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Subset embedding is the task to learn low-dimensional representations for a subset of nodes according to the

graph topology. It has applications when we focus on a subset of users, e.g., young adults, and aim to make

better recommendations for these target users. In real-world scenarios, graphs are dynamically changing.

Thus, it is more desirable to dynamically maintain the subset embeddings to reflect graph updates. The

state-of-the-art methods, e.g., DynPPE, still adopt a hashing-based method, while hashing-based solutions

are shown to be less effective than matrix factorization (MF)-based methods in existing studies. At the same

time, MF-based methods in the literature are too expensive to update the embedding when the graph changes,

making them inapplicable on dynamic graphs.

Motivated by this, we present Tree-SVD, an efficient and effective MF-based method for dynamic subset

embedding. If we simply maintain the whole proximity matrix, then we need to re-do the MF, e.g., truncated

Singular Value Decomposition (SVD), on the whole matrix after graph updates, which is prohibitive. To tackle

this issue, our main idea is to do hierarchical SVD (HSVD) on the proximity matrix of the given subset, which

vertically divides the proximity matrix into multiple sub-matrices, and then repeatedly do SVD on sub-matrices

and merge the intermediate results to obtain the final embedding. We first present Tree-SVD, which combines

a sparse randomized SVD with an HSVD. Our theoretical analysis shows that our Tree-SVD gains the efficiency

of sparse randomized SVD and the flexibility of the HSVD with theoretical guarantees. To further reduce

update costs, we present a lazy-update strategy. In this strategy, we only update sub-matrices that changes

remarkably in terms of the Frobenius norm. We present theoretical analysis to show the guarantees with

our lazy-update strategy. Extensive experiments show the efficiency and effectiveness of Tree-SVD on node

classification and link prediction tasks.
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1 INTRODUCTION
Given an input graph 𝐺 with 𝑛 nodes, node embedding aims to learn a low-dimensional vector

for each node to preserve the graph topology. Due to its wide applications in graph mining tasks

like node classification, graph clustering, and graph reconstruction, it has attracted a plethora of

research works, e.g., [7, 25, 27, 28, 38, 39, 42], to devise efficient and effective node embeddings.

Although graph neural networks (GNNs) with feature information have achieved great success in

many graphmining tasks, node embedding, which only uses the graph topology, is still irreplaceable.

Firstly, as shown in existing research work [3, 10], the rich node feature information is not always

available for downstream tasks like recommendations. In such scenarios, graph topology is the

only information available. Besides, by focusing on the graph topology, node embedding provides

a structure feature for each node, which is independent of downstream tasks. In contrast, existing

GNNs, e.g., GCN [16], are typically end-to-end and needs different training process for different

tasks. This may cause a much higher running cost since the graph is usually used to handle many

tasks in real-world scenarios. Thus, node embedding provides a trade-off between the accuracy of

downstream tasks and the training cost. Besides, we may integrate the derived node embedding

for each node and the node feature together as the input for the training process. It is shown in a

recent study [30] that such a solution can also gain satisfying performance. Thus, node embedding

still has its wide application scenarios.

In the literature, most existing studies focus on deriving the embedding for the entire node set in

the graph. However, subset embedding, which finds the embedding for a subset of nodes according

to the whole input graph also finds important applications. For example, an IT company (i)may have

a set of VIP users and want to provide better recommendations for these VIP users; (ii)may want to

recommend to a targeted age group e.g., young adults; (iii) may want to recommend to users in the

same city. By focusing on such groups, we only need to compute the rows in the proximity matrix

of the subset 𝑆 , and allow more memory to contain the non-zero entries for the proximity matrix of

subset 𝑆 . This allows the subset embedding to gain better performance for downstream tasks like

node classification and link prediction than their global embedding counterparts. For example, given

a randomly selected subset 𝑆 , a state-of-the-art matrix-factorization (MF)-based node embedding

method STRAP [39], named Global-STRAP, gains inferior classification micro-F1 score as shown

in Table 1. However, when we only focus on the subset 𝑆 and allow more computational/memory

resources, e.g., deriving a more accurate proximity matrix for the subset 𝑆 , the performance can be

significantly improved. For example, Subset-STRAP is an extension of STRAP, where we only need

to compute the rows in the proximity matrix of the subset 𝑆 , and allow more memory to contain

the non-zero entries for the proximity matrix of subset 𝑆 . As shown in Table 1, it gains significant

improvement, taking a lead by up to 35% on tested datasets. This demonstrates the huge potential

of subset embeddings.

In real-world scenarios, graphs are usually dynamically changing. Thus, it is more desirable

to dynamically maintain the subset embeddings to reflect graph changes. The state-of-the-art

solution DynPPE proposed by Guo et al. [8] is the first research work focusing on dynamic subset

embeddings. In DynPPE, they explore the classic proximity measure personalized PageRank (PPR)
[26] that is widely adopted in many embedding frameworks [39, 42] to generate the final embedding.

Given a source node 𝑠 , the PPR 𝜋𝑠 (𝑢) of a node 𝑢 with respect to 𝑠 is the probability that an 𝛼-decay

random walk (aka. random walk with restart) from 𝑠 terminates at node𝑢. Here, an 𝛼-decay random

walk starts from the source node 𝑠 , and at each step, it either stops at the current node 𝑣 (initially

𝑣 = 𝑠) with probability 𝛼 or randomly jumps to one of its out-neighbors with 1 − 𝛼 probability.

The personalized PageRank score 𝜋𝑠 (𝑢) indicates the importance of 𝑢 from the viewpoint of 𝑠 .

In DynPPE, it first computes the personalized PageRank vector for each node 𝑠 in the subset 𝑆
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Table 1. Micro-F1 score (%) of node classification on subset embedding v.s. global embedding with 50%

training ratio.

Method Patent Mag-authors Wikipedia

Global-STRAP 37.67 34.73 48.67

Subset-STRAP 72.40 61.53 76.93

DynPPE 64.27 51.27 73.67

and then hashes the PPR vector to a 𝑑-dimensional vector. Such a method is more friendly to

graph updates since we can incrementally update the PPR vector using existing dynamic PPR

algorithms, e.g., [24, 41], and then re-hash the PPR vector according to the affected entries in each

PPR vector to do the update. For PPR entries that are not changed, it simply avoids the update cost.

However, hashing-based methods suffer from degraded performance in terms of effectiveness and

are shown to be outperformed by MF methods [32]. This is further verified in our experiment as

shown in Table 1 where DynPPE is outperformed by Subset-STRAP by a large margin in terms of

effectiveness, where Subset-STRAP adopts truncated SVD to generate the embedding.

Existing state-of-the-art node embedding methods are mostly MF-based. However, global MF-

based methods like NetSMF [28], NPR [38], Lemane [42] and STRAP [39] are difficult to adapt to

the dynamic subset embedding setting. To explain, for methods that decompose the adjacency

matrix, like NetSMF and NRP, it is difficult to keep only the proximity matrix of subset 𝑆 . Instead,

they need to involve the whole adjacency matrix to update the subset embedding. For Lemane [42],

it is unclear how to update the proximity measure for subset 𝑆 efficiently without re-computing the

proximity matrix for 𝑆 and how to update the stopping probabilities at each step after the graph

update. For STRAP [39], there exist efficient algorithms to update the PPR matrix of the subset 𝑆 ,

e.g., [24, 41], as shown in DynPPE [8]. However, it still needs to re-compute the truncated SVD

when the input graph changes, resulting in unnecessarily high computational costs. There also

exist several GNN-based methods [19, 21, 31] that employ long-short term memory [11] to capture

the temporal information in the updates. However, as pinpointed in the state-of-the-art subset

embedding algorithm DynPPE [8], these methods either need to have features as input or cannot

be applied to large-scale dynamic graphs.

Motivated by the limitations of existing solutions on large dynamic graphs, we present an efficient

and effective MF-based framework for subset embedding on large dynamic graphs. Following

existing research work, e.g., DynPPE [8], STRAP [39], and NRP [38], we take PPR as the proximity

measure. When the graph changes, the proximity matrix𝑴𝑆 for subset 𝑆 is then efficiently updated

with the existing dynamic PPR algorithm [41]. However, as we have mentioned above, existing

state-of-the-art solutions with MF as the backbone are generally challenging to handle dynamic

graphs because any update to 𝑴𝑆 will lead to a recalculation of MF, e.g., truncated SVD, to 𝑴𝑆 ,

which is too time-consuming.

Our key idea is to divide the proximity matrix into sub-matrices, then do a truncated SVD (Ref. to

Section 2.2 for its definition) for each one, and finally, merge the truncated SVD results hierarchically.

We will see shortly why such a hierarchical structure is important to improve the update efficiency.

In this paper, we first propose Tree-SVD, which constructs a hierarchical tree structure, makes a

combination of sparse randomized SVD [4] and hierarchical SVD (HSVD) [14], and inherits both the

efficiency of the sparse randomized SVD and the flexibility of the HSVD. We present theoretical

analysis and show that Tree-SVD achieves an approximation guarantee comparable to HSVD and at

the same time gains an improved time complexity over HSVD. As we will see in Section 6, Tree-SVD

is far more efficient than HSVD and is even faster than the state-of-the-art sparse randomized SVD

algorithm FRPCA [6] without sacrificing the embedding effectiveness in our empirical evaluation.
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We note that the proposed Tree-SVD is not limited to subset embedding and can be used to speed

up the SVD computation for any rectangular matrix 𝑴 with 𝑐 rows, 𝑛 columns, and 𝑐 ≪ 𝑛.

The main advantage of such a tree structure is that we can now track the changes of different sub-

matrices with graph evolution. If sub-matrices do not change, then we can simply use corresponding

cached representations without any re-calculation. Based on this insight, we present dynamic

algorithms for our Tree-SVD which only updates affected sub-matrices, saving computational costs.

However, in practical applications, edges may get updated in batches and with such batch updates,

it is more likely that many of the sub-matrices in the proximity matrix 𝑴𝑆 are changed unevenly.

Thus we try to design a measure to find out locally highly influenced sub-matrices with graph

evolution for eager updates, whereas cache the past representation in the hierarchical structure

and put off the update of sub-matrices with negligible differences to a future snapshot with truly

meaningful changes, which forms our lazy update framework. As to be explained later, we resort to

a measure in terms of the Frobenius norm with theoretical analysis and guarantees. To summarize,

our key contributions are as follows.

• We show the importance of subset embedding, where we observe that subset embedding can help

gain improvement (sometimes significant) on tasks like node classification and link prediction.

• We present Tree-SVD, an efficient and effective SVD framework, which provides an improved

time complexity over HSVD [14] and at the same time provides an identical approximation

guarantee. Our Tree-SVD is not limited to subset embedding and can be used to speed up SVD

computation for rectangular matrices.

• We present our dynamic scheme for Tree-SVD, which only updates the affected sub-matrices

to reduce the update cost. We further present a lazy-update strategy to reduce the update cost

without sacrificing empirical accuracy for downstream tasks.

• Extensive experiments show that Tree-SVD outperforms existing non-MF-based methods by a

large margin in terms of effectiveness. Besides, Tree-SVD is also far more efficient than existing

MF-based methods without sacrificing accuracy, showing a better trade-off between update

efficiency and accuracy.

2 PRELIMINARIES
2.1 Background
Problem definition. In this paper, we use snapshot to denote a meaningful timestamp at which we

take out the graph and need to generate the node embedding for the graph at the current snapshot.

