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Trend analysis is a fundamental type of analytical query in online analytical processing (OLAP) systems. In

trend analysis, a key step is to identify 𝑘 valuable attributes whose distributions in two subsets under different

predicates significantly differ for further investigation, where the difference is measured by metric functions.

However, the exact solution that involves scanning all records is prohibitively expensive, particularly when

handling large datasets in the era of big data. To minimize unnecessary data access, the existing state-of-the-art

solution TopKAttr adopts sampling to avoid the expensive data scan. However, their solution still has two

main drawbacks. Firstly, their solution is tailored only for two limited metric functions: the Earth Mover

distance and Euclidean distance, and cannot be generalized to more complicated metric functions. Besides,

their solution still aims to return the exact top-𝑘 answers via the sampling method, which still causes high

running costs as shown in our experiment.

Motivated by these limitations, we propose a general approximation framework for attribute recommenda-

tion that efficiently returns the top-𝑘 attributes with theoretical guarantees while supporting an extensive

range of metric functions, such as the Kolmogorov-Smirnov test (KS-test), Chebyshev distance, the Earth

Mover distance, Euclidean distance, and with the potential to more metrics. The key to our framework is a

new bound estimation strategy that can be applied to a wide spectrum of metrics, as we listed above. Based on

our estimation framework, we further devise an efficient approximation algorithm with theoretical guarantees

to answer the top-𝑘 queries, which is widely used in attribute recommendation. Extensive experiments on

four real large datasets show that our framework gains up to an order of magnitude speed-up and consistently

high accuracy compared to TopKAttr, providing a promising alternative for attribute recommendation in

OLAP systems.
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1 INTRODUCTION
OLAP is widely used to analyze multidimensional data at a high speed on large volumes of data

such as a data warehouse [7, 13, 19], data mart [7, 19], or some other unified centralized data stores

[37, 45] from various perspectives for decision-making and problem-solving. Trend analysis [48] is

an important type of analytical queries in OLAP systems, involving identifying patterns and trends

in data over time. It finds extensive applications in business intelligence [25], financial analysis [18]

and healthcare analytics [44]. In the era of big data, many companies need to deal with huge mining

tables [12, 58] with hundreds or even thousands of attributes. To do trend analysis, and also most

data analysis tasks, the first step is to identify a relatively small set of valuable attributes for further

exploration and analysis since users cannot easily be aware of all the relevant attributes that can be

used to answer their queries. These valuable attributes can be carefully selected by experienced data

experts in each area by devising complicated rules or even choosing them manually. However, this

leads to a heavy workload and requires specific skills and sufficient background knowledge in the

related areas [55, 56]. To alleviate this burden, some automatic attribute recommendation systems

have been proposed in the literature to analyze data and suggest valuable candidate attributes that

are likely to be relevant to the query, helping users explore the data more comprehensively and

gain deeper insights into the underlying patterns and relationships [48, 49, 56].

To find valuable attributes for trend analysis, the key observation of existing studies [48, 49, 56]

is that the more significant the differences between two distributions are under different predicates,

the more likely it is that such an attribute is important in trend analysis. For example, consider a

database for an online shopping platform that stores customization records, including columns for

gender, age group, login platform, region, timestamp, and more. Our goal is to analyse the sales

trends between records in the morning and evening, i.e., records with different timestamps, to

recommend personalized content. To achieve this, we search for attributes where the distribution

among the records in the morning deviates significantly from that among records in the evening.

Suppose we find that the variation on gender is larger than that on the other attributes. Hence

gender is a valuable attribute in this trend analysis process and we can provide more personalized

content based on gender during the corresponding time range. Two state-of-the-art solutions for

attribute recommendation in trend analysis are SeeDB [48] and TopKAttr [49]. The main focus is to

return a small set of valuable attributes for users according to their variations or distances between

two distributions from the two subsets of records with respect to two ad hoc queries within a single

huge table. The variations or distances are measured by metric functions such as the commonly

used Kolmogorov–Smirnov test (KS-test) [17, 32], Chebyshev distance [2, 14], Earth Mover distance

[48, 49], Euclidean distance [48, 49] and so on.

A straightforward approach to this problem is calculating the exact metric function score of each

attribute by scanning all records. Existing OLAP systems are typically stored in a columnar format,

which makes data access more efficient. Nevertheless, the strategy of fully scanning records still

leads to high latency for attribute recommendation, especially in large datasets with millions or

even billions of records. SeeDB [48] employs sampling to reduce data access and query time with a

heuristic multi-armed bandit pruning strategy. It creates an arm for each attribute, partitions the

records, and updates the observed reward of each arm with the metric function score calculated

from an unused partition step by step. Yet, the method mentioned above provides no theoretical

guarantee and might return bad results.

TopKAttr [49] is the state-of-the-art solution for attribute recommendation that returns attributes

using the sampling method with theoretical guarantees. The proposed solution only works for the

Earth Mover distance and Euclidean distance. Assume that the distribution on attribute 𝛼 of the

records fulfilling predicate 𝑃1 (resp. 𝑃2) is p1 (resp. p2). To measure the deviation of p1 and p2 on
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Fig. 1. Impact of Δ: Running time of TopKAttr.

attribute 𝛼 , the Earth Mover distance (resp. Euclidean distance) takes the normalized 𝐿1 (resp. 𝐿2)

norm of p1 − p2. However, their solution has two major disadvantages. Firstly, it supports limited

metric functions, i.e., only Earth Mover distance and Euclidean distance but not other widely used

metric functions such as the KS-test and Chebyshev distance. As we will explain in detail in Sec.

2.2, the main reason why TopKAttr cannot be generalized to more complicated metric functions is

that it tries to bound the error holistically. Yet, this becomes challenging when the metric function

is more complicated, limiting their applications.

Besides, TopKAttr still returns the exact top-𝑘 answers. They use the above sampling method

to derive the lower- and upper-bound of the metric function scores. Notice that the more records

are sampled, the tighter the bounds are. When the (𝑘 + 1)-th smallest upper bound is larger than

the 𝑘-th smallest lower bound, TopKAttr stops the sampling and returns the exact top-𝑘 answers.

However, this still incurs high running costs and may cause a heavy workload when the difference

Δ between the 𝑘-th and (𝑘 + 1)-th largest scores is close. The query latency further increases when

several attributes crowd near the 𝑘-th largest value, and it is extremely difficult to distinguish them.

To better validate our motivation, we run the top-𝑘 query with 𝑘 = 16 on four public datasets:

enem, hus, pus, and airline, which are frequently used in existing attribute recommendation studies

[48, 49] (More details of the datasets are in Section 6). We set 𝑘 = 16 and choose 50 different queries.

Notice that for different queries, the difference Δ of the 𝑘-th and (𝑘 + 1)-th largest value differs.

Thus, we can plot the running time of TopkAttr with the change of Δ among these 50 queries for the

Earth Mover distance and Euclidean distance (that TopKAttr supports). Note that both the 𝑥-axis

and 𝑦-axis are log-scale. Figure 1 shows that as the difference Δ of the 𝑘-th and (𝑘 + 1)-th largest

value decreases, the running cost of TopKAttr will increase by a large margin. This motivates us to

present a more efficient top-𝑘 algorithm.

Main contributions. Motivated by the limitations of the states of the art, we present a general

approximation framework for attribute recommendation, which efficiently returns the top-𝑘 at-

tributes with theoretical guarantees. Our framework accommodates widely used metric functions,

including the KS-test, Chebyshev distance, Earth Mover distance, and Euclidean distance, with

the potential for more metrics as well. A key to the more generalized framework is that instead

of treating the metric function holistically, we treat the sample probability of each attribute value

as a random variable. For instance, for the Earth Mover distance, when considering ∥p1 − q1∥1,
instead of considering it as a whole, we consider it separately for each attribute value. Suppose the

support size, i.e., the number of distinct attribute values on attribute 𝛼 is 𝑠𝛼 . Then we consider these

𝑠𝛼 dimensions in the distribution separately. As we now focus more on a fine-grained function,

it becomes more feasible to derive estimation bounds. Nevertheless, deriving the bounds for the

complicated metric functions is still challenging. We will show how to deal with complicated metric

functions in Sec. 3. Then, we aggregate such estimation bounds together to derive the final error

bound. We further present theoretical analysis to show how to apply the technique to other metric

functions, showing the generalization ability of our proposed framework.
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Moreover, using the derived lower- and upper-bounds of the estimated metric function scores,

we devise an efficient algorithm that can answer approximate top-𝑘 queries for attribute recom-

mendation with a success probability of (1 − 1/𝑛), where 𝑛 is the total number of records. Initially,

all attributes in the dataset are included as candidates. During each iteration, we check whether

the estimated top-𝑘 results with the current sample size meet the criteria of the approximate top-𝑘

query. The algorithm terminates if these conditions are satisfied. The approximate solution allows

us to avoid spending too much sampling cost when the 𝑘-th and the (𝑘 + 1)-th largest scores are

close, improving the query efficiency while still providing strong theoretical guarantees on the

returned results.

We validate the performance of our framework by conducting an experimental study on four real

large datasets. The practical results demonstrate that our framework outperforms the alternatives

on all datasets in all cases. Remarkably, our framework is up to three orders of magnitude faster

than the exact solution and achieves up to one order of magnitude speed-up with consistently high

accuracy compared to the state-of-the-art solution, providing a promising alternative for attribute

recommendation in OLAP systems. Additionally, a user study on a real data analysis scenario

demonstrates that there is no one-size-fits-all metric function, and a more general framework

supporting multiple metric functions allows users to choose the function or combinations that

best suit their needs, thereby avoiding the limitations of a specific metric function and potentially

yielding better results.

