEDWORK
After Xu et al. [31] propose structural graph clustering and give the original SCAN algorithm, a

lot of research work on the optimization of SCAN emerged. One category of studies is devoted to

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

45:24 Kaixin Liu, Sibo Wang, Yong Zhang, & Chunxiao Xing

300

350

400

2
13

2
14

2
15

2
16

Running time (s)

k

45K

50K

55K

2
13

2
14

2
15

2
16

Running time (s)

k

(a) YouTube (b) UK-2002

Fig. 16. The construction time of sketches (vary 𝑘)

designing parameter-free algorithms. Such work focuses on user-friendly design to avoid tuning

input parameters but still find good clustering results. SCOT [5] draws on the idea of OPTICS [1],

and outputs a vertex sequence for a given threshold 𝜇. Vertices in the same cluster are adjacent

to each other in the sequence. For example, SHRINK [15] uses modularity as the optimization

objective and gradually merges vertex pairs with the highest similarity to obtain the hierarchical

clustering result. DPSCAN [30] maps vertices into a two-dimensional space for clustering based on

the distribution of the similarity between vertices and their neighbors.

Another category of studies is devoted to improving the efficiency of SCAN. SCAN++ [24]

reduces redundant computation of similarity by determining the types of vertices and their two-hop

neighbors. pSCAN [6] is currently the most advanced method based on pruning. It can speed up the

calculation by adjusting the vertex calculation order and pruning in time after determining the type

of vertices. GS*-Index [29] can quickly answer clustering queries by precomputing the similarity

of all edges and saving them in order. SCAN-XP [25], ppSCAN [7] and GBBSIndexSCAN [27]

accelerate the computation of clustering results by parallel computing. DynStrClu [23] focuses on

structural graph clustering on dynamic graphs. Most of the existing work studies structural graph

clustering by one-hop neighbors, which may result in poor-quality clusters.

7 CONCLUSION
In this paper, the distance-based structural graph clustering (SCAN) problem is defined and studied.

An efficient algorithm DistanceSCAN is proposed to derive the clustering result for distance-

based SCAN. The experimental results show that the distance-based SCAN can obtain clustering

results with higher modularity, and DistanceSCAN is far more efficient than baseline methods.

For future work, we will work on the design of dynamic algorithms that can quickly return

clustering results after edge additions, edge deletions, and weight changes occur. In addition,

inspired by algorithms such as SHRINK, designing a parameter-free algorithm also has a wide

range of application scenarios.

ACKNOWLEDGMENTS
Sibo Wang is supported by Hong Kong RGC ECS grant (No. 24203419), RGC GRF grant (No.

14217322), RGC CRF grant (No. C4158-20G), Hong Kong ITC ITF grant (No. MRP/071/20X), NSFC

grant (No. U1936205), and a gift from Huawei. Kaixin Liu, Yong Zhang and Chunxiao Xing are

supported by National Key R&D Program of China(2020AAA0109603), State Key Laboratory of

Computer Architecture (ICT,CAS) under Grant No. CARCHA202008 and Institute of Precision

Medicine, Tsinghua University.

REFERENCES
[1] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. 1999. OPTICS: Ordering Points To Identify

the Clustering Structure. In SIGMOD. 49–60.

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

An Efficient Algorithm for Distance-based Structural Graph Clustering 45:25

[2] Kevin Aydin, MohammadHossein Bateni, and Vahab S. Mirrokni. 2016. Distributed Balanced Partitioning via Linear

Embedding. In WSDM. 387–396.

[3] Rémi Bardenet and Odalric-Ambrym Maillard. 2015. Concentration inequalities for sampling without replacement.

Bernoulli 21, 3 (2015), 1361–1385.
[4] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression techniques. In WWW. 595–602.

[5] Dustin Bortner and Jiawei Han. 2010. Progressive clustering of networks using Structure-Connected Order of Traversal.

In ICDE. 653–656.
[6] Lijun Chang, Wei Li, Xuemin Lin, Lu Qin, and Wenjie Zhang. 2016. pSCAN: Fast and exact structural graph clustering.

In ICDE. 253–264.
[7] Yulin Che, Shixuan Sun, and Qiong Luo. 2018. Parallelizing Pruning-based Graph Structural Clustering. In ICPP.

77:1–77:10.

[8] Edith Cohen. 2015. All-Distances Sketches, Revisited: HIP Estimators for Massive Graphs Analysis. TKDE 27, 9 (2015),

2320–2334.

[9] Edith Cohen, Mayur Datar, Shinji Fujiwara, Aristides Gionis, Piotr Indyk, Rajeev Motwani, Jeffrey D. Ullman, and

Cheng Yang. 2001. Finding Interesting Associations without Support Pruning. TKDE 13, 1 (2001), 64–78.