For dynamic graphs, we model it as different graph snapshots G0,G1, · · · ,G𝑡 , · · · , where there
exists one or multiple updates between two snapshots. For ease of exposition, we assume graph

updates are only edge insertions or edge deletions as a node insertion/deletion can be mapped to a

set of edge insertions or deletions. The graph G𝑡 = (𝐸𝑡 ,𝑉 𝑡 ,Δ𝑡 ) at snapshot 𝑡 consists of the node
set 𝑉 𝑡

that exists at snapshot 𝑡 , the edge set 𝐸𝑡 that exists at snapshot 𝑡 , and the set Δ𝑡
of edge

events that occurred between snapshot 𝑡 − 1 and snapshot 𝑡 . Following [15], the dynamic graph

model is defined as follows to simulate the graph evolution process over time.

Definition 2.1 (Dynamic graph model [15]). A dynamic graph model is defined as an ordered set

of snapshots G = {G0,G1, . . . ,G𝜏 } where G0
is empty and G1

is the initial graph. Let 𝑛𝑡 and𝑚𝑡 be

the number of nodes and edges at snapshot 𝑡 , respectively. Define Δ𝑡 =
{
𝑒𝑡

1
, 𝑒𝑡

2
, . . . , 𝑒𝑡

𝑚𝑡

}
as the set

of edge events from snapshot 𝑡 − 1 to 𝑡 . For each edge event 𝑒𝑡𝑖 = ⟨𝑢, 𝑣, event⟩, the event has two
types {𝐼𝑛𝑠𝑒𝑟𝑡, 𝐷𝑒𝑙𝑒𝑡𝑒}, indicating that the edge is inserted or deleted.

Definition 2.2 (Dynamic subset embedding [8]). Given a dynamic graph

{
G0,G1,G2, . . . ,G𝜏

}
in Definition 2.1 and a subset 𝑆 =

{
𝑣1, 𝑣2, . . . , 𝑣 |𝑆 |

}
, the dynamic subset embedding problem is
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Table 2. Frequently used notations.
Notations Descriptions

𝐺 = (𝑉 , 𝐸) Graph with node set and edge set

𝑛,𝑚 Number of nodes and edges

G𝑡 = (𝑉 𝑡 , 𝐸𝑡 ,Δ𝑡 ) Graph at snapshot 𝑡 with edge set change

𝝅𝑢 (𝑣), 𝑑out (𝑣) PPR of 𝑣 w.r.t. 𝑢 and out-degree of 𝑣

𝛼 , 𝑟𝑚𝑎𝑥 Decay factor and threshold of PPR

𝒓𝑡𝑠 [𝑢], 𝒑𝑡
𝑠 [𝑢] Residue, estimation of 𝑢 w.r.t. 𝑠 at snapshot 𝑡

𝑆 , 𝑴𝑆 Subset of nodes and proximity matrix of 𝑆

𝑿𝑡
, 𝑑 Embedding at snapshot 𝑡 and its dimension

𝑩𝑙, 𝑗 The 𝑗-th sub-matrix in level 𝑙 of Tree-SVD

𝑼 𝑙, 𝑗𝚺𝑙, 𝑗𝑽 𝑙, 𝑗 The three matrices of the SVD result to 𝑩𝑙, 𝑗

𝑍 , 𝑘 The updated index and branching factor of Tree-SVD

𝑞, 𝑏 = 𝑘𝑞−1
Level of Tree-SVD and the number of sub-matrices in

the first level of Tree-SVD

to dynamically maintain embeddings along with each snapshot of the graph for subset 𝑆 where

|𝑆 | ≪ 𝑛. Given any snapshot 𝑡 , for ∀𝑣𝑖 ∈ 𝑆 , let 𝒙𝑡𝑣𝑖 denotes the embedding vector of node 𝑣 at

snapshot 𝑡 , we denote the embedding matrix of all embedding vectors as follows:

𝑿𝑡
:=

[
𝒙𝑡𝑣1

, 𝒙𝑡𝑣2

, . . . , 𝒙𝑡𝑣|𝑆 |

]⊤
, 𝑣𝑖 ∈ 𝑆 and 𝒙𝑡𝑣𝑖 ∈ R

𝑑 .

At snapshot 𝑡 + 1, the task of dynamic subset embedding is to update the embedding matrix from

𝑿𝑡
to 𝑿𝑡+1

.

Table 2 lists the notations that are frequently used in this paper.

Personalized PageRank (PPR). Consider graph G𝑡 = (𝐸𝑡 ,𝑉 𝑡 ,Δ𝑡 ) at snapshot 𝑡 . Given a source 𝑠

and a target node 𝑣 , recap that the PPR score 𝜋𝑠 (𝑣) is the probability that an 𝛼-decay random walk

from 𝑠 stops at node 𝑣 . Computing the exact PPR score is expensive on large graphs. Following

DynPPE [8], we adopt the classic Forward-Push algorithm proposed by Anderson et al. [2] to derive

the PPR scores for each node 𝑣 with respect to a given source 𝑠 . The pseudo-code of the Forward-

Push algorithm [2] is shown in Algorithm 1. In particular, given a source node 𝑠 ∈ 𝑉 , it maintains

two vectors: the estimation vector 𝒑𝑠 and the residue vector 𝒓𝑠 . Initially, the estimation vector 𝒑𝑠 [𝑣]
is set to zero for each node 𝑣 ∈ 𝑉 ; the residue vector 𝒓𝑠 is initialized as a one-hot vector where only
the position of 𝑠 is 1 and all other positions are zero. Whenever there exists a node whose residue

over its out-degree is larger than threshold 𝑟𝑚𝑎𝑥 , it performs a push operation (Algorithm 1 Lines

5-8). It terminates when no such node exists. After any number of push operations, the following

invariant holds for any 𝑢 [2, 12, 13, 18, 33–37]:

𝝅𝑠 (𝑢) = 𝒑𝑠 (𝑢) +
∑︁
𝑣∈𝑉

𝒓𝑠 (𝑣) · 𝝅 𝑣 (𝑢).

By the above equation, we can see that 𝒑𝑠 (𝑢) stands as an estimation of 𝝅𝑠 (𝑢). However, there
exists no approximation guarantee on the estimation on directed graphs, as mentioned in [41].

Recall that there exists a threshold 𝑟𝑚𝑎𝑥 , which controls the trade-off between accuracy and running

cost. With a smaller 𝑟𝑚𝑎𝑥 , the more accurate the estimation is, the higher running costs it incurs

since Forward-Push algorithm runs in 𝑂 (1/𝑟𝑚𝑎𝑥 ) cost. We tune 𝑟𝑚𝑎𝑥 so that further reducing 𝑟𝑚𝑎𝑥

will not improve the performance.
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Algorithm 1: Forward-Push(𝐺, 𝛼, 𝑠, 𝑟𝑚𝑎𝑥 ,𝒑𝑠 , 𝒓𝑠 )
Input: 𝐺 , 𝛼 , source 𝑠 , threshold 𝑟𝑚𝑎𝑥

Output: residual vector 𝒓𝑠 , estimation vector 𝒑𝑠

1 𝒑𝑠 = 0, 𝒓𝑠 = 1𝑠 ;
2 while ∃𝑢 ∈ 𝑉𝑠.𝑡 . 𝒓𝑠 [𝑢 ]

𝑑𝑜𝑢𝑡 (𝑢 ) > 𝑟𝑚𝑎𝑥 do
3 PUSH(𝑢, 𝐺 , 𝛼 , 𝒑𝑠 , 𝒓𝑠 )

4 return 𝒑𝑠 , 𝒓𝑠 ;
5 procedure PUSH(𝑢, 𝛼 , 𝐺 , 𝒑𝑠 , 𝒓𝑠):
6 for each out-neighbor 𝑣 of 𝑢 do
7 𝒓𝑠 [𝑣]+ = (1 − 𝛼) · 𝒓𝑠 [𝑢]/𝑑𝑜𝑢𝑡 (𝑢)
8 𝒑𝑠 [𝑢]+ = 𝛼 · 𝒓𝑠 [𝑢], 𝒓𝑠 [𝑢] = 0

Given the residue vector 𝒓𝑡𝑠 and estimation vector 𝒑𝑡
𝑠 for each node 𝑠 ∈ 𝑆 at snapshot 𝑡 , if the

graph has changed to snapshot (𝑡 + 1), then a straightforward solution is to re-run the Forward-

Push algorithm for each 𝑠 ∈ 𝑆 on G𝑡+1
, which might be too expensive. Zhang et al. [41] present a

dynamic Forward-Push algorithm to incrementally update 𝒓𝑡𝑠 and 𝒑
𝑡
𝑠 to 𝒓𝑡+1𝑠 and 𝒑𝑡+1

𝑠 , respectively.

The pseudo-code is shown in Algorithm 2. According to [41], it takes 𝑂 ( |Δ𝑡+1 | + 1/𝑟𝑚𝑎𝑥 ) cost to
incrementally update 𝒓𝑡𝑠 (resp. 𝒑

𝑡
𝑠 ) to 𝒓𝑡+1𝑠 (resp. 𝒑𝑡+1

𝑠 ) for a uniformly chosen source node 𝑠 .

2.2 Main Competitors
DynPPE. The state-of-the-art dynamic subset embedding method is DynPPE proposed by Guo et

al. [8]. Given a subset 𝑆 , DynPPE first derives an approximate PPR vector 𝝅̂𝑠 for each node 𝑠 ∈ 𝑆 by

invoking the Forward-Push algorithm (Algorithm 1). The proximity matrix of size |𝑆 | × 𝑛 consists

of |𝑆 | PPR vectors. In DynPPE, they adopt hashing to generate the embedding for each node 𝑠 ∈ 𝑆 .
In particular, they adopt a hash function ℎ : R𝑛 → R𝑑 to map each 𝑛-dimensional vector 𝝅̂𝑠 into

a 𝑑-dimensional representation vector. When the graph changes from one snapshot to another,

DynPPE uses Algorithm 2 to update the PPR vector for each node 𝑠 ∈ 𝑆 and then re-hashes PPR

vectors to the 𝑑-dimensional embedding space.

Subset-STRAP. As our main idea is to do truncated SVD on the proximity matrix and then

incrementally update on the SVD results, another baseline of our Tree-SVD is to do truncated SVD

on the proximity matrix of subset 𝑆 from scratch at each snapshot. As we discussed in Section 1,

most existing state-of-the-art matrix-factorization-based node embedding methods are difficult to

be adapted to subset setting except STRAP [39]. Thus, we extend STRAP to the subset embedding

setting and denote this extension as Subset-STRAP. Subset-STRAP follows STRAP, which imposes

a threshold 𝑟𝑚𝑎𝑥 and returns at most 𝑂

(
1

𝑟𝑚𝑎𝑥

)
proximity scores no smaller than 𝑟𝑚𝑎𝑥 for each

node, making a proximity matrix with non-zero entries of size 𝑂

(
|𝑆 |

𝑟𝑚𝑎𝑥

)
. Since Subset-STRAP

explicitly derives the proximity matrix, it allows taking non-linear operations on the proximity

matrix, improving the representation powers. In particular, given the PPR matrix 𝑴𝑆 at snapshot 𝑡

for the subset 𝑆 , the baseline method first takes a non-linear operation, e.g., log or sigmoid, on 𝑴𝑆 .