2 PRELIMINARIES
2.1 Problem Statement
We consider a single table T with a set𝐴 = {𝛼1, 𝛼2, . . . , 𝛼𝑑 } of𝑑 attributes. Let 𝑟 be a record of T and

let 𝑟 (𝛼) be the value of attribute 𝛼 at record 𝑟 . For an arbitrary attribute 𝛼 ∈ 𝐴, let 𝑠𝛼 be the support

size (or the number of distinct attribute values) of attribute 𝛼 and assume that the distinct attribute

values are {𝑒1, 𝑒2, . . . , 𝑒𝑠𝛼 }. Given two ad hoc queries𝑄1 and𝑄2, let S1 with a size of 𝑛1 and S2 with
a size of 𝑛2 be the two subsets of T satisfying the predicates 𝑃1 and 𝑃2, respectively. Our target

is to find attributes whose distributions in S1 and S2 have large deviations, where the deviation
is measured by metric functions. Given an attribute 𝛼 to be considered, let 𝑛1𝑖 be the number of

records in S1 whose attribute value on attribute 𝛼 equals to 𝑒𝑖 , i.e., 𝑛1𝑖 = |{𝑟 |𝑟 ∈ S1 ∧ 𝑟 (𝛼) = 𝑒𝑖 }|.
Then, 𝑛2𝑖 can be defined similarly with respect to S2. Clearly, 𝑛1 =

∑𝑠𝛼
𝑖=1

𝑛1𝑖 and 𝑛2 =
∑𝑠𝛼
𝑖=1

𝑛2𝑖 . To

compare two distributions, define 𝑝1𝑖 = 𝑛1𝑖/𝑛1 (resp. 𝑝2𝑖 = 𝑛2𝑖/𝑛2) as the probability of a record 𝑟

in S1 (resp. S2) so that 𝑟 (𝛼) = 𝑒𝑖 . We further define the distribution vectors p1 = [𝑝11, 𝑝12, . . . , 𝑝1𝑠𝛼 ]
and p2 = [𝑝21, 𝑝22, . . . , 𝑝2𝑠𝛼 ]. Given an attribute 𝛼 , we focus on the following four metric functions

to measure the deviation on the predicates 𝑃1 and 𝑃2.

Kolmogorov–Smirnov test (KS-test). As claimed by Engmann et al. [17], the KS-test is one of

the most commonly used tests of distributions. Specifically, KS-test derives the empirical cumulative

distribution functions of two distributions on a given attribute 𝛼 and then calculates their distance

[32], which is defined as

𝐷𝐾𝑆 (𝛼) = max

𝑖∈[1,𝑠𝛼 ]
|𝐹1𝑖 − 𝐹2𝑖 | = ∥F1 − F2∥∞,

where 𝐹1𝑖 =
∑𝑖
𝑘=1

𝑝1𝑘 and 𝐹2𝑖 =
∑𝑖
𝑘=1

𝑝2𝑘 for 𝑖 ∈ [1, 𝑠𝛼 ] are the empirical cumulative distribution

functions of the first and the second distribution on attribute 𝛼 respectively. In addition, we

have F1 = [𝐹11, 𝐹12, . . . , 𝐹1𝑠𝛼 ] and F2 = [𝐹21, 𝐹22, . . . , 𝐹2𝑠𝛼 ]. For example, assume that we consider

two distributions p1 = [0.1, 0.2, 0.3, 0.4] and p2 = [0.4, 0.3, 0.1, 0.2] for attribute 𝛼 where 𝑠𝛼 =

4. Their empirical cumulative distributions can be derived as F1 = [0.1, 0.3, 0.6, 1.0] and F2 =

[0.4, 0.7, 0.8, 1.0]. KS-test uses the largest absolute difference among all position 𝑖 ∈ [1, 4] between
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the empirical cumulative distributions F1 and F2 to indicate the distance between p1 and p2. Then
𝐷𝐾𝑆 (𝛼) = |𝐹12 − 𝐹22 | = 0.4 as the absolute difference between the second elements of F1 and F2 is
the largest.

Chebyshev distance. Chebyshev distance is another metric of distribution comparison [2, 14],

which is defined by the largest absolute probability difference among any coordinate dimensions.

Specifically, for attribute 𝛼 ,

𝐷𝐶𝐻 (𝛼) = max

𝑖∈[1,𝑠𝛼 ]
|𝑝1𝑖 − 𝑝2𝑖 | = ∥p1 − p2∥∞.

Following the above example with the same distributions p1 and p2, 𝐷𝐶𝐻 (𝛼) = |𝑝11 − 𝑝21 | = 0.3.

Earth Mover distance & Euclidean distance. We also include Earth Mover distance and

Euclidean distance in our consideration as they are effective metrics of deviation [48, 49]. We have

earth Mover distance between two distributions on attribute 𝛼 as 𝐷𝐸𝑀 (𝛼) = 1

2

∑𝑠𝛼
𝑖=1
|𝑝1𝑖 − 𝑝2𝑖 | =

1

2
∥p1 − p2∥1 and the corresponding Euclidean distance 𝐷𝐸𝑈 (𝛼) =

√︃
1

2

∑𝑠𝛼
𝑖=1
(𝑝1𝑖 − 𝑝2𝑖 )2 = 1√

2

∥p1 −
p2∥2. Both multipliers

1

2
and

1√
2

are used to ensure that all distance metric values will fall in the

range [0, 1].
Attribute recommendation. Using the metric functions above (but not limited to), we can now

formalize attribute recommendation problems. When the user specifies two predicates for two ad

hoc queries with a metric function, the attribute recommendation system analyses the underlying

records and returns several valuable attributes of interest. Following previous works [48, 49], we

define the top-𝑘 query as follows.

Definition 1 (Top-𝑘 Query for Attribute Recommendation). Given a table T that includes
a set 𝐴 of attributes, let 𝐷 be the provided metric function and let S1 and S2 be the subsets of T
that match predicate 𝑃1 and 𝑃2 respectively. The top-𝑘 query returns a set 𝑅 of 𝑘 attributes such that
𝐷 (𝛼) ≥ 𝐷 (𝛼 ′) for any 𝛼 ∈ 𝑅 and 𝛼 ′ ∈ 𝐴 \ 𝑅.

The top-𝑘 query serves an important role as a pre-filtering process to prune most irrelevant

attributes, which significantly alleviates the time for attribute selection. Practically, the approxi-

mate top-𝑘 query is sufficient, as seen in applications such as subtree matching [4], binary pattern

discovery [31], keyword proximity search [27], anomaly detection [29], mobile information sub-

scription [8], object-class retrieval [38], personalized PageRank [23, 24, 51–54], data statistics like

empirical entropy [9] and empirical variance [10]. Therefore, it would be valuable to design a top-𝑘

algorithm with an approximation parameter that can quickly return an approximate result when a

strict requirement is not necessary. The algorithm can still return the exact result by adjusting the

parameter setting when needed. Thus, we define the approximate top-𝑘 query as follows.

Definition 2 (Approximate Top-𝑘 Query). Given a metric function 𝐷 , two subsets S1 and S2 of
records with attributes in a set 𝐴, a positive integer 𝑘 and a relative error 𝜖 , the approximate top-𝑘
query returns a set 𝑅 of 𝑘 attributes such that the following two conditions
•

��𝐷 (𝛼 ′𝑖 ) − �̂� (𝛼 ′𝑖 )�� ≤ 𝜖 for any 𝑖 ∈ [1, 𝑘]
•

��𝐷 (𝛼∗𝑖 ) − �̂� (𝛼 ′𝑖 )�� ≤ 𝜖 for any 𝑖 ∈ [1, 𝑘]
are satisfied with at least 1 − 𝑝 𝑓 probability where 𝛼 ′

1
, 𝛼 ′

2
, . . . , 𝛼 ′

𝑘
are the returned attributes and 𝛼∗𝑖 is

the attribute with the exact 𝑖-th largest metric function value.

In the above definition, the first condition requires that the estimated metric function values

of the returned attributes are close to their exact values. The second condition makes sure that

the returned 𝑘 attributes have similar values to the exact 𝑘 largest values. Combining these two

conditions ensures that the returned approximate top-𝑘 results will have high quality. The degree
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Table 1. Frequently used notations.
Notation Description
T , 𝑛 The table T and the number of records in T
S1 / S2 The subset of T fulfilling predicate 𝑃1 / 𝑃2
𝑛1 / 𝑛2 The number of records in S1 / S2
𝑑 The number of attributes in T
𝑚1 /𝑚2 The number of samples from S1 / S2
𝐴 The set of all attributes in T
𝛼 ,𝑠𝛼 An attribute from set 𝐴 and its support size

𝑝 𝑓 The failure probability of the algorithm

𝐷 (𝛼) The metric function value of 𝛼

�̂� (𝛼) The estimation of 𝐷 (𝛼)
𝐷 (𝛼), 𝐷 (𝛼) The lower- and upper-bound of 𝐷 (𝛼)
𝜖 The error bound for the approximate top-𝑘 query

𝜂 The smaller selectivity for predicates 𝑃1 and 𝑃2

of closeness is measured by a predefined parameter 𝜖 . Intuitively, the approximate top-𝑘 query

provides a trade-off between accuracy and efficiency through the user setting of absolute error 𝜖 .

Additionally, the frequently used notations are listed in Tab. 1.

2.2 Existing Solutions
Exact solution. A straightforward solution is to scan all records satisfying the predicates in subsets

S1 andS2 column by column (supposing that data are stored in a columnar format) and calculate the

exact metric function values for all attributes. Although modern databases such as SQL Server [3]

support columnar storage for high efficiency of OLAP queries, it still leads to high costs while there

are millions of records in subsets for ad hoc queries, which is common in modern data warehouses,

such as Snowflake [13], Amazon Redshift [19] and IBM Db2 Warehouse [7].