[10] Edith Cohen and Haim Kaplan. 2007. Summarizing data using bottom-k sketches. In PODC. 225–234.
[11] Chris H. Q. Ding, Xiaofeng He, Hongyuan Zha, Ming Gu, and Horst D. Simon. 2001. A Min-max Cut Algorithm for

Graph Partitioning and Data Clustering. In ICDM. 107–114.

[12] Pedro M. Domingos and Matthew Richardson. 2001. Mining the network value of customers. In SIGKDD. 57–66.
[13] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. Density-based spatial clustering of applications

with noise. In Int. Conf. Knowledge Discovery and Data Mining, Vol. 240. 6.
[14] Michelle Girvan and Mark EJ Newman. 2002. Community structure in social and biological networks. Proceedings of

the national academy of sciences 99, 12 (2002), 7821–7826.
[15] Jianbin Huang, Heli Sun, Jiawei Han, Hongbo Deng, Yizhou Sun, and Yaguang Liu. 2010. SHRINK: a structural

clustering algorithm for detecting hierarchical communities in networks. In CIKM. 219–228.

[16] Jianbin Huang, Heli Sun, Qinbao Song, Hongbo Deng, and Jiawei Han. 2013. Revealing Density-Based Clustering

Structure from the Core-Connected Tree of a Network. IEEE Trans. Knowl. Data Eng. 25, 8 (2013), 1876–1889.
[17] Lawrence Hubert and Phipps Arabie. 1985. Comparing partitions. Journal of classification 2, 1 (1985), 193–218.

[18] Paul Jaccard. 1912. The distribution of the flora in the alpine zone. 1. New phytologist 11, 2 (1912), 37–50.
[19] U Kang and Christos Faloutsos. 2011. Beyond ’Caveman Communities’: Hubs and Spokes for Graph Compression and

Mining. In ICDM. 300–309.

[20] Jure Leskovec and Rok Sosic. 2016. SNAP: A General-Purpose Network Analysis and Graph-Mining Library. ACM
Trans. Intell. Syst. Technol. 8, 1 (2016), 1:1–1:20.

[21] Mark EJ Newman. 2004. Analysis of weighted networks. Physical review E 70, 5 (2004), 056131.

[22] Mark EJ Newman. 2004. Fast algorithm for detecting community structure in networks. Physical review E 69, 6 (2004),

066133.

[23] Boyu Ruan, Junhao Gan, Hao Wu, and Anthony Wirth. 2021. Dynamic Structural Clustering on Graphs. In SIGMOD.
1491–1503.

[24] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. 2015. SCAN++: Efficient Algorithm for Finding Clusters,

Hubs and Outliers on Large-scale Graphs. Proc. VLDB Endow. 8, 11 (2015), 1178–1189.
[25] Tomokatsu Takahashi, Hiroaki Shiokawa, and Hiroyuki Kitagawa. 2017. SCAN-XP: Parallel Structural Graph Clustering

Algorithm on Intel Xeon Phi Coprocessors. In NDA@SIGMOD. 6:1–6:7.
[26] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. ArnetMiner: extraction and mining of

academic social networks. In SIGKDD. 990–998.
[27] Tom Tseng, Laxman Dhulipala, and Julian Shun. 2021. Parallel Index-Based Structural Graph Clustering and Its

Approximation. In SIGMOD. 1851–1864.
[28] Yang Wang, Deepayan Chakrabarti, Chenxi Wang, and Christos Faloutsos. 2003. Epidemic Spreading in Real Networks:

An Eigenvalue Viewpoint. In SRDS. 25–34.
[29] Dong Wen, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2019. Efficient structural graph clustering: an

index-based approach. VLDB J. 28, 3 (2019), 377–399.
[30] Changfa Wu, Yu Gu, and Ge Yu. 2019. DPSCAN: Structural Graph Clustering Based on Density Peaks. In DASFAA,

Vol. 11447. 626–641.

[31] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger. 2007. SCAN: a structural clustering algorithm

for networks. In SIGKDD. 824–833.

Received April 2022; revised July 2022; accepted August 2022

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 45. Publication date: May 2023.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Existing Solutions

	3 Structural Similarity Calculation
	3.1 Construct Sketches
	3.2 Estimating Structural Similarity

	4 Our Approach
	4.1 Algorithm Overview
	4.2 Core Vertices Detection
	4.3 Structural Similarity Checking
	4.4 Clustering Result Calculation
	4.5 Analysis of DistanceSCAN

	5 Experiments
	5.1 Experimental Settings
	5.2 Cluster Quality Verification
	5.3 Efficiency Evaluation
	5.4 Performance of Sketch construction

	6 Related Work
	7 Conclusion
	References