Next, a truncated SVD is applied on 𝑴𝑆 , which decomposes 𝑴𝑆 into three matrices: 𝑼 ∈ R |𝑆 |×𝑑
of the 𝑑 left singular vectors corresponding to the 𝑑 largest singular values of 𝑴𝑠 , 𝑽 ∈ R𝑑×𝑛 of

the 𝑑 right singular vectors corresponding to the 𝑑 largest singular values of 𝑴𝑠 , and a diagonal

matrix 𝚺 ∈ R𝑑×𝑑 of 𝑑 largest singular values of 𝑴𝒔 . In STRAP [39], they invoke a randomized SVD

algorithm [6] to derive the truncated SVD result. The returned three matrices via the randomized
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Algorithm 2: Dynamic Forward-Push

Input: G𝑡
, G𝑡+1

, Δ𝑡+1
, 𝛼 , node 𝑠 , threshold 𝑟𝑚𝑎𝑥 , residue vector 𝒓𝑡𝑠 , estimate vector 𝒑𝑡

𝑠

1 for each ⟨𝑢, 𝑣, event⟩ ∈ Δ𝑡+1 do
2 if event == INSERT then
3 𝒑𝑡

𝑠 [𝑢] × =
𝑑𝑜𝑢𝑡 (𝑢 )

𝑑𝑜𝑢𝑡 (𝑢 )−1

4 𝒓𝑡𝑠 [𝑢] − =
𝒑𝑡𝑠 [𝑢 ]
𝑑𝑜𝑢𝑡 (𝑢 ) ×

1

𝛼
; 𝒓𝑡𝑠 [𝑣] + =

(1−𝛼 )×𝒑𝑡𝑠 [𝑢 ]
𝑑𝑜𝑢𝑡 (𝑢 ) × 1

𝛼

5 else
6 𝒑𝑡

𝑠 [𝑢] × =
𝑑𝑜𝑢𝑡 (𝑢 )

𝑑𝑜𝑢𝑡 (𝑢 )+1

7 𝒓𝑡𝑠 [𝑢] + =
𝒑𝑡𝑠 [𝑢 ]
𝑑𝑜𝑢𝑡 (𝑢 ) ×

1

𝛼
; 𝒓𝑡𝑠 [𝑣] − =

(1−𝛼 )×𝒑𝑡𝑠 [𝑢 ]
𝑑𝑜𝑢𝑡 (𝑢 ) × 1

𝛼

8 while ∃𝑤 ∈ 𝑉 s.t. 𝒓𝑡𝑠 [𝑤 ]
𝑑𝑜𝑢𝑡 (𝑤 ) > 𝑟𝑚𝑎𝑥 do

9 PUSH(𝑤, 𝛼,G𝑡+1, 𝑟𝑚𝑎𝑥 ,𝒑𝑡
𝑠 , 𝒓

𝑡
𝑠 )

10 while ∃𝑤 ∈ 𝑉 s.t. 𝒓𝑠 [𝑤 ]
𝑑𝑜𝑢𝑡 (𝑤 ) < −𝑟𝑚𝑎𝑥 do

11 PUSH(𝑤, 𝛼,G𝑡+1, 𝑟𝑚𝑎𝑥 ,𝒑𝑡
𝑠 , 𝒓

𝑡
𝑠 )

12 return (𝒑𝑡+1
𝑠 ← 𝒑𝑡

𝑠 , 𝒓
𝑡+1
𝑠 ← 𝒓𝑡𝑠 );

SVD algorithm have the following guarantee in terms of the Frobenius norm:

| |𝑼𝚺𝑽 −𝑴𝑆 | |𝐹 = (1 + 𝜖) min

rank(𝐵)≤𝑑
| | (𝑩)𝑑 −𝑴𝑆 | |𝐹 . (1)

Following [39], the embedding of Subset-STRAP is 𝑿 = 𝑼
√
𝚺. Note that taking 𝑿 = 𝑼

√
𝚺 is a

classic choice in node embedding in existing works [38, 39] that gains good empirical results. Thus,

we follow such a choice to be consistent with existing studies. The reason behind the choice is that

the singular vectors corresponding to the top-𝑑 largest singular values keep the 𝑑 most important

dimensions. By scaling according to singular values on each of these 𝑑 dimensions, the singular

vectors with larger singular values tend to make more contributions to the final embedding. By

taking the square root to the matrix 𝚺 of the singular values, it imposes equal weights on both the

matrix 𝑼 of the left singular vectors and the matrix 𝑽 of the right singular vectors.

FREDE. Another competitor, FREDE [32], adopts a matrix-sketching algorithm to factorize the PPR

proximity matrix. Different from Tree-SVD, which maintains multiple intermediate SVD results

and merges these results group by group, FREDE only maintains one SVD result. It first recursively

reads in 2𝑑 rows of the proximity matrix and compresses them into 𝑑 rows. Then it repeatedly

merges 𝑑 rows new vectors with existing compressed 𝑑 rows to form a 2𝑑 rows matrix. After that,

these 2𝑑 vectors are compressed to 𝑑-dimension matrix by SVD again. This process terminates

until all rows are compressed to get the final 𝑑-dimension representation. Thus, FREDE works in a

streaming way and can be extended to the subset embedding. However, it provides no guarantee in

terms of the Frobenius norm and does not support dynamic updates. Moreover, as we will show in

Section 6, it has inferior performance on tasks like node classification and link prediction.

RandNE. The last competitor is RandNE [43], which designs a proximity matrix of high-order

adjacency matrices and adopts a Gaussian random projection approach rather than classic SVD

operations for better efficiency. In the Gaussian random projection process, RandNE designs an

iterative projection procedure, thus avoids the explicit calculation of high-order proximity matrices

and further increase its efficiency. Again, such a solution can be extended to subset embedding.

However, it also provide inferior performance on downstream tasks as we will see in the experiment.
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Algorithm 3: Tree-SVD Node Embedding

Input: Proximity matrix 𝑴𝑆 = [𝑴1,1 |𝑴1,2 | · · · |𝑴1,𝑏], embedding dimension 𝑑

Output: Embedding matrix 𝑿
1 Set 𝑩1, 𝑗 = 𝑴1, 𝑗 for 𝑗 = 1, 2, · · · , 𝑏
2 for 𝑙 = 1, 2..., 𝑞 − 1 do
3 for 𝑗 = 1, 2, ..., 𝑏/𝑘𝑙−1 do
4 Compute the 𝑑-rank randomized SVD (resp. 𝑑-rank truncated SVDs) of 𝑩𝑙, 𝑗 if 𝑗 = 1

(resp. 𝑗 > 1); keep the first 𝑑 singular vectors and values to get (𝑼 𝑙, 𝑗 )𝑑 , (𝚺𝑙, 𝑗 )𝑑 and

form (𝑼 𝑙, 𝑗 )𝑑 · (𝚺𝑙, 𝑗 )𝑑
5 for 𝑗 = 1, 2, ..., 𝑏/𝑘𝑙 do
6 𝑩𝑙+1, 𝑗 :=

[
(𝑼 𝑙,( 𝑗−1)𝑘+1)𝑑 (𝚺𝑙,( 𝑗−1)𝑘+1)𝑑 , | · · · | (𝑼 𝑙, 𝑗𝑘 )𝑑 (𝚺𝑙, 𝑗𝑘 )𝑑

]
.

7 Compute the truncated SVD of 𝑩𝑞,1 for the first 𝑑 singular vectors and values to get

(𝑼𝑞,1)𝑑 , (𝚺𝑞,1)𝑑 .
8 Set 𝑿 = (𝑼𝑞,1)𝑑

√︁
(𝚺𝑞,1)𝑑

3 OUR SOLUTION: TREE-SVD
Recap that a major deficiency of existing SVD-based node embedding algorithms, e.g., STRAP [39],

NRP [38], NetSMF [28], is that when the proximity matrix changes, the whole SVD results need

to be re-computed from scratch. To avoid re-computations, our main idea is to vertically divide

the proximity matrix 𝑴𝑆 into multiple sub-matrices and do truncated SVD of dimension 𝑑 on

each sub-matrix as shown in Figure 1, where we divide the proximity matrix into 𝑘2
sub-matrices

𝑴1,1,𝑴1,2, · · · ,𝑴1,𝑘×𝑘 . Then, we maintain the intermediate SVD results for these 𝑘2
sub-matrices.

If a sub-matrix, say, 𝑴1,1 gets affected, we do not need to re-compute the truncated SVD results

for 𝑴1,2 to 𝑴1,𝑘×𝑘 , which significantly reduces the update cost. It provides more flexibility as now

we are able to control which part of the matrix 𝑴𝑆 to re-compute and which part of the matrix

𝑴𝑆 to use past values. Given the first-level truncated SVD results, we concatenate these factorized

sub-matrices in groups to form the intermediate matrices and feed them into the next level. Then,

a truncated SVD is invoked on each intermediate matrix at the next level. Given the intermediate

results, we repeatedly merge them into groups and do SVD on newly concatenated matrices. Each

time, the column dimension of the matrix calculated by SVD is fixed to 𝑑 . By these SVD operations,

the overall dimension (as we maintain an |𝑆 | × 𝑑 matrix for each sub-matrix) is reduced level by

level. We will repeat this process in a hierarchical manner until there is only one matrix left. Then,

our Tree-SVD terminates and outputs compressed representations calculated by the last truncated

SVD as our final embedding. The level 𝑞 of Tree-SVD is defined as the largest number of SVDs

performed along with the path from the root to any leaf. Figure 1 shows the architecture of a 3-level

Tree-SVD, where the bottom is the root.

Our Tree-SVD is a combination of sparse randomized SVD [4] and hierarchical SVD (HSVD) [14].

Concretely, given the original proximity matrix, we can easily partition it as a group of sub-matrices

in the first level. With these sub-matrices in the first level of the hierarchical structure, we apply a

truncated sparse randomized SVD to quickly embed each of these sub-matrices to a |𝑆 | × 𝑑 matrix

formed by (𝑼 )𝒅 (𝚺)𝒅 . Note that the HSVD in [14] requires that the first level is an exact SVD to

provide theoretical guarantees. We show that with the approximation ratio (1 + 𝜖) of the sparse
randomized SVD at the first level, we still provide a comparable theoretical guarantee for Tree-SVD

as shown in Theorem 3.2.
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Note that this sparse randomized SVD is quite crucial because we tremendously reduce the

column dimension from 𝑂 (𝑛) to 𝑂 (𝑑) in the first level, which is originally the time bottleneck of

the HSVD with a slow exact SVD algorithm at the first level. For example, given a matrix with 6

million columns, we may reduce the column dimension from 6 million to 64 ∗ 128 by this sparse

randomized SVD in our case, where 64 is the number of sub-matrices in the first level and 128 is the

dimension. This significantly accelerates our computation. Then we can conduct exact SVD in the

next few levels with very small column dimensions efficiently. Therefore, this two-step Tree-SVD

scheme, as a combination of sparse randomized SVD and HSVD, inherits both the efficiency of the

sparse randomized SVD and the flexibility of the HSVD.

Although we tremendously accelerate the computation and alleviate the original time bottleneck

by bringing in randomized SVD in the first level, we note that the major computational cost of

Tree-SVD still comes from the first level. Actually, this cost is still much higher than that of the

exact SVD in the next few levels, since the dimension of the original proximity matrix may be

larger by two orders of magnitude compared with that of the second-level matrices. Based on this

observation, we may avoid the re-computation of SVD under dynamic settings by reducing the

number of randomized SVD computations in the first level, which is the major bottleneck of Tree-

SVD. Our strategy is that we maintain intermediate results, which are much smaller than the input

proximity matrix. Then, during the update, if a sub-matrix is not updated, we can reuse the cached

intermediate results without recalculating SVD on the sub-matrix from scratch. However, such a

solution may still become ineffective if a batch update occurs, in which many sub-matrices may

get changed. To tackle this issue, we present a lazy update framework to dynamically monitor the

updates of each sub-matrix. If the matrix has changed by a large portion in terms of the Frobenius

norm, then a re-calculation of SVD on the sub-matrix is performed. Next, we first show how our

Tree-SVD works without any updates in Section 3.1. Then, we elaborate on our dynamic algorithm

and lazy update strategy in Section 3.2.