Existing approximate solutions. Approximate solutions use sampled records to approach

exact metric function values. Sampling-based approximations avoid scanning all records, making

them more efficient than the exact solution when the data consists of millions or even billions of

records with tens to hundreds of attributes and data access is the bottleneck [48, 49].

Nonetheless, there are some obstacles when approximating metric functions with sampling.

Standard concentration inequalities such as Hoeffding’s inquality [22] and McDiarmid’s inequality

[33] cannot be directly adopted to estimate the metric function since they require that the func-

tion value can be expressed as the average of samples. SeeDB [48] is a data-driven visualization

framework that uses worst-case confidence intervals and a heuristic multi-armed bandit strategy to

prune attributes with low metric function values. It creates an arm for each attribute, partitions the

records, and updates the observed reward of each arm with the metric function value calculated

step by step from an unused partition. Each estimate obtained from the iteration is regarded as a

sample of the approximate metric function value. However, since the expectation of these sampled

values from each partition does not match the metric function calculated from the entire dataset,

the derived confidence intervals are biased. This bias can cause the returned 𝑘 attributes to deviate

significantly from the exact top-𝑘 attributes, without any probabilistic guarantee.

To provide results with probabilistic guarantees, Wang et al. propose TopKAttr [49], which is the

state-of-the-art solution for attribute recommendation. In practical applications, data partitioning

is a commonly used technique in column-oriented database systems that provide single-machine

in-memory deployment and data partitioning, such as Microsoft SQL Server [3], MonetDB [6], and
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SAP HANA [43]. It is also used in distributed data platforms such as data warehouses [46] and

Hadoop [42]. TopKAttr focuses on the single machine in-memory setting and considers the situation

where records in table T are randomly partitioned. In this case, each record can be modeled as a

sample unit without replacement from table T . For analyzing the sampling without replacement

model, define the permutation of records in subset S1 (resp. S2) as Π1 = (𝜋1, 𝜋2, . . . , 𝜋𝑛1 ) (resp.
Π2 = (𝜋1, 𝜋2, . . . , 𝜋𝑛2 )) where 𝑛1 (resp. 𝑛2) is the number of records in S1 (resp. S2) underlying
predicate 𝑃1 (resp. 𝑃2). Each value 𝜋𝑖 in Π1 (resp. Π2) defines the index of the 𝑖-th sample among

𝑛1 (resp. 𝑛2) records where 𝑖 ∈ [1, 𝑛1] (resp. [1, 𝑛2]). Consider a fixed attribute 𝛼 . Without loss of

generality, assume that there are𝑚1 (resp.𝑚2) records sampled from S1 (resp. S2). Then define𝑚1𝑖

(resp.𝑚2𝑖 ) as the number of records in S1 (resp. S2) whose attribute value on attribute 𝛼 equals to

𝑒𝑖 among these𝑚1 (resp.𝑚2) samples, and we have𝑚1 =
∑𝑠𝛼
𝑖=1

𝑚1𝑖 (resp.𝑚2 =
∑𝑠𝛼
𝑖=1

𝑚2𝑖 ). Then we

define 𝑞1𝑖 =𝑚1𝑖/𝑚1 (resp. 𝑞2𝑖 =𝑚2𝑖/𝑚2) as the probability that the record has an attribute value of

𝑒𝑖 on attribute 𝛼 among the𝑚1 (resp.𝑚2) samples for 𝑖 ∈ [1, 𝑠𝛼 ]. Similar to the definitions of p1 and
p2, we define vectors q1 = [𝑞11, 𝑞12, . . . , 𝑞1𝑠𝛼 ] and q2 = [𝑞21, 𝑞22, . . . , 𝑞2𝑠𝛼 ] for the sampling results.

With these sampled records from S1 and S2, TopKAttr calculates the estimation of Earth Mover

distance (resp. Euclidean distance) by �̂�𝐸𝑀 (𝛼) = 1

2
∥q1 − q2∥1 (resp. �̂�𝐸𝑈 (𝛼) = 1√

2

∥q1 − q2∥2) for
each attribute. However, the approximate results, i.e., �̂�𝐸𝑀 (𝛼) and �̂�𝐸𝑈 (𝛼), still have no theoretical
guarantee for their accuracy.

We then rephrase how TopKAttr provides results for Earth Mover distance and Euclidean distance

with probabilistic guarantees. Since the confidence radius derivations of these two distances are

similar, we only take the analysis of Earth Mover distance as an illustration here. Consider the

absolute difference between the exact Earth Mover distance value 𝐷𝐸𝑀 (𝛼) and its estimation

�̂�𝐸𝑀 (𝛼), i.e., |𝐷𝐸𝑀 (𝛼)−�̂�𝐸𝑀 (𝛼) |. The less the absolute difference is, themore accurate the estimation

result is. Then TopKAttr derives an upper-bound of this difference as the sum of two parts, i.e.,

|𝐷𝐸𝑀 (𝛼) − �̂�𝐸𝑀 (𝛼) | ≤ 1

2
𝑓 𝐸𝑀
1
+ 1

2
𝑓 𝐸𝑀
2

, where 𝑓 𝐸𝑀
1

= ∥p1 − q1∥1 and 𝑓 𝐸𝑀
2

= ∥p2 − q2∥1. Note that
each part

1

2
𝑓 𝐸𝑀𝑗 for 𝑗 = 1, 2 only concerns the data distribution on attribute 𝛼 in subset S𝑗 and

the corresponding distribution of the samples from the same set. If 𝑓 𝐸𝑀
1

and 𝑓 𝐸𝑀
2

can be bounded

probabilistically, |𝐷𝐸𝑀 (𝛼) − �̂�𝐸𝑀 (𝛼) | can also be bounded. To obtain an upper-bound of 𝑓 𝐸𝑀𝑗 for

𝑗 = 1, 2 with concentration inequalities, we require the expectation E[𝑓 𝐸𝑀𝑗 ] of 𝑓 𝐸𝑀𝑗 or its upper

bound E[𝑓 𝐸𝑀𝑗 ]. TopKAttr shows that the upper bounds E[𝑓 𝐸𝑀𝑗 ] and E[𝑓 𝐸𝑈𝑗 ] can be derived for 𝐿1

norm and 𝐿2 norm. However, it is unclear how to derive such an expectation for more complex

metric functions, such as KS-test and Chebyshev distance. The limitations of the techniques used

in TopKAttr motivate us to devise a more general approach.

Looking back to TopKAttr, it employs a concentration inequality for a transductive learning

problem in [15] to bound 𝑓 𝐸𝑀
1

(resp. 𝑓 𝐸𝑀
2

) with the upper-bound E[𝑓 𝐸𝑀
1
] (resp. E[𝑓 𝐸𝑀

2
]) of E[𝑓 𝐸𝑀

1
]

(resp. E[𝑓 𝐸𝑀
2
]). Then TopKAttr derives the confidence radius of 𝐷𝐸𝑀 (𝛼) with union bound. When

the context is clear, we omit the bracket including attribute 𝛼 for space saving. The lower- and

upper-bounds are shown below.

Lemma 1 (Theorem 4 in [49]). Given attribute 𝛼 whose support size is 𝑠𝛼 ,𝑚1 (resp.𝑚2) sampled
records from subset S1 (resp. S2), and a failure probability 𝑝 𝑓 , we have that both

𝐷
𝐸𝑀

= �̂�𝐸𝑀 − 𝑟𝐸𝑀 and 𝐷𝐸𝑀 = �̂�𝐸𝑀 + 𝑟𝐸𝑀
hold with probability at least 1 − 𝑝 𝑓 , where

𝑟𝐸𝑀 =

2∑︁
𝑗=1

©«E[𝑓 𝐸𝑀𝑗 ] + ℎ 𝑗
√√√
2 log

(√
ℎ1 +
√
ℎ2

𝑝 𝑓
√︁
ℎ 𝑗

)ª®¬
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and ℎ 𝑗 =
√︁
(𝑛 𝑗 −𝑚 𝑗 )/𝑚 𝑗/𝑛 𝑗 .

Then, TopKAttr utilizes the bounds of each 𝐷𝐸𝑀 obtained from the initial samples and identifies

competing attributes whose confidence intervals overlap. For these competing attributes, more

samples are considered to calculate a tighter bound. The competing attributes are updated based on

the new bounds in each iteration. The algorithm only terminates when the exact top-𝑘 attributes

are completely separated from the other attributes, meaning their confidence intervals do not

overlap. Although TopKAttr considers the approximate result of each attribute, its mechanism still

requires the exact top-𝑘 attributes, which can be expensive when the 𝑘-th and (𝑘 + 1)-th largest

metric function values for the corresponding attributes are close. Besides, there may be more than

two borderline attributes, which increases the computation cost for distinguishing them precisely.

In contrast, obtaining approximate top-𝑘 results with theoretical guarantees is sufficient since it

does not matter which specific borderline attribute is returned.

3 APPROXIMATION OF METRIC FUNCTIONS
From a high-level perspective, our proposed framework aims to return the approximate top-𝑘

attributes with theoretical guarantees efficiently, supporting commonly used tests such as KS-

test, Chebyshev distance, Earth Mover distance, Euclidean distance, and potentially more metrics.