3.1 Tree-SVD on Static Graphs
In this section, we present how Tree-SVD works on static graphs. Firstly, we derive the proximity

matrix 𝑴𝑆 . For each node 𝑠 ∈ 𝑆 , we perform a Forward-Push on graph G and derive the estimation

vector 𝒑𝑠 . Then, a Forward-Push is also performed for each node 𝑠 ∈ 𝑆 on the reverse graph G⊤ by

reversing the direction of each edge. For the proximity matrix 𝑴𝑆 of size |𝑆 | × 𝑛, we have:

𝑴𝑆 (𝑠, 𝑣) = log

(
𝒑𝑠 (𝑣)
𝑟𝑚𝑎𝑥

+
𝒑⊤𝑠 (𝑣)
𝑟𝑚𝑎𝑥

)
.

Notice that in the above equation, dividing by 𝑟𝑚𝑎𝑥 is to scale the values while taking the logarithm

is to perform a non-linear transformation to improve the representation power, both of which are

widely adopted in the literature [39, 42]. Given the proximity matrix 𝑴𝑆 , we divide the matrix into

𝑏 different sub-matrices:

𝑴𝑆 = [𝑴1,1 |𝑴1,2 | · · · |𝑴1,𝑏],
where 𝑴1, 𝑗 denotes the 𝑗-th sub-matrix in the first level.

In the rest of the paper, we define (𝑴𝑆 )𝑑 as the best 𝑑-rank approximation of 𝑴𝑆 , i.e., | | (𝑴𝑆 )𝑑 −
𝑴𝑆 | |𝐹 = minrank(𝑨)≤𝑑 | | (𝑨)𝑑 −𝑴𝑆 | |𝐹 . For a matrix 𝑩, let 𝑼𝚺𝑽 be the truncated SVD of matrix 𝑩,
i.e., 𝑩 = 𝑼𝚺𝑽 , where 𝑼 is the left singular vector matrix, 𝚺 is the diagonal singular value matrix,

and 𝑽 is the right singular vector matrix. We define 𝑩̄ = 𝑩𝑽 ∗ = 𝑼𝚺. It is important to note that if

𝑩 is rank deficient and/or has repeated singular values, 𝑩̄ is not necessarily uniquely determined

by 𝑩. Similarly, we define 𝑩̄ = ¯𝑪 , meaning that 𝑩 and 𝑪 are equivalent up to multiplication by a

unitary matrix 𝑬 on the right, i.e. 𝑩 = 𝑪𝑬 or 𝑩𝑬 = 𝑪 .
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MS=[M1,1|M1,2|···|M1,k*k]

(U1,1)d, (Σ1,1)d (U1,k)d, (Σ1,k)d (U1,k(k-1)+1)d, (Σ1,k(k-1)+1)d (U1,k*k)d, (Σ1,k*k)d

[(U1,1)d·(Σ1,1)d|…|(U1,k)d·(Σ1,k)d] [(U1,k(k-1)+1)d·(Σ1,k(k-1)+1)d|…|(U1,k*k)d·(Σ1,k*k)d]

(U2,1)d, (Σ2,1)d (U2,k)d, (Σ2,k)d

[(U2,1)d · (Σ2,1)d | … |(U2,k)d·(Σ2,k)d]

(U3,1)d, (Σ3,1)d

SVDSVDSVD SVD

......

...

SVD SVD

SVD

...

...

Fig. 1. Tree-SVD with 3 levels

We denote 𝑩𝑙, 𝑗 as the 𝑗-th sub-matrix that we factorize in the 𝑙-th level of Tree-SVD. Let 𝑩1, 𝑗 =

𝑴1, 𝑗 , i.e., the 𝑗-th sub-matrix of the input matrix 𝑴𝑆 at the first level. Recap that for a sub-matrix

𝑩1, 𝑗 at the first level, we apply a randomized SVD to derive the best 𝑑-rank approximation of 𝑩1, 𝑗 .

Let (𝑩1, 𝑗 )𝑑 = (𝑼 1, 𝑗 )𝑑 (𝚺1, 𝑗 )𝑑 (𝑽 1, 𝑗 )𝑑 be the 𝑑-rank 𝜖-approximation of 𝑩𝑙, 𝑗 (Ref. to Eqn. 1) derived

by the randomized SVD. For the second level, 𝑩2, 𝑗 is defined as follows:

𝑩2, 𝑗 :=

[
(𝑩1,( 𝑗−1) ·𝑘+1)𝑑 | · · · | (𝑩1, 𝑗 ·𝑘 )𝑑

]
=
[
𝑼 1,( 𝑗−1) ·𝑘+1 · 𝚺1,( 𝑗−1) ·𝑘+1 | · · · | 𝑼 1, 𝑗 ·𝑘𝚺𝑙, 𝑗 ·𝑘

]
,

i.e., we merge the SVD results of the first 𝑘 consecutive sub-matrices (𝑩1,1,𝑩1,2, · · · ,𝑩1,𝑘 ) at the first

level and produce 𝑩2,1, the first sub-matrix at level two; the SVD results of the next 𝑘 consecutive

sub-matrices (𝑩1,𝑘+1,𝑩1,𝑘+2, · · · ,𝑩1,2𝑘 ) produces 𝑩2,2, the second sub-matrix at level two, and etc.

More generally, for 𝑙 > 1, given the sub-matrix 𝑩𝑖, 𝑗 = 𝑼 𝑙, 𝑗𝚺𝑙, 𝑗𝑽 𝑙, 𝑗 , where 𝑼 𝑙, 𝑗 , 𝚺𝑙, 𝑗 , and 𝑽 𝑙, 𝑗 are

the matrix of the left singular vectors, the diagonal matrix of the singular values, and the matrix of

the right singular vectors of 𝑩𝑙, 𝑗 , respectively. Then, we take the 𝑑-rank truncated SVD of 𝑩𝑙, 𝑗 by

keeping the first 𝑑 columns of 𝑼 𝑙, 𝑗 , 𝚺𝑙, 𝑗 , and 𝑽 𝑙, 𝑗 , i.e., (𝑩𝑙, 𝑗 )𝑑 = (𝑼 𝑙, 𝑗 )𝑑 · (𝚺𝑙, 𝑗 )𝑑 · (𝑽 𝑙, 𝑗 )𝑑 . Then, for
the (𝑙 + 1)-th level (𝑙 > 1), we define 𝑩𝒍+1,𝒋 as follows:

𝑩𝑙+1, 𝑗 :=
[
(𝑩𝑙,( 𝑗−1)𝑘+1)𝑑 | · · · | (𝑩𝑙, 𝑗𝑘 )𝑑

]
=
[
(𝑼 𝑙,( 𝑗−1) ·𝑘+1)𝑑 · (𝚺𝑙,( 𝑗−1) ·𝑘+1)𝑑 | · · · | (𝑼 𝑙, 𝑗 ·𝑘 )𝑑 · (𝚺𝑙, 𝑗 ·𝑘 )𝑑

]
.

Finally, on the last level 𝑞, there is only one matrix 𝑩𝑞,1. We derive the 𝑑-rank truncated SVD of

𝑩𝑞,1 and output (𝑼𝑞,1)𝑑 and (𝚺𝑞,1)𝑑 as the final truncated SVD results. For the subset embedding, it

returns (𝑼𝑞,1)𝑑
√︁
(𝚺𝑞,1)𝑑 as the embedding of vertex set 𝑆 . Here, we assume that 𝑘 sub-matrices are

aggregated together in each level, which is adopted in our implementation. We also call 𝑘 here as

the branching factor of Tree-SVD. In our implementation, given 𝑏 sub-matrices at the first level,

then there are 𝑏/𝑘 sub-matrices at the second level, 𝑏/𝑘2
sub-matrices at the third level, and finally

1 matrix at the last level 𝑞. Clearly, the number 𝑏 of sub-matrices in the first level satisfies that

𝑏 = 𝑘𝑞−1
. Here, we further assume that 𝑛 can be divided evenly by 𝑏 and each matrix has the same

size. Notice that, we make the above assumption for the ease of exposition and there are no such

restrictions to Tree-SVD, where different levels may aggregate different numbers of sub-matrices

and 𝑛 does not need to be evenly divided by 𝑏.

Example 3.1. Figure 1 shows a 3-level Tree-SVD with a branching factor of 𝑘 . If we set the

branching factor 𝑘 = 8, then 8 consecutive sub-matrices are aggregated together in each level and

the number 𝑏 of sub-matrices at the first level satisfies that 𝑏 = 𝑘2 = 64. Thus, we derive 𝑩2,1 by[
(𝑼 1,1)𝑑 · (𝚺1,1)𝑑 | · · · | (𝑼 1,8)𝑑 · (𝚺1,8)𝑑

]
, derive 𝑩2,2 by

[
(𝑼 1,9)𝑑 · (𝚺1,9)𝑑 | · · · | (𝑼 1,16)𝑑 · (𝚺1,16)𝑑

]
,
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and etc. At the second level, we maintain 8 sub-matrices (𝑩2,1, · · ·𝑩2,8). We calculate the 𝑑-rank

truncated SVD of each sub-matrix at the second level and merge the SVD results together to get

the only matrix at the third level, i.e., 𝑩3,1. Finally, we compute the 𝑑-rank truncated SVD of 𝑩3,1 to

get the final output embedding (𝑼 3,1)𝑑
√︁
(𝚺3,1)𝑑 .

Algorithm 3 shows the pseudo-code of Tree-SVD for static subset node embedding. The steps are

self-explanatory with the above discussions. Theorem 3.2 shows the quality guarantee of Tree-SVD.

Theorem 3.2. Given the input matrix 𝑴𝑆 and level 𝑞 ≥ 2, let (𝑼𝑞,1)𝑑 , (𝚺𝑞,1)𝑑 be the 𝑑-rank
truncated SVD of the last level of Tree-SVD. Assume that the randomized SVD in the first level achieves
(1 + 𝜖)-approximation ratio. Further let the approximate matrix of the right singular matrices be
restored by (𝑽̃𝑞,1)𝑑 = (𝚺𝑞,1)−1

𝑑
(𝑼𝑞,1)⊤𝑑 𝑴𝑆 . Then, there exists a unitary matrix𝑾 such that Algorithm

3 is guaranteed to recover an 𝑴̃𝑆 = (𝑼𝑞,1)𝑑 (𝚺𝑞,1)𝑑 (𝑽̃𝑞,1)𝑑 ∈ R |𝑆 |×𝑛 with approximation guarantee. In

particular, let 𝑴̃𝑆 =
(
𝑩𝑞,1

)
𝑑
= (𝑴𝑆 )𝑾 + 𝚿. Then, we have that:

∥𝚿∥F ≤
(
(2 + 𝜖) (1 +

√
2)𝑞−1 − 1

)
∥𝑴𝑆 − (𝑴𝑆 )𝑑 ∥F .

All proofs are deferred to Section 4. As we can observe from Theorem 3.2 that provides the final error

bound of static Tree-SVD, the smaller the number of levels we have, the better the approximation

guarantee we achieve. Thus, we set 𝑞 = 3, 𝑘 = 8, and 𝑑 = 128 in our implementation to generate

static subset node embedding. The parameters of our Tree-SVD in dynamic graphs will be the same.

Complexity analysis. With the first level as the randomized SVD, we further reduce the time

complexity of our Tree-SVD compared to the original hierarchical SVD in [14]. Assume that𝑛𝑛𝑧 (𝑴)
indicates the number of non-zero elements in a matrix 𝑴 . The following theorem shows the time

complexity of Tree-SVD.

Theorem 3.3. Let 𝑏 = 𝑘𝑞−1 be the number of sub-matrices in the first level of Tree SVD, where
𝑘 is the branching factor of Tree-SVD and 𝑞 is the level of Tree-SVD. Let 𝑑 be the dimension of the
embedding we output and let 𝜖 be the error parameter of the first level of randomized SVD. Then,
Tree-SVD, as shown in Algorithm 3, takes 𝑂 (𝑛𝑛𝑧 (𝑴𝑆 ) + |𝑆 | ·𝑑

2 ·𝑏
𝜖4
).

For the hierarchical SVD proposed in [14], the time complexity is 𝑂 ( |𝑆 |2 · 𝑛 + |𝑆 |3). Note that,
𝑛𝑛𝑧 (𝑴𝑆 ) is bounded by |𝑆 | · 𝑛 and the term

𝑑2 ·𝑏
𝜖4

can be regarded as a constant and is dominated

by 𝑛 as well. Thus, our Tree-SVD reduces the time complexity by a factor of |𝑆 | compared to the

hierarchical SVD as proposed in [14].

3.2 Tree-SVD on Dynamic Graphs
In this subsection, we introduce how to use our hierarchical structure to update subset embeddings

from snapshot 𝑡 − 𝑖, 𝑖 ∈ [1, 𝑡 − 1] to snapshot 𝑡 . We inherit the notations from Section 3.1, except

that we use 𝑡 as the superscript to denote snapshot 𝑡 , e.g., 𝑴𝑡
𝑆
.

As we mentioned at the beginning of Section 3, the update with Tree-SVD becomes more efficient

than global SVD methods since we maintain all the intermediate results (which are much smaller

than the input proximity matrix) and only need to update the sub-matrices that are changed.

However, in real-life scenarios, node embeddings are usually updated periodically after a few days

or weeks. In such scenarios, when only a few edge events occur compared to the existing mature

graph topology, the PPR proximity sub-matrices often change unevenly. We have also observed

experimentally that with a large sub-matrix partition size 𝑏, the PPR entries often concentrate on

some local sub-matrices. This motivates us to find out sub-matrices that have changed noticeably

with graph evolution for eager updates. Specifically, we cache past representations in the hierarchical
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Algorithm 4: Tree-SVD-Lazy-Update
Input: Level 𝑞, branching factor 𝑘 , dimension 𝑑 , submatrices (𝑩𝑡−𝑖

1, 𝑗 )𝑑 , 𝑩𝑡
1, 𝑗

1 Initialize 𝑍 ← ∅
2 Run Algorithm 2 to update the proximity matrix

3 if



(𝑩𝑡−𝑖

1, 𝑗

)
𝑑
−
(
𝑩𝑡−𝑖

1, 𝑗

)



F

+


𝑫 𝑗




F
>
√

2𝛿




𝑩𝑡
1, 𝑗





F

then
4 𝑍 ← 𝑍 ∪ { 𝑗}
5 Update the corresponding block from 𝑩𝑡−𝑖

1, 𝑗 to 𝑩𝑡
1, 𝑗

6 for 𝑙 = 1 to 𝑞 − 1 do
7 Initialize 𝑍𝑝𝑎𝑟𝑒𝑛𝑡 ← ∅
8 for 𝑗 ∈ 𝑍 do
9 Compute truncated SVDs (resp. randomized SVD) of (𝑩𝑡

𝑙, 𝑗
)𝑑 at the 𝑙-th level with

𝑙 > 1 (resp. 𝑙 = 1) to get (𝑼 𝑡
𝑙, 𝑗
)𝑑 , (𝚺𝑡

𝑙, 𝑗
)𝑑 . Let the parent of 𝑩𝑙, 𝑗 be 𝑩𝑙+1,𝑥 .

𝑍𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑍𝑝𝑎𝑟𝑒𝑛𝑡 ∪ {𝑥}.
10 for 𝑗 ∈ 𝑍𝑝𝑎𝑟𝑒𝑛𝑡 do
11 𝑩𝑙+1, 𝑗 :=

[
(𝑼 𝑡

𝑙,( 𝑗−1)𝑘+1)𝑑 (𝚺
𝑡
𝑙,( 𝑗−1)𝑘+1)𝑑 , | · · · | (𝑼 𝑡

𝑙, 𝑗𝑘
)𝑑 (𝚺𝑡

𝑙, 𝑗𝑘
)𝑑 ,

]
12 𝑍 ← 𝑍𝑝𝑎𝑟𝑒𝑛𝑡

13 Compute truncated SVD of 𝑩𝑡
𝑞,1 to get (𝑼 𝑡

𝑞,1)𝑑 , (𝚺
𝑡
𝑞,1)𝑑 .

14 Set 𝑿𝑡 = (𝑼 𝑡
𝑞,1)𝑑

√︃
(𝚺𝑡

𝑞,1)𝑑

structure and put off the update of sub-matrices with negligible differences to a future snapshot.

Such a strategy tends not to impact the quality of final embeddings.

Then the main task is to design a good measure for our lazy update scheme to monitor the

changes of sub-matrices. Although it is heuristic, efficient, and effective to track the number of

non-zeros or 1-norm of each sub-matrix to monitor the changes of sub-matrices, such measures

could not provide any theoretical guarantee to bound the error of the embedding. To overcome such

limitations, we investigate and model the correlation between the proximity matrix differences in

consecutive snapshots and verify if the cached representation could be a good approximation in

terms of the Frobenius norm, i.e.,




(𝑩𝑡−𝑖
1, 𝑗

)
𝑑
−
(
𝑩𝑡

1, 𝑗

)



F

. We further bound these terms by the original

desired error




𝑴𝑡
1, 𝑗 − (𝑴𝑡

1, 𝑗 )𝑑





F

. However,




𝑴𝑡
1, 𝑗 − (𝑴𝑡

1, 𝑗 )𝑑





F

could not be obtained without the

SVD computation in the first level, which contradicts to our motivation that aims to efficiently find

out sub-matrices that are changed noticeably. In our solution, we aim to avoid the unnecessary

heavy SVD computation of sightly modified sub-matrices in the first level. Thus, we resort to find a

measure correlated to




𝑴 𝒕
1,𝒋





F

as a replacement, which is summarized in Lemma 3.4.

Lemma 3.4. Let 𝑗 ∈ {1, 2, · · · , 𝑏}. Let 𝑫 𝑗 ∈ R |𝑆 |×𝑛 𝑗 be a matrix such that 𝑩𝑡
1, 𝑗 = 𝑩𝑡−𝑖

1, 𝑗 + 𝑫 𝑗 holds
for 𝑩𝑡

1, 𝑗 ,𝑩
𝑡−𝑖
1, 𝑗 , and 𝑖 ∈ [1, 𝑡 − 1]. If 𝑩𝑡

1, 𝑗 , 𝑩
𝑡−1

1, 𝑗 , and 𝑫 𝑗 satisfy that:


(𝑩𝑡−𝑖
1, 𝑗

)
𝑑
−
(
𝑩𝑡−𝑖

1, 𝑗

)



F

+


𝑫 𝑗




F
≤
√

2𝛿


𝑩𝑡

1, 𝑗




F

. (2)
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MS=[M1,1 | M1,2 | ··· | M1,k*k]

(U1,1)d, (Σ1,1)d (U1,k)d, (Σ1,k)d (U1,k(k-1)+1)d, (Σ1,k(k-1)+1)d (U1,k*k)d, (Σ1,k*k)d

[(U1,1)d·(Σ1,1)d|…|(U1,k)d·(Σ1,k)d] [(U1,k(k-1)+1)d·(Σ1,k(k-1)+1)d|…|(U1,k*k)d·(Σ1,k*k)d]

(U2,1)d, (Σ2,1)d (U2,k)d, (Σ2,k)d

(U3,1)d , (Σ3,1)d

SVDSVDSVD SVD

......

...

...

SVD SVD

SVD

...

[(U2,1)d·(Σ2,1)d | … |(U2,k)d·(Σ2,k)d]

Fig. 2. Lazy update with only blue color blocks updated.

Then, there exists a unitary matrix𝑾 1, 𝑗 ∈ R𝑛 𝑗×𝑛 𝑗 such that:



(𝑩𝑡−𝑖
1, 𝑗

)
𝑑
− 𝑩𝑡

1, 𝑗𝑾 1, 𝑗






F

≤
√

2𝛿


𝑩𝑡

1, 𝑗




F

.

Our lazy-update strategy is inspired by Lemma 3.4. For the first level sub-matrices, we only need to

re-compute the truncated SVD results for the sub-matrices that have changed significantly, i.e., the

sub-matrices that violate Eqn. 2. We call a sub-matrix as affected sub-matrices if it violates Eqn. 2

or it has at least one first-level matrix descendent that violates Eqn. 2. For example, in Figure 2,

assume that a first level sub-matrix 𝑴1,𝑘 · (𝑘−1)+1 violates Eqn. 2. Then, 𝑴1,𝑘 · (𝑘−1)+1 is an affected

sub-matrix. In addition, the second and third level sub-matrices that have𝑴1,𝑘 · (𝑘−1)+1 as descendent
are all affected sub-matrices (shown in blue). Then, with our lazy-update strategy, we only need to

re-compute SVD results for the affected sub-matrices, significantly reducing computational costs,

which mainly come from SVD computations for first-level sub-matrices.

Next, we elaborate on the details of our update algorithm.