The most challenging part of our framework is devising a general technique to approximate the

above-mentioned metric functions. The state-of-the-art solution for attribute recommendation, i.e.,

TopKAttr, only supports Earth Mover distance and Euclidean distance. They directly regard each

metric function as a whole and derive the upper bound of the estimated error with the inequality

in [15]. However, the techniques in TopKAttr cannot be extended to other metric functions, such as

KS-test and Chebyshev distance. To fill this gap, we carefully devise a nontrivial general approach

to estimating metric functions. Instead of directly estimating the metric function as a whole, we

zoom in on each dimension of the distribution, which is more flexible. Specifically, we derive the

estimated bound of each dimension with high probability and then aggregate these estimations

with a union bound. The specific aggregation function depends on the required metric function, e.g.,

summation for Earth Mover distance and taking the maximum for Chebyshev distance from their

expressions. As our framework is devised based on each dimension that almost all metric functions

for comparing distributions essentially focus on, it is more applicable to general metric functions.

In practice, our technique can approximate many metric functions such as KS-test, Chebyshev

distance, Earth Mover distance, Euclidean distance, and potentially more metrics, overcoming the

limitations of TopKAttr.

Following the setting in [49] and [50], the records in table T are randomly partitioned and each

record can bemodeled as a sampling unit without replacement, which is common in column-oriented

database systems that provide single-machine in-memory deployment and data partitioning such as

Microsoft SQL Server [3], MonetDB [6], and SAP HANA [43] as well as distributed data platforms

such as data warehouse [46] and Hadoop [42]. Our framework focuses on in-memory column store

layouts and the overview is as follows. Using initial samples, calculate the confidence interval of

each candidate attribute corresponding to the metric function for the query. Then prune attributes

that will not be returned with high probability. For the remaining attributes, we adaptively increase

the sample size and derive narrower confidence intervals, where the pruning procedure is conducted

synchronously. The algorithm terminates until the found attributes satisfy the conditions of the

approximate top-𝑘 query, which are proposed to accelerate the query with theoretical guarantees.

In this section, we will focus on the proposed technique to approximate metric functions since it is

the core component of our framework. The details of approximate top-𝑘 query processing will be

deferred to the next section.
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3.1 Lower- and Upper-Bounds of KS-Test
To demonstrate the proposed technique for computing confidence intervals of metric functions, we

will start with KS-test. Later, we will show how to extend to other metric functions.

Some definitions for estimating KS-test. Before conducting the analysis, we provide some

definitions for estimating the KS-test. Recall that 𝐹𝑖 𝑗 for 𝑖 ∈ [1, 𝑠𝛼 ] is the empirical cumulative

distribution on attribute 𝛼 of records in subset S𝑗 where 𝑗 = 1, 2. Besides, 𝑞1𝑖 (resp. 𝑞2𝑖 ) is the

probability that the value on attribute 𝛼 of the record within the𝑚1 (resp.𝑚2) samples equals to 𝑒𝑖
where 𝑖 ∈ [1, 𝑠𝛼 ]. Then define𝐺1𝑖 =

∑𝑖
𝑘=1

𝑞1𝑘 (resp. 𝐺2𝑖 =
∑𝑖
𝑘=1

𝑞2𝑘 ) for 𝑖 ∈ [1, 𝑠𝛼 ] as the empirical

cumulative distribution function based on𝑚1 (resp.𝑚2) samples on attribute 𝛼 where 𝑠𝛼 is the

support size of attribute 𝛼 . We also define G1 = [𝐺11,𝐺12, . . . ,𝐺1𝑠𝛼 ] and G2 = [𝐺21,𝐺22, . . . ,𝐺2𝑠𝛼 ]
for ease of discussion later. Then, the estimation of the KS-test for attribute 𝛼 based on the sampling

results is �̂�𝐾𝑆 (𝛼) = max𝑖∈[1,𝑠𝛼 ] |𝐺1𝑖 −𝐺2𝑖 | = ∥G1 − G2∥∞.
Next, we will bound the absolute difference between the exact KS-test 𝐷𝐾𝑆 (𝛼) and its estimation

�̂�𝐾𝑆 (𝛼) on attribute 𝛼 , i.e., |𝐷𝐾𝑆 (𝛼) − �̂�𝐾𝑆 (𝛼) |, with probabilistic guarantees. Our main idea

is to analyze each dimension of the empirical cumulative distribution function and limit the

discrepancy between the actual and its estimated value with a high probability. As KS-test asks

for the largest deviation among all dimensions, we can bound the gap between the true KS-test

and its estimation through the maximum gap in each dimension using a union bound, where the

detailed analysis is as follows. With the triangle inequality for the infinity norm, we have that

|𝐷𝐾𝑆 (𝛼) − �̂�𝐾𝑆 (𝛼) | = | ∥F1 − F2∥∞ − ∥G1 − G2∥∞ | satisfies:

|𝐷𝐾𝑆 (𝛼) − �̂�𝐾𝑆 (𝛼) | ≤ ∥F1 − G1∥∞ + ∥F2 − G2∥∞. (1)

Define 𝑓 𝐾𝑆𝑗 = ∥F𝑗 − G𝑗 ∥∞ for 𝑗 = 1, 2, where 𝑓 𝐾𝑆𝑗 is the 𝐿∞ distance between the actual empirical

cumulative distribution F𝑗 on attribute 𝛼 in subsetS𝑗 and the corresponding cumulative distribution

G𝑗 for the𝑚 𝑗 sampled records from S𝑗 . When the context is clear, we omit the superscript of 𝑓 𝐾𝑆𝑗 .

What we need to do next is to bound 𝑓𝑗 for 𝑗 = 1, 2, based on sampling. If we can bound 𝑓𝑗 , we can

bound the error of |𝐷𝐾𝑆 (𝛼) − �̂�𝐾𝑆 (𝛼) | by Eqn. 1, achieving our goal.

Establishing lower- and upper-bounds of KS-test. We then show how to bound 𝑓1 (resp. 𝑓2)

via sampling without replacement. Note that sampling without replacement can be regarded as

first deriving a random permutation Π and then sampling sequentially from this permutation. As

function 𝑓𝑗 depends on the permutation of sampled records satisfying the predicates, we define

𝑓𝑗 (Π 𝑗 ) as the value of 𝑓𝑗 with respect to the first𝑚 𝑗 samples from a random permutationΠ 𝑗 . Also, we

define Π𝑟𝑠𝑗 as the permutation when swapping 𝜋𝑟 and 𝜋𝑠 in Π 𝑗 , where 𝑟 ∈ [1,𝑚 𝑗 ] and 𝑠 ∈ [𝑚 𝑗 +1, 𝑛 𝑗 ].
We subsequently utilize a concentration inequality for sampling without replacement [16] to derive

the bound, or called confidence radius, of 𝐷𝐾𝑆 (𝛼), where the inequality is rephrased as follows.

Lemma 2 ([16]). Let Π 𝑗 be a random permutation and 𝑓𝑗 (Π 𝑗 ) be a function with |𝑓 (Π 𝑗 )− 𝑓 (Π𝑟,𝑠𝑗 ) | <
𝛽 for all 𝑟 ∈ [1,𝑚 𝑗 ] and 𝑠 ∈ [𝑚 𝑗 + 1, 𝑛 𝑗 ]. Then, we have that

P
(
𝑓𝑗

(
Π 𝑗

)
− E[𝑓𝑗

(
Π 𝑗

)
] ≥ 𝛾

)
≤ exp

(
− 2𝛾2

𝑚 𝑗𝛽
2

(
𝑛 𝑗 − 1/2
𝑛 𝑗 −𝑚 𝑗

) (
1 − 1

2max

(
𝑚 𝑗 , 𝑛 𝑗 −𝑚 𝑗

) )) .
To apply the above lemma, we first need to derive an upper bound of |𝑓𝑗 (Π 𝑗 ) − 𝑓𝑗 (Π𝑟𝑠𝑗 ) |, i.e., the

absolute difference of 𝑓𝑗 when swapping a pair of values on attribute 𝛼 within the sampled and

unsampled records in subset S𝑗 for 𝑗 = 1, 2. When defining 𝑙 = argmax𝑖∈[1,𝑠𝛼 ] |𝐹 𝑗𝑖 −𝐺 𝑗𝑖 |, we have��𝑓𝑗 (Π 𝑗 ) − 𝑓𝑗 (Π𝑟𝑠𝑗 )
�� ≤ �����

�����∑𝑙
𝑘=1

𝑛 𝑗𝑘

𝑛 𝑗
−

∑𝑙
𝑘=1

𝑚 𝑗𝑘

𝑚 𝑗

����� −
�����∑𝑙

𝑘=1
𝑛 𝑗𝑘

𝑛 𝑗
−

∑𝑙
𝑘=1

𝑚 𝑗𝑘 − 1
𝑚 𝑗

�����
����� ≤ 1

𝑚 𝑗

.
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To derive a bound of 𝑓𝑗 , it is also necessary to know E[𝑓𝑗
(
Π 𝑗

)
] of 𝑓𝑗 or, alternatively, an upper

bound of E[𝑓𝑗
(
Π 𝑗

)
], which is nontrivial to derive for KS-test and Chebyshev distance. Nevertheless,

here we assume that we already have an upper bound E[𝑓 𝐾𝑆𝑗 ] of E[𝑓 𝐾𝑆𝑗 ], where this assumption

will be resolved in the next section shortly. Given the upper bound of E[𝑓 𝐾𝑆𝑗 ], we can then derive

the upper bound of 𝑓𝑗 . Given the upper bound of 𝑓𝑗 , we can then bound |𝐷𝐾𝑆 (𝛼) − �̂�𝐾𝑆 (𝛼) | via Eqn.
1. By applying Lem. 2 and Eqn. 1, we can derive the confidence radius of 𝐷𝐾𝑆 (𝛼) as shown below.

Lemma 3. Given attribute 𝛼 whose support size is 𝑠𝛼 ,𝑚1 (resp.𝑚2) sampled records from subset S1
(resp. S2), and a failure probability 𝑝′𝑓 , we have that both

𝐷
𝐾𝑆

= �̂�𝐾𝑆 − 𝑟𝐾𝑆 and 𝐷𝐾𝑆 = �̂�𝐾𝑆 + 𝑟𝐾𝑆
hold with probability at least 1 − 𝑝′

𝑓
, where

𝑟𝐾𝑆 =

2∑︁
𝑗=1

©«E[𝑓 𝐾𝑆𝑗 ] + ℎ 𝑗
√√√
2 ln

(
ℎ1 + ℎ2
𝑝′
𝑓
· ℎ 𝑗

)ª®¬
and ℎ 𝑗 =

√︂
𝑛 𝑗−𝑚 𝑗

4(𝑛 𝑗− 1

2
)𝑚 𝑗 (1− 1

2max(𝑚𝑗 ,𝑛𝑗 −𝑚𝑗 )
) .

Lem. 3 provides lower- and upper-bounds of KS-test based on samples with theoretical guarantees.

These bounds can be applied to the approximate top-𝑘 query in our framework. Besides, we will

show the optimization technique to tighten the bounds in Sec. 3.3.

3.2 Upper Bounding the Expectation of 𝒇𝑲𝑺
𝒋

Remind that we assume a bound E[𝑓 𝐾𝑆𝑗 ] for the expectation E[𝑓 𝐾𝑆𝑗 ] where 𝑓 𝐾𝑆𝑗 = ∥F𝑗 − G𝑗 ∥∞ for

𝑗 = 1, 2. The derivation of this bound is challenging and will be established in this section.

Establishing bounds on the expectation of𝒇𝑲𝑺
𝒋 . Recap that in TopKAttr, to bound 𝑓𝑗 , it derives

an error bound 𝛾 between 𝑓𝑗 and E[𝑓𝑗 ], i.e., |𝑓𝑗 − E[𝑓𝑗 ] | ≤ 𝛾 . Then, it further derives an upper

bound E[𝑓𝑗 ] of E[𝑓𝑗 ] to obtain the bound of 𝑓𝑗 . However, the upper-bound E[𝑓𝑗 ] of E[𝑓𝑗 ] cannot
be computed explicitly with the technique in TopKAttr. Consequently, we solve this problem from

another direction, which is the key part of our technique. According to the definition of expectation,

E[𝑓𝑗 ] =
∑𝑤
𝑘=1

𝑥𝑘𝑢𝑘 when regarding 𝑓𝑗 as a random variable where 𝑥𝑘 is a possible outcome of 𝑓𝑗 , 𝑢𝑘
is the corresponding probability, and there are in total𝑤 outcomes. Without loss of generality, we

assume that the index of each possible outcome corresponds to the ascending order of all outcomes,

i.e., 𝑥𝑘 < 𝑥𝑘+1 for 𝑘 ≥ 1. Since 𝑓𝑗 ∈ [0, 1] from the definitions of metric functions, 𝑥𝑘 belongs to the

same range, i.e., 𝑥𝑘 ∈ [0, 1]. However, this sum is difficult to calculate since we need to consider all

possible sampling results. Alternatively, we consider separating consecutive outcomes 𝑥𝑘 into finite

groups. Define 𝐼𝑔 as the set of indices of outcomes and their corresponding probabilities falling

into group 𝑔. For group 𝑔, we represent it with an upper-bound 𝑦𝑔 of all outcomes 𝑥𝑘 in this group,

i.e., 𝑦𝑔 = max𝑙∈𝐼𝑔 𝑥𝑙 . Also, we sum up all the corresponding probabilities 𝑢𝑘 in group 𝑔 as 𝑣𝑔, i.e.,

𝑣𝑔 =
∑
𝑙∈𝐼𝑔 𝑢𝑙 . To control the number 𝑡 of groups and ensure that the sum of all probability are 1,

we define 𝑡 as ⌈log
2
𝑛 𝑗 ⌉ + 1 and the corresponding probabilities for 𝑡 groups are set as 𝑣𝑔 =

1

2
𝑔 for

each group 𝑔 ∈ [1, 𝑡 − 1] and 𝑣𝑡 = 1

2
𝑡−1 such that

∑𝑡
𝑔=1 𝑣𝑔 =

1

2
+ 1

4
+ · · · + 1

2
𝑡−2 + 2

2
𝑡−1 = 1, where the

last item
2

2
𝑡−1 explains two equal probabilities 𝑣𝑡−1 and 𝑣𝑡 . Therefore, we have E[𝑓𝑗 ] =

∑𝑤
𝑘=1

𝑥𝑘𝑢𝑘 =∑𝑡
𝑔=1

∑
𝑙∈𝐼𝑔 𝑥𝑙𝑢𝑙 ≤

∑𝑡
𝑔=1 max𝑙 ′∈𝐼𝑔 𝑥𝑙 ′

∑
𝑙∈𝐼𝑔 𝑢𝑙 ≤

∑𝑡
𝑔=1 𝑦𝑔𝑣𝑔.

Example 1. Assume that we have that the outcome 𝑥1 = 0.1 has probability 𝑢1 = 0.1, 𝑥2 = 0.3

with 𝑢2 = 0.4, 𝑥3 = 0.4 with 𝑢3 = 0.4, and 𝑥4 = 0.5 with 𝑢4 = 0.1. Then, a possible group is
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Algorithm 1: Upper-Bound of Expectation

Input: An attribute 𝛼 ,𝑚 𝑗 sampled records from subset S𝑗 of T for 𝑗 = 1, 2

Output: An upper-bound E[𝑓𝑗 ] of the expectation E[𝑓𝑗 ]
1 Set a series of probabilities of success 𝑣 ′

1
← 1

2
, 𝑣 ′

2
← 3

4
, . . . , 𝑣 ′𝑡−1 ← 1 − 1

2
𝑡−1 , 𝑣

′
𝑡 ← 1 where

𝑣 ′𝑔 ← 1 − 1

2
𝑔 for 𝑔 ∈ [1, 𝑡 − 1] and 𝑡 = ⌈log

2
𝑛 𝑗 ⌉ + 1;

2 for 𝑔 ∈ [1, 𝑡 − 1] do
3 for 𝑖 ∈ [1, 𝑠𝛼 ] do
4 Calculate the upper-bound 𝑦𝑔𝑖 of |𝐹 𝑗𝑖 −𝐺 𝑗𝑖 | by Lem. 4 with 𝑣 ′𝑔;

5 𝑦𝑔 ← max𝑖∈[1,𝑠𝛼 ] 𝑦𝑔𝑖

6 𝑦𝑡 ← 1;

7 𝑣𝑔 ← 𝑣 ′𝑔 for 𝑔 = 1 and 𝑣𝑔 ← 𝑣 ′𝑔 − 𝑣 ′𝑔−1 for 𝑔 ∈ [2, 𝑡];
8 E[𝑓𝑗 ] ←

∑𝑡
𝑔=1 𝑦𝑔𝑣𝑔;

9 return E[𝑓𝑗 ];

as follows: When the total number of groups is 3, we can set a series of probabilities as 𝑣1 = 1

2
,

𝑣2 = 1

4
and 𝑣3 = 1

4
. We then group outcomes 𝑥1 and 𝑥2 as group 1 since 𝑢1 + 𝑢2 = 𝑣1 = 0.5, i.e.,

𝐼1 = {1, 2}, where 𝑦1 = max(𝑥1, 𝑥2) = 0.3. As the probability 𝑢3 is larger than the probability
𝑣2 of the second group, i.e., 𝑢3 > 1

4
, 𝑥3 should contribute to groups 2 and 3. We then have group

2, 𝐼2 = {3} where 𝑦2 = 𝑥3 = 0.4 and group 3, 𝐼3 = {3, 4} where 𝑦3 = max(𝑥3, 𝑥4) = 0.5. Then,
E[𝑓𝑗 ] ≤

∑
3

𝑔=1 𝑦𝑔𝑣𝑔 = 0.3 × 1

2
+ 0.4 × 1

4
+ 0.5 × 1

4
= 0.375.

A new question arises: how to set up groups properly and derive each 𝑦𝑔 corresponding to

the group? For this, we zoom in on the expression of 𝑓𝑗 . We aim to derive an upper-bound of

𝑓𝑗 , i.e., ∥F𝑗 − G𝑗 ∥∞, for a given probability 𝑣 ′𝑔 where 𝑣 ′𝑔 is defined as 𝑣 ′𝑔 =
∑𝑔

𝑙=1
𝑣𝑙 . Specifically,

𝑣 ′
1
= 1

2
, 𝑣 ′

2
= 3

4
, . . . , 𝑣 ′𝑡−1 = 1 − 1

2
𝑡−1 , 𝑣

′
𝑡 = 1. Note that 𝑣 ′𝑔 differs from 𝑣𝑔 as 𝑣

′
𝑔 is for the whole range

where 𝑓𝑗 is no larger than the upper-bound 𝑦𝑔 and 𝑣𝑔 only contributes to the range between two

consecutive upper-bounds 𝑦𝑔−1 and 𝑦𝑔. Following the above example, when having not enough

knowledge about the outcomes, we can only estimate 𝑦1, 𝑦2, and 𝑦3 with 𝑣 ′
1
= 1

2
, 𝑣 ′

2
= 3

4
and 𝑣 ′

3
= 1.

The setting of 𝑣 ′
2
(resp. 𝑣 ′

3
), i.e., 𝑣 ′

2
= 𝑣1 + 𝑣2 (resp. 𝑣 ′3 = 𝑣1 + 𝑣2 + 𝑣3) is from the fact that 𝑦2 (𝑦3) can

bound all outcomes in groups 1 and 2 (1, 2 and 3), where we can estimate 𝑦𝑔 for the corresponding

probability with concentration bounds. Intuitively, given a probability 𝑣 ′
3
of success larger than

𝑣 ′
2
, the corresponding derived bound 𝑦3 becomes looser compared to 𝑦2 when using fixed sampled

records. We will use this intuition to derive bound 𝑦𝑔 of 𝑓𝑗 = ∥F𝑗 − G𝑗 ∥∞ and will focus on each

dimension of the distribution.