Update algorithm. Algorithm 4 shows the pseudo-code of the update algorithm. Firstly, we update

the proximity matrix 𝑴𝑆 using the dynamic Forward-Push algorithm (Algorithm 2). Then, we

can easily derive 𝑫 𝑗 for each sub-matrix 𝑩𝑡
1, 𝑗 , where 1 ≤ 𝑗 ≤ 𝑏 = 𝑘𝑞−1

. Besides, (𝑩𝑡−𝑖
1, 𝑗 )𝑑 has been

computed at timestamp 𝑡 − 𝑖 as it needs to be fed to the next level, where 𝑡 − 𝑖 is the timestamp of

the last time when the SVD of 𝑩1, 𝑗 is computed. Thus, at timestamp 𝑡 , (𝑩𝑡−𝑖
1, 𝑗 )𝑑 is already available,

which means from timestamp 𝑡 − 𝑖 to 𝑡 − 1, it satisfies Eqn. 2 and thus the SVD result computed at

timestamp 𝑡 − 𝑖 is reused after the updates from 𝑡 − 𝑖 to 𝑡 − 1. After the update at timestamp 𝑡 , we

dynamically track if any sub-matrix in the first level violates the condition in Eqn. 2. If this is the

case, we add the index of such sub-matrix to 𝑍 and update 𝑩𝑡−𝑖
1, 𝑗 to 𝑩𝑡

1, 𝑗 (Lines 3-5). Next, we update

the affected sub-matrices with indices in 𝑍 in a bottom-up fashion (Lines 6-12). In particular, we

retrieve the index of the affected sub-matrices at the 𝑙-th level (initially 𝑙 = 1). Here, we assume

that the bottom level is 1 and the root level is 𝑞. Then, we re-compute the truncated SVD (resp.

randomized SVD) for level 𝑙 with 𝑙 > 1 (resp. 𝑙 = 1). Given the updated sub-matrix 𝑩𝑙, 𝑗 , it further

retrieves the index of its parent at level 𝑙 + 1. Assume that the index is 𝑥 . Then, the index 𝑥 of its

parent is added to set 𝑍𝑝𝑎𝑟𝑒𝑛𝑡 (Line 9). Next, the sub-matrix 𝑩𝑙+1,𝑥 will also need to be updated and

hence is affected. Thus, we update the sub-matrix for level 𝑙 + 1 based on the updated SVD results

of the affected children at level 𝑙 (Lines 10-11). After re-computing the SVD at level 𝑙 and updating

the affected matrices at level 𝑙 + 1, we proceed to the next level 𝑙 + 1 by setting 𝑍 = 𝑍𝑝𝑎𝑟𝑒𝑛𝑡 (Line

12). The updates proceed until we reach level 𝑞 where we compute the truncated SVD of the only

matrix 𝑩𝑞,1 (Line 13) and return the updated embedding (Line 14).
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Example 3.5. Assume that 𝑞 = 3, 𝑘 = 8, and 𝑩1,57 is the only sub-matrix at the first level that

violates Eqn. 2. Then its parent, 𝑩2,8, is affected and formed by the updated (𝑼 1,57)𝑑 (𝚺1,57)𝑑 and

cached (𝑼 1,58)𝑑 (𝚺1,58)𝑑 to (𝑼 1,64)𝑑 (𝚺1,64)𝑑 . Finally, the grandparent of 𝑩1,57, 𝑩3,1, is also affected

and should be updated to get the final embedding. For other unaffected sub-matrices, no update is

required and the cached intermediate results can be reused.

Notice that the running cost at level 𝑙 (𝑙 > 1) is much smaller than that at the first level. In addition,

most of the sub-matrices are not updated, saving a lot of computational costs compared to a re-

computation of SVD from scratch. The following theorem shows that the lazy-update strategy still

provides approximation guarantees for the final SVD result.

Theorem 3.6. Let𝑴𝑡
𝑆
∈ R |𝑆 |×𝑛 be the input matrix and 𝑞 ≥ 2. Algorithm 4 is guaranteed to recover

an (𝑴̃𝑆 )𝑡𝑞,1 ∈ R |𝑆 |×𝑛 such that
(
(𝑴̃𝑆 )𝑡𝑞,1

)
𝑑
= (𝑴𝑆 )𝑡𝑾 + 𝚿, where𝑾 is a unitary matrix, and

∥𝚿∥F ≤
(
(1 + 𝛿

√
2) (1 +

√
2)𝑞−1 − 1

) 

𝑴𝑡
𝑆




F
.

There are three cases of updates to discuss: (i) when all sub-matrices, or dubbed as blocks, at the

first level are error-bounded as Lemma 3.4 and thus no block is updated in the current snapshot 𝑡 ,

we get error bound as Theorem 3.6; (ii) when blocks are updated partially in the current snapshot

𝑡 , we have the same error bound but with 𝛿 ≤ 1+𝜖√
2

as the updating threshold, and set 𝛿 = 1+𝜖√
2

for

the worst case theoretical guarantee to bound both updated blocks and cached blocks; (iii) when
all blocks are updated in the current snapshot 𝑡 , we have a theoretical bound the same as static

Tree-SVD reconstruction, which is shown in Theorem 3.2.

With the lazy update strategy, for every snapshot 𝑡 , we just need to update a small portion of

blocks, which overcomes the existing efficiency bottleneck of the MF-based approach, at the same

time achieving accuracy on downstream tasks comparable to the static counterparts. Theorem 3.7

shows the update cost of Algorithm 4.

Theorem 3.7. Given a batch of 𝜏 edge updates, assume that 𝑏′ sub-matrices at the first level violate
Eqn. 2 and the number of non-zero entries in 𝑏′ sub-matrices is 𝑛𝑛𝑧′, Algorithm 4 has a time complexity
of 𝑂

(
min{𝜏 + 1/𝑟𝑚𝑎𝑥 , |𝑆 |/𝑟𝑚𝑎𝑥 } + 𝑛𝑛𝑧′ + |𝑆 | ·𝑑

2 ·𝑘2 ·𝑏′
𝜖4

)
.

Besides, it is easy to derive that the cached intermediate matrices in our lazy update have a space

cost of 𝑂 ( |𝑆 | · 𝑑 · 𝑏), where 𝑑 is the dimension of the embedding and 𝑏 is the number of first-level

sub-matrices. Since 𝑑 · 𝑏 is far smaller than 𝑛, this space cost is negligible to the input proximity

matrix with a space of 𝑂 ( |𝑆 | · 𝑛).

4 THEORETICAL ANALYSIS
Due to limited space, we only include the proof of Theorem 3.2. Other omitted proofs can be found

in our technical report [1].

Proof of Theorem 3.2. Let 𝑴𝑺 denote the original matrix with block components, i.e., 𝑴𝑆 =

[𝑴1,1 |𝑴1,2 | · · · |𝑴1,𝑏], where 𝑏 = 𝑘𝑞−1
, and 𝑴𝑙, 𝑗 denote the error-free block of the original matrix

𝑴𝑆 whose entries correspond to the entries included in𝑩𝑡
𝑙, 𝑗
. Thus,𝑴𝑆 =

[
𝑴𝑙,1

��𝑴𝑙,2

�� · · · | 𝑴𝑙,𝑏/𝑘 (𝑙−1)
]

holds for all 𝑙 ∈ [1, 𝑞], where
𝑴𝑙+1, 𝑗 :=

[
𝑴𝑙,( 𝑗−1)𝑘+1 | · · · |𝑴𝑙, 𝑗𝑘

]
, (3)

for all 𝑙 ∈ [1, 𝑞 − 1], and 𝑗 ∈ [1, 𝑏/𝑘𝑙 ]. Our goal is to bound the final matrix (𝑩𝒒,1)𝒅 with respect to

the original matrix 𝑴𝑺 . Next, we will prove this by induction on level 𝑙 . We will prove that:
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(1)

(
𝑩𝑙, 𝑗

)
𝑑
= 𝑴𝑙, 𝑗𝑾 𝑙, 𝑗 + 𝚿𝑙, 𝑗 ;

(2) 𝑾 𝑙, 𝑗 is always a unitary matrix;

(3) ∥𝚿𝑙, 𝑗 ∥F ≤
(
(2 + 𝜖) (1 +

√
2)𝑙−1 − 1

)
| | (𝑴𝑙, 𝑗 )𝑑 −𝑴𝑙, 𝑗 | |𝐹 .

Here for any classic Randomized-SVD, ∀𝑴1, 𝑗 , we have

| |𝑼 ′𝚺′𝑽 ′ −𝑴1, 𝑗 | |𝐹 ≤ (1 + 𝜖) | | (𝑴1, 𝑗 )𝑑 −𝑴1, 𝑗 | |𝐹 .

Then we apply any classic Randomized-SVD to the first level sub-matrices, we could get the

following results:

| | (𝑩1, 𝑗 )𝑑 −𝑴1, 𝑗 | |𝐹 ≤ (1 + 𝜖) | | (𝑴1, 𝑗 )𝑑 −𝑴1, 𝑗 | |𝐹 .

For 𝑙 = 1, There exists a unitary matrix𝑾 1, 𝑗 , 𝑗 ∈ [1, 𝑏], such that:(
𝑩1, 𝑗

)
𝑑
= 𝑴1, 𝑗𝑾 1, 𝑗 +

[ (
𝑩1, 𝑗

)
𝑑
−𝑴1, 𝑗

]
𝑾 1, 𝑗 ,

where 𝚿1, 𝑗 :=
[ (
𝑩1, 𝑗

)
𝑑
−𝑴1, 𝑗

]
𝑾1,𝒋 . Then we have



𝚿1, 𝑗




F
=




(𝑩1, 𝑗

)
𝑑
−𝑴1, 𝑗𝑾 1, 𝑗





F

=


(𝑩1, 𝑗

)
𝑑
−𝑴1, 𝑗




F

≤(1 + 𝜖) | | (𝑴1, 𝑗 )𝑑 −𝑴1, 𝑗 | |𝐹 =

(
(2 + 𝜖) (1 +

√
2)1−1 − 1

) 

𝑴𝑙+1, 𝑗 −
(
𝑴𝑙+1, 𝑗

)
𝑑




F
.

Now, Conditions 1-3 hold for 𝑙 = 1. Suppose Conditions 1-3 hold for 𝑙 ∈ [1, 𝑞 − 1]. Then, from
Condition 1, we have:

𝑩𝑙+1, 𝑗 :=

[ (
𝑩𝑙,( 𝑗−1)𝑘+1

)
𝑑
| · · · |

(
𝑩𝑙, 𝑗𝑘

)
𝑑

]
=
[
𝑴𝑙,( 𝑗−1)𝑘+1𝑾 𝑙,( 𝑗−1)𝑘+1 + 𝚿𝑙,( 𝑗−1)𝑘+1 | · · · |𝑴𝑙, 𝑗𝑘𝑾 𝑙, 𝑗𝑘 + 𝚿𝑙, 𝑗𝑘

]
=
[
𝑴𝑙,( 𝑗−1)𝑘+1𝑾 𝑙,( 𝑗−1)𝑘+1 | · · · |𝑴𝑙, 𝑗𝑘𝑾 𝑙, 𝑗𝑘

]
+
[
𝚿𝑙,( 𝑗−1)𝑘+1 | · · · |𝚿𝑙, 𝑗𝑘

]
=
[
𝑴𝑙,( 𝑗−1)𝑘+1 | · · · |𝑴𝑙, 𝑗𝑘

]
𝑾̃ + 𝚿̃,

where 𝑾̃ := 𝑑𝑖𝑎𝑔(𝑾 𝑙,( 𝑗−1)𝑘+1,𝑾 𝑙,( 𝑗−1)𝑘+2, ...,𝑾 𝑙, 𝑗𝑘 ), and 𝚿̃ :=
[
𝚿𝑙,( 𝑗−1)𝑘+1 | · · · |𝚿𝑙, 𝑗𝑘

]
. Note that 𝑾̃

is unitary since its diagonal blocks are all unitary by Condition 2. Therefore, we have 𝑩𝑙+1, 𝑗 =

𝑴𝑙+1, 𝑗𝑾̃ + ˜
𝚿. Then, we can derive the following bound:

(𝑩𝑙+1, 𝑗

)
𝑑
−𝑴𝑙+1, 𝑗𝑾̃




𝐹
≤


(𝑩𝑙+1, 𝑗

)
𝑑
− 𝑩𝑙+1, 𝑗




𝐹
+


𝑩𝑙+1, 𝑗 −𝑴𝑙+1, 𝑗𝑾̃




𝐹

=

√√√ 𝐷∑︁
𝑗=𝑑+1

𝜎2

𝑗

(
𝑴𝑙+1, 𝑗𝑾̃ + 𝚿̃

)
+ ∥𝚿̃∥F

≤

√√√ 𝐷∑︁
𝑗=𝑑+1

2𝜎2

𝑗

(
𝑴𝑙+1, 𝑗𝑾̃

)
+

√√√ 𝐷∑︁
𝑗=1

2𝜎2

𝑗
(𝚿̃) + ∥𝚿̃∥F

=
√

2



𝑴𝑙+1, 𝑗 −
(
𝑴𝑙+1, 𝑗

)
𝑑




F
+ (1 +

√
2)∥𝚿̃∥F .

(4)
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In addition, by Condition 3, we know that:

∥𝚿̃∥F =

𝑘∑︁
𝑖=1




𝚿𝑙,( 𝑗−1)𝑘+𝑖




F

≤
𝑘∑︁
𝑖=1

(
(2 + 𝜖) (1 +

√
2)𝑙−1 − 1

) 

𝑴𝑙,( 𝑗−1)𝑘+𝑖 −
(
𝑴𝑙,( 𝑗−1)𝑘+𝑖

)
𝑑




F

≤
𝑘∑︁
𝑖=1

(
(2 + 𝜖) (1 +

√
2)𝑙−1 − 1

) 


𝑴𝑙,( 𝑗−1)𝑘+𝑖 −
(
𝑴𝑙+1, 𝑗

)𝑖
𝑑





F

=

(
(2 + 𝜖) (1 +

√
2)𝑙−1 − 1

) 

𝑴𝑙+1, 𝑗 −
(
𝑴𝑙+1, 𝑗

)
𝑑




F
,

(5)

where

(
𝑴𝑙+1, 𝑗

)𝑖
𝑑
denotes the block of

(
𝑴𝑙+1, 𝑗

)
𝑑
corresponding to 𝑴𝑙,( 𝑗−1)𝑘+𝑖 . Combining Equations

4 and 5, we have:

(𝑩𝑙+1, 𝑗
)
𝑑
−𝑴𝑙+1, 𝑗𝑾̃




𝐹
≤

(
(2 + 𝜖) (1 +

√
2)𝑙 − 1

) 

𝑴𝑙+1, 𝑗 −
(
𝑴𝑙+1, 𝑗

)
𝑑




F
.

Moreover, note that:

(𝑩𝑙+1, 𝑗
)
𝑑
−𝑴𝑙+1, 𝑗𝑾̃




F
=




(𝑩𝑙+1, 𝑗
)
𝑑
𝑊̂

𝑗

𝑙+1 −𝑴𝑙+1, 𝑗𝑾̃𝑾̂
𝑗

𝑙+1





F

=




(𝑩𝑙+1, 𝑗
)
𝑑
−𝑴𝑙+1, 𝑗𝑾 𝑙+1, 𝑗





F

,

where 𝑾̂
𝑗

𝑙+1 is the unitary matrix that represents the transformation, and𝑾 𝑙+1, 𝑗 = 𝑾̃𝑾̂
𝑗

𝑙+1 is the

unitary matrix in Condition 1. Hence, Conditions 1-3 hold for 𝑙 + 1 with 𝚿𝑙+1, 𝑗 :=
(
𝑩𝑙+1, 𝑗

)
𝑑
−

𝑴𝑙+1, 𝑗𝑾 𝑙+1, 𝑗 . Since on the last level, we derive 𝑩𝑞,1 and 𝑴𝑞,1 = 𝑴𝑆 according to the definition.

Applying these three conditions, we get the claimed result in Theorem 3.2, which finishes the

proof.

5 OTHER RELATEDWORK
Static node embedding. There are numerous works dealing with static node embedding. Tradi-

tional random walk based [7, 27] approaches are inspired by skip-gram model [22]. They focus on

preserving the co-occurrence probability of the nodes on the random walks. MF-baseds methods

[25, 29] are also successful attempts for static node embedding. They first define a proximity matrix

and then apply matrix factorization algorithms to get the node embeddings. In general, the state-

of-the-art MF-based methods [39, 42] factorize a PPR matrix. Recent progress on deep learning

provides alternative solutions [9, 16] for static node embedding. They compute node embeddings

by training graph neural networks (GNNs). However, GNNs train models in a supervised manner

and they all need features as input, which is explained thoroughly in [3, 8]. Different from GNNs,

we focus on designing unsupervised embedding methods on topology-only graphs.

Dynamic node embedding. CTDNE [23], DNE [5], and dynnode2vec [20] are random walk-based

methods for dynamic node embedding task. The main idea of these solutions is to update the

random walks according to the graph changes. Such solutions are generally outperformed by

hashing-based methods as shown in [32]. Another line of research work focuses on designing

dynamic algorithms for MF-based methods. LIST [40] incorporates temporal information into

the learned embeddings and predicts the edges for the next snapshot by solving a least squares

optimization problem. However, the recalculation of the matrix decomposition at each snapshot is

computationally prohibitive. To tackle this issue, TIMERS [44] proposes an incremental eigenvalue

decomposition-based method that sets a tolerated error threshold for the restart time to reduce the
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Table 3. Statistics of datasets.

Dataset Type 𝑛 𝑚 |𝐶 | 𝜏

Patent (PT) Citation 2.7M 14.0M 6 25

Mag-authors (MA) Co-authorship 5.8M 27.7M 19 9

Wikipedia (WK) Web-link 6.2M 178M 10 20

YouTube (YT) Socialnet 3.2M 9.4M - 8

Flickr (FK) Socialnet 2.3M 33.1M - 6

error accumulation. However, TIMERS generates embeddings by eigenvalue decomposition on the

whole square proximity matrix, which is not suitable for subset node embeddings.

6 EXPERIMENT
In this section, We experimentally evaluate our Tree-SVD against competitors on link prediction

and node classification tasks. All experiments are conducted on a Linux machine with 2 CPUs

(2.30GHz), 32 cores (64 threads), and 416 GB memory. Our source code is publicly available at [1].

6.1 Experimental Settings
Dynamic graph datasets. Following DynPPE [8], we use three large dynamic graph datasets,

Patent, Mag-Authors, and Wikipedia for node classification tasks. We also test on link prediction

tasks, which are broadly applied to social network analysis. Thus, we select two large social network

datasets, YouTube and Flickr, together with Mag-authors, as three link prediction datasets. The

statistics of these datasets are shown in Table 3, where |𝐶 | denotes the number of classes and 𝜏

indicates the number of snapshots.

Competitors. The main competitors are listed as follows:

• DynPPE [8], the state-of-the-art subset node embedding method;

• STRAP [39], dubbed as Global-STRAP, one of the state-of-the-art static node embedding methods;

• Subset-STRAP, the subset version of STRAP (Ref. to Section. 2.2).

• RandNE [43] and FREDE [32], two efficient embedding methods.

All competitors are in parallel using 64 threads. We obtain their implementations from Github and

use default settings suggested by their authors. For our methods, we use Tree-SVD to indicate the

algorithm on dynamic graphs and Tree-SVD-S (the solution in Section 3.1) to indicate the static

version of Tree-SVD.

Parameter settings. Following DynPPE [8], we set |𝑆 | = 3000 for all datasets. We randomly sample

3000 nodes from the graph topology at the first snapshot to form the subset 𝑆 , which is the same

as DynPPE [8]. In addition, for our Tree-SVD, we set the number of sub-matrices 𝑏 = 64 and the

level 𝑞 = 3. For our lazy update strategy, we set 𝛿 = 0.65 (Ref. to Section 3.2) as it achieves a good

trade-off between the running time and accuracy. For Global-STRAP, Subset-STRAP, Tree-SVD,

we tune 𝑟𝑚𝑎𝑥 (Ref. to Section 2.1) so that their performance does not further improve in affordable

time. The 𝑟𝑚𝑎𝑥 for Tree-SVD on Wikipedia, Flickr, Mag-author, Patent and Youtube are 10
−5
, 10
−7
,

10
−8
, 10
−8
, and 10

−8
, respectively.

Task settings. For the classification task, we follow the same setting as DynPPE [8] to conduct

single-label classification. For the link prediction task, given the subset 𝑆 , we predict the links from

𝑆 to 𝑉 . Let 𝐸𝑆 be the set of outgoing edges of 𝑠 ∈ 𝑆 . We first randomly sample 70% of all edges

from each snapshot as training edges. Then for the rest 30% of edges in each snapshot, we select

relevant edges which belong to 𝐸𝑆 , add these edges as positive pairs to the test set and discard

the remaining irrelevant edges. Next, we randomly generate the same number of negative pairs
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Table 4. Precision score on LP task. (Exp. 1)

Method YouTube Flickr Mag-authors

Global-STRAP 79.97 89.97 87.80

Subset-STRAP 82.34 91.35 89.34

FREDE 47.59 49.45 45.26

RandNE 64.08 86.62 72.42

Tree-SVD-S 82.40 92.68 90.42

as positive pairs. In particular, we randomly generate node pairs from arbitrary node 𝑠 ∈ 𝑆 to an

arbitrary node 𝑣 ∈ 𝑉 and assure that such node pairs are not edges. Such negative edges are also

added to the test set. Finally, We remove all positive edges from the graph and generate subset

embeddings on the graph with the remaining edges.

6.2 Static Subset Embedding
Exp1: Global vs. subset embedding methods.We first evaluate subset embeddings generated by

global and subset methods on static graphs to show the importance of subset embedding methods.

The last snapshot of each graph is used to generate subset embeddings.

We test all solutions on node classification tasks using three datasets that contain node labels, i.e.,

Patent, Mag-authors, andWikipedia. Figure 3 reports theMicro-F1 scores and the embedding time of

each method. As we can observe, compared to the global embedding method Global-STRAP, Subset-

STRAP achieves much better Micro-F1 scores in all settings, which demonstrates the potential to

adopt subset embedding methods for better effectiveness. Meanwhile, our Tree-SVD-S consistently

achieves the best results on all datasets while taking comparable running time to RandNE. Notice

that DynPPE adopts a smaller 𝑟𝑚𝑎𝑥 to get a more accurate proximity matrix, resulting in a high

running cost. On the other hand, Tree-SVD-S and Subset-STRAP all achieve better performances

than DynPPE, which demonstrates the effectiveness of MF-based methods. Finally, compared with

Subset-STRAP, Tree-SVD-S achieves similar performance on Patent and Mag-authors datasets with

much less time cost, while taking a lead by at least 5% on the Wikipedia dataset. This demonstrates

that our Tree-SVD-S achieves a better trade-off between the efficiency and effectiveness on static

subset embeddings.

We then evaluate each method on the link prediction task. As explained earlier, link prediction is

meaningful on social networks. Therefore, we conduct experiments on two social networks YouTube

and Flickr, together with a co-authorship graph Mag-authors. We select the same competitors as

the node classification task excluding DynPPE due to efficiency. To explain, for the link prediction

task, we need both embeddings of the start node 𝑠 ∈ 𝑆 (left embedding matrix) and the target node

𝑡 ∈ 𝑉 (right embedding matrix). For MF-based methods, the right embedding matrix is generated

naturally with the left one without additional time costs. Although DynPPE generates embedding

for 𝑆 with a similar time as MF-based methods, compared to the left embedding matrix, it needs

𝑛/|𝑆 | times more time to generate the right embedding matrix. Therefore, DynPPE does not work

in subset link prediction and thus is omitted. Table 4 reports the precision score and Figure 4

reports the embedding time for each method. As we can observe, compared with global embedding

methods, both Subset-STRAP and Tree-SVD-S achieve better results on all datasets, which again

demonstrates the potential to design subset embedding for better effectiveness. Furthermore, our

Tree-SVD-S achieves similar performance on Youtube as Subset-STRAP, while taking the lead by

more than 1% on Flickr and Mag-authors. At the same time, compared with other effective methods,

Tree-SVD-S takes much less running time to generate embeddings from scratch on each dataset.
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Fig. 3. Results on NC task. (Exp. 1)
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Fig. 4. Embedding time on link prediction. (Exp. 1)

101

102

103

104

PT-NC MA-NC WK-NC YT-LP FK-LP MA-LP

running time(s)
FRPCA HSVD Tree-SVD-S

Fig. 5. Embedding time of SVD methods. (Exp. 2)
Table 5. Micro-F1(%) of 50% training ratio. (Exp. 2)

Method Patent Mag-authors Wikipedia

FRPCA 72.19 61.60 82.93

HSVD 73.40 61.47 84.40

Tree-SVD-S 73.20 61.60 85.00

This again demonstrates that our Tree-SVD-S gains a better trade-off between the running time

and embedding quality on static subset embedding.