Deriving the upper-bound from each dimension. Recap that 𝐹 𝑗𝑖 is the probability that the

record within S𝑗 for 𝑗 = 1, 2 has the value belonging to the subset {𝑒1, 𝑒2, . . . , 𝑒𝑖 } of all distinct
values, on attribute 𝛼 and 𝐺 𝑗𝑖 is the corresponding probability from the sampling. If ∥F𝑗 − G𝑗 ∥∞ is

no larger than an upper bound 𝑦𝑔 , then all |𝐹 𝑗𝑖 −𝐺 𝑗𝑖 | should be no larger than 𝑦𝑔 for each dimension

𝑖 ∈ [1, 𝑠𝛼 ] by the definition of infinity norm. With union bound, we have P(∥F𝑗 −G𝑗 ∥∞ ≤ 𝑦𝑔) ≥
1 −∑

𝑖∈[1,𝑠𝛼 ] P( |𝐹 𝑗𝑖 −𝐺 𝑗𝑖 | > 𝑦𝑔). Consider each dimension of the distribution. Once we can bound

each |𝐹 𝑗𝑖 −𝐺 𝑗𝑖 | for 𝑖 ∈ [1, 𝑠𝛼 ] with probabilistic guarantees, the upper-bound 𝑦𝑔 of ∥F𝑗 −G𝑗 ∥∞ can

also be derived for a given probability 𝑣 ′𝑔. Hence, we first derive upper bound 𝑦𝑔𝑖 of |𝐹 𝑗𝑖 −𝐺 𝑗𝑖 | for
𝑖 ∈ [1, 𝑠𝛼 ] with the given success probability using concentration inequalities. The detailed bound

is shown as the following lemma.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 239. Publication date: December 2023.



239:12 Xingguang Chen, Fangyuan Zhang, Jinchao Huang, and Sibo Wang

Lemma 4. Given attribute 𝛼 whose support size is 𝑠𝛼 ,𝑚 𝑗 sampled records from subset S𝑗 , failure
probability (1 − 𝑣 ′𝑔)/𝑠𝛼 and parameter 𝑎 = ln(2𝑠𝛼/(1 − 𝑣 ′𝑔)), we have that

|𝐹 𝑗𝑖 −𝐺 𝑗𝑖 | ≤ max(𝜖1, 𝜖2) = 𝑦𝑔𝑖

with probability at least 1 − (1 − 𝑣 ′𝑔)/𝑠𝛼 , where

𝜖1 =

2𝑎𝐺 𝑗𝑖 − 2𝑎
3
+

√︂(
𝐺 𝑗𝑖𝑚 𝑗 + 2𝑎

3

)
2 −

(
2𝑎 +𝑚 𝑗

) (
𝐺2

𝑗𝑖
𝑚 𝑗 −

2𝑎𝐺 𝑗𝑖

3

)
2𝑎 +𝑚 𝑗

𝑎𝑛𝑑 𝜖2 =
𝑎

𝑚 𝑗

+

√︄
2𝑎

𝑚 𝑗

(
𝐺 𝑗𝑖 +

𝑎

2𝑚 𝑗

)
.

Focusing on each dimension to derive the bound for a given probability allows for greater

flexibility than treating the function holistically. Given the bound 𝑦𝑔 from the result of each

dimension, we then aggregate by union bound. In particular, with the bounds in Lem. 4 for |𝐹 𝑗𝑖−𝐺 𝑗𝑖 |
where 𝑖 ∈ [1, 𝑠𝛼 ], we can bound ∥F𝑗 − G𝑗 ∥∞ by taking the maximum 𝑦𝑔 among each upper-

bound 𝑦𝑔𝑖 of |𝐹 𝑗𝑖 − 𝐺 𝑗𝑖 |, i.e., 𝑦𝑔 = max𝑖∈[1,𝑠𝛼 ] 𝑦𝑔𝑖 . Concretely, we have P(∥F𝑗 − G𝑗 ∥∞ ≤ 𝑦𝑔) ≥
1 −∑

𝑖∈[1,𝑠𝛼 ] P( |𝐹 𝑗𝑖 −𝐺 𝑗𝑖 | > 𝑦𝑔) ≥ 1 −∑
𝑖∈[1,𝑠𝛼 ] P( |𝐹 𝑗𝑖 −𝐺 𝑗𝑖 | > 𝑦𝑔𝑖 ) = 1 −∑

𝑖∈[1,𝑠𝛼 ] (1 − 𝑣 ′𝑔)/𝑠𝛼 = 𝑣 ′𝑔 ,
meaning that given the probability 𝑣 ′𝑔 of success, 𝑓𝑗 = ∥F𝑗 − G𝑗 ∥∞ is upper bounded by 𝑦𝑔.

After that, we discuss how to derive the upper-bound of E[𝑓𝑗 ] based on the above results. With

the results of 𝑦𝑔’s, we have E[𝑓𝑗 ] ≤
∑𝑡
𝑔=1 𝑦𝑔𝑣𝑔 =

∑𝑡
𝑔=1 𝑦𝑔 (𝑣 ′𝑔 − 𝑣 ′𝑔−1) = E[𝑓𝑗 ]. The algorithm for

upper bounding E[𝑓𝑗 ] where 𝑗 = 1, 2 is formally presented in Algo. 1. Initially, we define the total

number 𝑡 of groups as ⌈log
2
𝑛 𝑗 ⌉ + 1 and set a series of probabilities of success as shown in Algo. 1

Line 1. In the calculation of each group, we derive the bound 𝑦𝑔𝑖 for each dimension with Lem. 4

and aggregate them as 𝑦𝑔 with the maximum operator (Algo. 1 Lines 2-5). For the last probability

𝑣 ′𝑡 of success, we set the corresponding upper-bound as the largest possible value of 𝑓𝑗 , i.e., 1 (Algo.

1 Line 6). Finally, we obtain a bound for E[𝑓𝑗 ], i.e., E[𝑓𝑗 ] =
∑𝑡
𝑔=1 𝑦𝑔𝑣𝑔 (Algo. 1 Line 8).

The technique above bounds the expectation E[𝑓𝑗 ] of the sampling error, i.e., 𝑓 𝐾𝑆𝑗 = ∥F𝑗 −G𝑗 ∥∞,
which is used to calculate the difference between the exact metric function value and its estimated

result. With the bounds E[𝑓𝑗 ] for 𝑗 = 1, 2, we can derive the lower- and upper-bounds of KS-test as

shown in the previous subsection.

3.3 Distribution of Failure Probabilities
According to Lem. 3, the confidence radius 𝑟𝐾𝑆 is the summation of two parts, one for 𝑗 = 1 and

the other for 𝑗 = 2, and each part contains the failure probability. A direct question is raised about

the feasibility to distribute the failure probability for each part to minimize the confidence radius.

In fact, TopKAttr distributes failure probabilities in a heuristic way. Specifically, they distribute

𝑝′
𝑓

√
ℎ1/(
√
ℎ1 +
√
ℎ2) for 𝑗 = 1 and 𝑝′

𝑓

√
ℎ2/(
√
ℎ1 +
√
ℎ2) for 𝑗 = 2 without any theoretical analysis,

where the total failure probability to calculate confidence radius is 𝑝′
𝑓
. In the following, we will

show how to distribute failure probabilities properly with theoretical results. Removing elements

that will not influence the optimization result, this problem can be formalized as

min

𝜆∈[0,1]
ℎ1

√︂
2 ln

(
1/𝑝′

𝑓
/𝜆

)
+ ℎ2

√︂
2 ln

(
1/𝑝′

𝑓
/(1 − 𝜆)

)
.

When defining 𝛿 (𝜆) = ℎ1

√︃
2 ln(1/𝑝′

𝑓
/𝜆) + ℎ2

√︃
2 ln(1/𝑝′

𝑓
/(1 − 𝜆)), the target is to find a 𝜆 ∈ [0, 1]

to minimize function 𝛿 (𝜆). The first derivative of 𝛿 (𝜆) is 𝛿 ′ (𝜆) = ℎ2/(1−𝜆)/
√︃
2 ln(1/𝑝′

𝑓
/(1 − 𝜆)) −

ℎ1/𝜆/
√︃
2 ln(1/𝑝′

𝑓
/𝜆). It is easy to verify that the second derivative 𝛿 ′′ (𝜆) > 0 for 𝜆 ∈ [0, 1], which

means that 𝛿 ′ (𝜆) is monotonically increasing in this range. We then need to find the zero of 𝛿 ′ (𝜆). It
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is nontrivial to find such a solution in a closed form. Alternatively, as 1−𝜆 (resp. 𝜆) under the square

root with logarithmic function cannot dominate the value of 𝛿 ′ (𝜆) compared to the same expression

outside the square root in practice, we solveℎ2/(1−𝜆)/
√︃
2 ln(1/𝑝′

𝑓
)−ℎ1/𝜆/

√︃
2 ln(1/𝑝′

𝑓
) = 0 instead,

which provides a closed-form solution 𝜆 = ℎ1/(ℎ1 + ℎ2). Thus, we distribute failure probabilities
𝑝′
𝑓
· ℎ1/(ℎ1 + ℎ2) for 𝑗 = 1 and 𝑝′

𝑓
· ℎ2/(ℎ1 + ℎ2) for 𝑗 = 2 in Lem. 3 with theoretical guarantees.

3.4 Extension to other Metric Functions
The analysis in previous subsections focuses on approximating KS-test. As mentioned earlier,

our framework estimates the results on each dimension and aggregates them to approximate the

real metric function. This technique has the potential to be applied to most metric functions for

comparing distributions. In this subsection, we will apply the proposed technique to other metric

functions, such as the Chebyshev distance, Earth Mover distance, and Euclidean distance. Instead

of estimating the empirical cumulative distribution function of each dimension, we focus on the

distribution function according to their definitions and then aggregate them, demonstrating the

generality and flexibility of our framework.

Approximation of Chebyshev distance. The analysis of Chebyshev distance is similar to

that of KS-test by replacing the empirical cumulative distribution with the data distribution on the

corresponding attribute. Following the analysis of KS-test, the absolute difference between the exact

Chebyshev distance 𝐷𝐶𝐻 (𝛼) and its estimation �̂�𝐶𝐻 (𝛼) on attribute 𝛼 is |𝐷𝐶𝐻 (𝛼) − �̂�𝐶𝐻 (𝛼) | ≤
𝑓 𝐶𝐻
1
+ 𝑓 𝐶𝐻

2
, where 𝑓 𝐶𝐻𝑗 is defined as 𝑓 𝐶𝐻𝑗 = ∥p𝑗 − q𝑗 ∥∞ for 𝑗 = 1, 2 with data distributions p𝑗 and

q𝑗 rather than empirical cummulative distributions F𝑗 and G𝑗 in KS-test. Notice that each 𝑝 𝑗𝑖 in

p𝑗 represents the probability of the record in subset S𝑗 containing value equal to 𝑒𝑖 on attribute

𝛼 and 𝑞 𝑗𝑖 is the corresponding probability among𝑚 𝑗 samples from subset S𝑗 . To bound 𝑓 𝐶𝐻𝑗 , we

first derive an upper-bound E[𝑓 𝐶𝐻𝑗 ] of its expectation E[𝑓 𝐶𝐻𝑗 ] by invoking a variant of Algo. 1.

The only difference is that we calculate the upper-bound of |𝑝 𝑗𝑖 − 𝑞 𝑗𝑖 | instead of |𝐹 𝑗𝑖 −𝐺 𝑗𝑖 | by the

following lemma with given probability 𝑣 ′𝑔 of success in Line 4.

Lemma 5. Given attribute𝛼 with support size 𝑠𝛼 ,𝑚 𝑗 sampled records fromS𝑗 , and failure probability
(1 − 𝑣 ′𝑔)/𝑠𝛼 , |𝑝 𝑗𝑖 − 𝑞 𝑗𝑖 | ≤ max(𝜖1, 𝜖2) = 𝑦𝑔𝑖 holds with probability at least 1 − (1 − 𝑣 ′𝑔)/𝑠𝛼 where

𝜖1 =

2𝑎𝑞 𝑗𝑖 − 2𝑎
3
+

√︂(
𝑞 𝑗𝑖𝑚 𝑗 + 2𝑎

3

)
2 −

(
2𝑎 +𝑚 𝑗

) (
𝑞2
𝑗𝑖
𝑚 𝑗 −

2𝑎𝑞 𝑗𝑖

3

)
2𝑎 +𝑚 𝑗

𝑎𝑛𝑑 𝜖2 =
𝑎

𝑚 𝑗

+

√︄
2𝑎

𝑚 𝑗

(
𝑞 𝑗𝑖 +

𝑎

2𝑚 𝑗

)
.

In Lem. 5, the same parameters as Lem. 4 are omitted due to the limit of space. Besides, the

maximum 𝑦𝑔 among each upper-bound 𝑦𝑔𝑖 of |𝑝 𝑗𝑖 − 𝑞 𝑗𝑖 | bounds 𝑓 𝐶𝐻𝑗 with probability 𝑣 ′𝑔 of success
since P(∥p𝑗 − q𝑗 ∥∞ ≤ 𝑦𝑔) ≥ 1 −∑

𝑖∈[1,𝑠𝛼 ] P( |𝑝 𝑗𝑖 − 𝑞 𝑗𝑖 | > 𝑦𝑔) ≥ 1 −∑
𝑖∈[1,𝑠𝛼 ] P( |𝑝 𝑗𝑖 − 𝑞 𝑗𝑖 | > 𝑦𝑔𝑖 ) =

1 −∑
𝑖∈[1,𝑠𝛼 ] (1 − 𝑣 ′𝑔)/𝑠𝛼 = 𝑣 ′𝑔 with union bound. Then the lower- and upper-bounds of Chebyshev

distance follow Lem. 3 with the substitution of E[𝑓 𝐾𝑆𝑗 ] with E[𝑓 𝐶𝐻𝑗 ] calling of the variant of Algo.

1 mentioned above.

Extension to Earth Mover and Euclidean distance. To compute Earth Mover distance, we

analyze the gap between the distribution and its estimation in each dimension. Yet, instead of

combining the results from each dimension by taking the maximum, we sum up the differences

to obtain the gap between the true Earth Mover distance and its estimated value using the union

bound, which is derived from the definition of Earth Mover distance. Besides, we adaptively modify

the aggregation method for Euclidean distance. It is worth noting that for Earth Mover distance,

the absolute difference between the actual and estimated values |𝐷𝐸𝑀 (𝛼) − �̂�𝐸𝑀 (𝛼) | is bounded
by

1

2
(𝑓 𝐸𝑀

1
+ 𝑓 𝐸𝑀

2
). As a similar analysis of Euclidean distance, the absolute difference between the
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Algorithm 2: Approximate Top-𝑘 Attributes

Input: Table T , predicates 𝑃1 and 𝑃2, 𝑘 , 𝑝 𝑓 , 𝜖
Output: An approximate top-𝑘 query answer

1 𝐶 ← 𝐴,𝑚 ←𝑚0, 𝑅 ← ∅, 𝑖max ← ⌈log2 𝑛
𝑚0

⌉, 𝑝′
𝑓
← 𝑝𝑓

𝑑 ·𝑖max

;

2 while𝑚 < 𝑛 do
3 Select records satisfying 𝑃1 and 𝑃2 from𝑚 records;

4 for 𝛼 ∈ 𝐶 do
5 Calculate �̂� (𝛼), 𝐷 (𝛼) and 𝐷 (𝛼) by Lem. 3;

6 𝑅 ← top-𝑘 attributes {𝛼 ′
1
, 𝛼 ′

2
, . . . , 𝛼 ′

𝑘
} from 𝐶 according to �̂� (𝛼);

7 Find top-𝑘 lower-bounds {𝐷 (𝛼𝑙
1
), 𝐷 (𝛼𝑙

2
), . . . , 𝐷 (𝛼𝑙

𝑘
)} and upper-bounds

{𝐷 (𝛼𝑢
1
), 𝐷 (𝛼𝑢

2
), . . . , 𝐷 (𝛼𝑢

𝑘
)}

8 if 𝐷 (𝛼 ′𝑖 ) − 𝐷 (𝛼 ′𝑖 ) ≤ 2𝜖 , �̂� (𝛼 ′𝑖 ) − 𝐷 (𝛼𝑙𝑖 ) ≤ 𝜖 and 𝐷 (𝛼𝑢𝑖 ) − �̂� (𝛼 ′𝑖 ) ≤ 𝜖 for 𝑖 ∈ [1, 𝑘] then
9 return 𝑅;

10 else
11 𝑚 ← 2𝑚;

12 for 𝛼 ∈ 𝐶 do
13 if 𝐷 (𝛼) < 𝐷 (𝛼𝑙

𝑘
) then

14 𝐶 ← 𝐶 \ {𝛼};

15 𝑅 ← top-𝑘 attributes from 𝐶 according to 𝐷 (𝛼);
16 return 𝑅;

exact Euclidean distance 𝐷𝐸𝑈 (𝛼) and its estimation �̂�𝐸𝑈 (𝛼) on attribute 𝛼 has an upper-bound

1√
2

(𝑓 𝐸𝑈
1
+ 𝑓 𝐸𝑈

2
) when defining 𝑓 𝐸𝑈𝑗 = ∥p𝑗 − q𝑗 ∥2 where 𝑗 = 1, 2. Rather than deriving an upper-

bound E[𝑓 𝐸𝑀𝑗 ] (resp. E[𝑓 𝐸𝑈𝑗 ]) of E[𝑓 𝐸𝑀𝑗 ] (resp. E[𝑓 𝐸𝑈𝑗 ]) in a closed form to calculate the confidence

radius of Earth Mover distance (resp. Euclidean distance) on attribute 𝛼 as discussed in TopKAttr,

we use another variant of Algo. 1 to get E[𝑓 𝐸𝑀𝑗 ] (resp. E[𝑓 𝐸𝑈𝑗 ]). Specifically, we revise Lines 4-5
in Algo. 1 as calculating the upper-bound 𝑦𝑔𝑖 of |𝑝 𝑗𝑖 − 𝑞 𝑗𝑖 | by Lem. 5 with given probability 𝑣 ′𝑔 of

success and acquire 𝑦𝑔 using
∑
𝑖∈[1,𝑠𝛼 ] 𝑦𝑔𝑖 (resp.

√︃∑
𝑖∈[1,𝑠𝛼 ] 𝑦

2

𝑔𝑖
) to calculate E[𝑓 𝐸𝑀𝑗 ] (resp. E[𝑓 𝐸𝑈𝑗 ]).