Exp2: SVD comparison. In the second set of experiments, we will compare our Tree-SVD-S

against two SVD alternatives, FRPCA and hierarchical SVD (HSVD), to evaluate different SVD

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 96. Publication date: May 2023.



96:20 Xinyu Du, Xingyi Zhang, Sibo Wang, and Zengfeng Huang

Table 6. Precision on link prediction (LP). (Exp.2)

Method YouTube Flickr Mag-authors

FRPCA 82.11 92.54 90.01

HSVD 82.27 92.67 90.29

Tree-SVD 82.40 92.68 90.42
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Fig. 6. Link prediction on different snapshots. (Exp. 3)
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Fig. 8. Node classification on Mag-authors. (Exp. 3)

frameworks. To make a fair comparison, the proximity matrices of FRPCA and HSVD are the same

as ours, i.e., computing the PPR on the reverse graph and taking the log operation as shown in

Section 3.1. For HSVD, we set the number of sub-matrices to be the same as Tree-SVD-S, i.e., 𝑏 = 64.

We further evaluate HSVD and Tree-SVD-S with varying 𝑏 in Section 6.4. In Exp. 2, we generate

subset embeddings on the last snapshot of each graph. Figure 5 reports the embedding time of each

SVD method on both node classification (NC) and link prediction (LP) tasks. Table 5 and 6 show

the experimental results of subset embeddings generated by different SVD methods. As we can

observe, HSVD and Tree-SVD achieve similar results on both node classification tasks and link

prediction tasks. Meanwhile, our Tree-SVD-S is up to an order of magnitude faster than HSVD and

up to 3.9x faster than FRPCA. If we examine the Micro-F1 scores in Table 5 and precision scores in

Table 6, we can find that our Tree-SVD consistently achieves better results than FRPCA, and even

take the lead by 2% on Wikipedia. This demonstrates that compared with other SVD frameworks,

our Tree-SVD enables us to significantly speed up the SVD computation without sacrificing the

embedding effectiveness on downstream tasks.
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Fig. 10. Classification results after 10
6 edge events. (Exp. 4)

Table 7. Precision on LP after 10
6 edge events. (Exp.4)

Method YouTube Flickr Mag-authors

Subset-STRAP 82.33 90.21 85.62

Tree-SVD 81.88 90.78 86.13

Tree-SVD-S 82.31 91.25 86.29
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6.3 Dynamic Subset Embedding
Exp. 3: Impact of dynamic updates. Next, we generate node embeddings for each snapshot

to show that dynamically updating the embedding along with the time significantly affects the

embedding quality. Since the numbers of snapshots are very small in all five datasets, there exist a

huge number of edge events in two consecutive snapshots. For every two consecutive snapshots,

all methods actually re-compute the subset embedding from scratch. We first examine how the

micro-F1 score of the node classification task changes along with snapshots on each dataset. We

omit the results of Global-STRAP as it shows inferior performance on subset embedding in Section

6.2. Since we re-construct the embeddings, Tree-SVD is the same as Tree-SVD-S. Figures 7-9 show

the micro-F1 score of our Tree-SVD, three competitors RandNE, DynPPE and Subset-STRAP, with

50% and 70% training ratios on three datasets. As we can observe, with the change of the graph,

almost all subset embedding methods gain better Micro-F1 scores with the update of the model

along with the snapshots in most scenarios. This demonstrates the importance of updating the

subset embeddings when the graph changes. Moreover, our Tree-SVD consistently achieves the

best performance in all settings.
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Fig. 14. Experimental results of Tree-SVD-S and Subset-STRAP with varying 𝑟𝑚𝑎𝑥
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Fig. 16. Impact of update size to Tree-SVD.

We further examine how the precision changes along with snapshots for the link prediction task

on each dataset. Figures 6 show the precision score of our Tree-SVD-S, the competitors RandNE

and Subset-STRAP on Flickr and YouTube. The results on Mag-authors are similar and thus are

omitted due to the interest of space and can be found in the attached full version technical report.

As we can observe, all methods are able to improve the results by updating the model on the next

snapshot. This again reflects the importance to update the subset embeddings when the graph

gets changed. Moreover, both Tree-SVD and Subset-STRAP achieve more significantly improved

precision scores. After several embedding updates, our Tree-SVD achieves the best performance.

Exp. 4: Batch updates. In real-world applications, the models are usually updated daily or weekly

depending on the efficiency of their update algorithms. We simulate such a scenario by updating

the embeddings after every batch update, i.e., 10,000 edge events for all methods. In this set of

experiments, we start from a middle snapshot and then proceed 1,000,000 edge events. Thus, we

trigger 100 batch updates. We invoke our dynamic Tree-SVD after every 10,000 edge events to
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Table 8. Precision (%) on link prediction after 10
6 edge events. (Exp. 5)

Method Twitter Average Time (seconds)

Subset-STRAP 75.71 1631

Tree-SVD 79.44 54

Tree-SVD-S 79.67 586

update subset embeddings. For Subset-STRAP and Tree-SVD-S, we simply re-run the algorithm on

the updated proximity matrix after every 10,000 edge events.

Figure 10 shows the Micro-F1 scores after 100 batch updates and Figure 11 shows the average

update time. As we can see, our Tree-SVD is up to an order of magnitude faster than Tree-SVD-S

and up to 71x faster than Subset-STRAP on node classification tasks. DynPPE is as efficient as our

Tree-SVD to handle these batch updates. Moreover, we can find that our Tree-SVD is consistently

achieving almost identical results as Tree-SVD-S, and leads DynPPE by up to 17%. This demonstrates

that compared with other competitors, our Tree-SVD gains a better trade-off between the update

efficiency and embedding effectiveness. As for link prediction, Table 7 further reports the precisions

after these updates. As we can observe, Our Tree-SVD is still an order of magnitude faster than

Tree-SVD-S and up to 160x faster than Subset-STRAP. Meanwhile, our Tree-SVD provides similar

results as Subset-STRAP and Tree-SVD-S, which again shows that our Tree-SVD achieves a better

trade-off between update efficiency and embedding effectiveness.

Exp. 5: Scalability evaluation. To further verify the scalability of our algorithm, we test our

solutions on a public graph Twitter [17], with 41.6 million nodes and 1.5 billion edges, for the link

prediction task. We randomly split the graph into 8 snapshots where each snapshot includes the

same number of edges. We note that such a random split might not be as meaningful as previous

dynamic graphs with real timestamp information as it does not capture the real evolving process.

In this setting, our experimental results still share the same conclusions as that of Exp. 3 and Exp. 4.

In this set of experiments, we follow the setting in Exp. 3 that reconstructs the embedding at each

snapshot. Note that FREDE and Global-Strap cannot generate embeddings within 24 hours or run

out of memory and thus are omitted. Figure 12 shows the precision score along with snapshots on

Twitter. All methods are able to improve the results by updating the model on every next snapshot.

This reflects the importance to update the subset embeddings when the graph gets changed. Besides,

our static Tree-SVD-S consistently achieves the best performance on all snapshots.

We then conduct experiments following Exp. 4 to examine the scalability of our dynamic Tree-

SVD. Table 8 reports the link prediction results on Twitter after 1,000,000 edge updates. The average

running time of dynamic Tree-SVD is still an order of magnitude faster than static Tree-SVD-S

and 30x faster than Subset-STRAP. Meanwhile, dynamic Tree-SVD achieves comparable results to

Static Tree-SVD-S. These results show that our dynamic Tree-SVD is efficient and effective, and

scales to billion-edge scale graphs.

6.4 Parameter Analysis
In this subsection, we analyze the impact of different parameters on Patent and Flickr datasets. The

results on other datasets can be found in the attached full version technical report [1].

Parameter 𝑏. We compare our Tree-SVD-S against Hierarchical SVD (HSVD) using a different

number of 𝑏 sub-matrices at the first level during the SVD computation (Ref. to Section 3.1). We

use the last snapshot to generate embeddings. Figure 13 reports experimental results and running

time of HSVD and Tree-SVD-S. As we can observe, our Tree-SVD-S achieves comparable results to

HSVD while speeding up the embedding process by up to an order of magnitude. Meanwhile, since
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parameter 𝑏 controls the number of sub-matrices in the SVD computation, as 𝑏 increases, the SVD

architecture becomes more complex. Thus, the cost of HSVD increases significantly. However, our

Tree-SVD-S is not sensitive to 𝑏, demonstrating the superiority of our novel SVD architecture.

Threshold 𝑟𝑚𝑎𝑥 .We use the last snapshot of each graph to generate embeddings. Figure 14 reports

experimental results and running time of Subset-STRAP and Tree-SVD-S with varying 𝑟𝑚𝑎𝑥 . As

we can observe, our Tree-SVD-S achieves comparable results to Subset-STRAP on both tasks.

On the other hand, our Tree-SVD-S is consistently faster than Subset-STRAP on all datasets.

Meanwhile, as parameter 𝑟𝑚𝑎𝑥 controls the accuracy of PPR estimations (Ref. to Section 2.1), when

𝑟𝑚𝑎𝑥 increases, the proximity matrix becomes sparser, speeding up the embedding process. However,

the performances of both Tree-SVD-S and Subset-STRAP degrade in most scenarios. This shows that

the quality of the proximity matrix has a significant impact on the embedding quality. Compared

with the competitor, our Tree-SVD-S gains a better trade-off between embedding effectiveness and

computation efficiency.

Parameter 𝛿 . In this set of experiments, we generate dynamic embeddings for each graph. Figure

15 reports experimental results of our Tree-SVD on different datasets with varying 𝛿 . As we can

observe, since 𝛿 controls the error bound in our lazy-update strategy (Ref. to Section 3.2), smaller 𝛿

leads to slightly improved results on all datasets.

Impact of update size. We vary the number of edge updates to examine the cut-off points where

dynamic Tree-SVD is more efficient than the static Tree-SVD-S. Figure 16 shows the running time of

Tree-SVD-S and Tree-SVD with varying update size, where there exist 10
4
edge updates per batch.

Our Tree-SVD still updates the subset embeddings after each batch update. As we can observe,

Tree-SVD is still beneficial after up to 32 × 10
4
edge updates, which accounts for up to 10% of the

edges on the tested datasets. This shows the high effectiveness of our dynamic Tree-SVD since in

real-world scenarios, the update is less frequent than that is tested in our experiment, where 10%

edges get changed in a short period.

7 CONCLUSION
In this paper, we present Tree-SVD, an efficient and effective framework for dynamic subset

embedding. Experiments show that our Tree-SVD is far more efficient than existing static and

dynamic solutionswhile providing identical effectiveness. In this paper, we improve the effectiveness

of subset embedding via spending more computational resources on a small subset. We note that

if we focus on a subset of users with similar properties, e.g., in the same age group or same city,

the performance of subset embedding also tends to improve over global counterparts. We plan to

investigate this direction in our future work.
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