During this process, 𝑦𝑔 is able to bound 𝑓 𝐸𝑀𝑗 (resp. 𝑓 𝐸𝑈𝑗 ) with probability 𝑣 ′𝑔 of success from the fact

that P(∥p𝑗 − q𝑗 ∥1 ≤ 𝑦𝑔) ≥ 1 − ∑
𝑖∈[1,𝑠𝛼 ] P( |𝑝 𝑗𝑖 − 𝑞 𝑗𝑖 | > 𝑦𝑔𝑖 ) = 1 − ∑

𝑖∈[1,𝑠𝛼 ] (1 − 𝑣 ′𝑔)/𝑠𝛼 = 𝑣 ′𝑔 (resp.
P(∥p𝑗 − q𝑗 ∥2 ≤ 𝑦𝑔) ≥ 1 −∑

𝑖∈[1,𝑠𝛼 ] P( |𝑝 𝑗𝑖 − 𝑞 𝑗𝑖 | > 𝑦𝑔𝑖 ) = 1 −∑
𝑖∈[1,𝑠𝛼 ] (1 − 𝑣 ′𝑔)/𝑠𝛼 = 𝑣 ′𝑔) using the

union bound. Then, the lower- and upper-bounds of Earth Mover distance (resp. Euclidean distance)

can be derived with Lem. 3 by replacing E[𝑓 𝐾𝑆𝑗 ] with E[𝑓 𝐸𝑀𝑗 ] (resp. E[𝑓 𝐸𝑈𝑗 ]). As our technique
emphasizes each dimension of the distribution, it is flexible to derive bounds for complicated

expressions and has potential for other metrics. We will explore this in our future work.

4 APPROXIMATE TOP-𝑘 QUERY PROCESSING
With the approximations of metric functions, we next show how the proposed framework answers

approximate top-𝑘 queries. Approximate top-𝑘 algorithm. Algo. 2 presents the pseudo-code
for finding approximate top-𝑘 attributes with respect to a general metric function. To begin with,

all attributes 𝛼 ∈ 𝐴 are included in a candidate set 𝐶 and the number𝑚 of records to retrieve is

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 239. Publication date: December 2023.



Efficient Approximation Framework for Attribute Recommendation 239:15

initialized as𝑚0. During the iteration, we select𝑚1 (resp.𝑚2) records satisfying predicate 𝑃1 (resp.

𝑃2) from𝑚 records for the later estimation of metric functions (Algo. 2 Line 3). Then, the estimate,

lower- and upper-bounds of the metric function value are calculated for each attribute 𝛼 ∈ 𝐶 ,

denoted as �̂� (𝛼), 𝐷 (𝛼) and 𝐷 (𝛼), respectively (Algo. 2 Lines 4-5). Based on their estimates �̂� (𝛼),
the estimated top-𝑘 attributes {𝛼 ′

1
, 𝛼 ′

2
, . . . , 𝛼 ′

𝑘
} are placed into a result set 𝑅. Furthermore, based

on the calculated results, we compute the 𝑘 largest lower-bounds {𝐷 (𝛼𝑙
1
), 𝐷 (𝛼𝑙

2
), . . . , 𝐷 (𝛼𝑙

𝑘
)} and

upper-bounds {𝐷 (𝛼𝑢
1
), 𝐷 (𝛼𝑢

2
), . . . , 𝐷 (𝛼𝑢

𝑘
)}. If the difference between the lower- and upper-bounds

of each attribute 𝛼 ∈ 𝑅 is no larger than 2𝜖 , and the distances from the estimate �̂� (𝛼) to both

𝐷 (𝛼𝑙𝑖 ) and 𝐷 (𝛼𝑢𝑖 ) are no greater than 𝜖 , then we return set 𝑅 for the query as the returned 𝑘

attributes will satisfy the conditions of the approximate top-𝑘 query in Def. 2 (Algo. 2 Lines 8-9).

Otherwise, the number of retrieved records is doubled to obtain more accurate results. Additionally,

we safely prune the attributes whose upper-bounds are smaller than the 𝑘-th largest lower-bound

to accelerate the query, as they cannot be returned with high probability. If the approximate top-𝑘

attributes cannot be found after retrieving 𝑛 records, the exact metric function values are calculated

for each attribute 𝛼 ∈ 𝐶 and the exact top-𝑘 results are returned.

Theoretical analysis. Next, we demonstrate the correctness of Algo. 2. Specifically, the 𝑘

attributes returned by the algorithm will satisfy the definition of the approximate top-𝑘 query with

a high probability.

Theorem 1. Algo. 2 returns a result set 𝑅 = {𝛼 ′
1
, 𝛼 ′

2
, . . . , 𝛼 ′

𝑘
} of attributes selected from a set 𝐴 of

all attributes, where these 𝑘 attributes satisfy the approximate top-𝑘 query definition in Def. 2 with a
probability of at least 1 − 𝑝 𝑓 .

We then discuss the expected running time of Algo. 2.

Theorem 2. The expected running time of Algo. 2 to answer the approximate top-𝑘 query for
attribute recommendation is

O
©«
min


𝑑𝑛,

𝑑∑
𝑖=1

(
log

1

2

(
𝑑 log𝑛

𝑝𝑓

)
+

2∑
𝑗=1

log

1

2

(
𝑛 𝑗𝑠𝛼𝑖

) )2
𝜖2𝜂


ª®®®®¬
.

5 THEORETICAL ANALYSIS
We next show the omitted proofs in Sec. 3 and Sec. 4. The proofs of Lem. 3, Lem. 5, and Thm. 2 are

omitted due to limited space. Interested readers are referred to our technical report [1].

Proof of Lem. 4. In this lemma, we establish an upper-bound on the absolute difference between

𝐹 𝑗𝑖 and its estimate𝐺 𝑗𝑖 with a high probability. Recall that 𝐹 𝑗𝑖 =
∑𝑖
𝑘=1

𝑝 𝑗𝑖 is the empirical cumulative

distribution function of attribute 𝛼 in subset S𝑗 representing the ratio of attribute values on 𝛼

that are no larger than 𝑒𝑖 for records in subset S𝑗 where 𝑖 ∈ [1, 𝑠𝛼 ] and 𝑗 = 1, 2. Each sample

can be regarded as a Bernoulli trial without replacement. Therefore, we have 𝐹 𝑗𝑖 = E[𝐺 𝑗𝑖 ]. We

first examine the probability that the value of 𝐺 𝑗𝑖 − 𝐹 𝑗𝑖 is at least 𝜖1, and we obtain the following
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inequality where 𝑎 = ln(2𝑠𝛼/(1 − 𝑣 ′𝑘 ′ ))

P(𝐺 𝑗𝑖 − 𝐹 𝑗𝑖 ≥ 𝜖1) = P(𝐹 𝑗𝑖 ≤ 𝐺 𝑗𝑖 − 𝜖1) = P
©«
𝐹 𝑗𝑖 ≤

𝐺 𝑗𝑖 + 2𝑎
3𝑚 𝑗
−

√︂(
𝐺 𝑗𝑖 + 2𝑎

3𝑚 𝑗

)
2

−
(
2𝑎
𝑚 𝑗
+ 1

) (
𝐺2

𝑗𝑖
− 2𝑎𝐺 𝑗𝑖

3𝑚 𝑗

)
2𝑎
𝑚 𝑗
+ 1

ª®®®®¬
≤P

((
2𝑎

𝑚 𝑗
+ 1

)
𝐹 2𝑗𝑖 −

(
2𝐺 𝑗𝑖 +

4𝑎

3𝑚 𝑗

)
𝐹 𝑗𝑖 +𝐺2

𝑗𝑖 −
2𝑎𝐺 𝑗𝑖

3𝑚 𝑗
≥ 0

)
= P

©«𝐺 𝑗𝑖 ≥ 𝐹 𝑗𝑖 +
𝑎

3𝑚 𝑗
+

√√
𝑎2

9𝑚2

𝑗

+
2𝑎𝐹 𝑗𝑖 (1 − 𝐹 𝑗𝑖 )

𝑚 𝑗

ª®¬ .
The last equation holds as the probability of the other side is 0 conditioned on𝐺 𝑗𝑖 ≥ 𝐹 𝑗𝑖 . Define 𝛿1

as
𝑎

3𝑚 𝑗
+

√︂
𝑎2

9𝑚2

𝑗

+ 2𝑎𝐹 𝑗𝑖 (1−𝐹 𝑗𝑖 )
𝑚 𝑗

, 𝛿2
1
= 2𝑎𝐹 𝑗𝑖 (1 − 𝐹 𝑗𝑖 )/𝑚 𝑗 + 2𝑎𝛿1/3/𝑚 𝑗 . By [5] (Prop. 1.4), we have

P
(
𝐺 𝑗𝑖 ≥ 𝐹 𝑗𝑖 + 𝛿1

)
≤ exp

(
−

𝑚 𝑗𝛿
2

1

2𝐹𝑖 𝑗 (1 − 𝐹 𝑗𝑖 ) + 2𝛿1
3

)
=
1 − 𝑣 ′

𝑘 ′

2𝑠𝛼
.

We then consider the case where 𝐹 𝑗𝑖 −𝐺 𝑗𝑖 is no smaller than 𝜖2.

P(𝐹 𝑗𝑖 −𝐺 𝑗𝑖 ≥ 𝜖2) = P(𝐹 𝑗𝑖 ≥ 𝐺 𝑗𝑖 + 𝜖2) = P
(
𝐹 𝑗𝑖 ≥ 𝐺 𝑗𝑖 +

𝑎

𝑚 𝑗

+

√︄
2𝑎

𝑚 𝑗

(
𝐺 𝑗𝑖 +

𝑎

2𝑚 𝑗

))
=P

(√︁
𝐹 𝑗𝑖 −

√︂
𝑎

2𝑚 𝑗

≥
√︂
𝐺 𝑗𝑖 +

𝑎

2𝑚 𝑗

)
≤ P

(
𝐺 𝑗𝑖 ≤ 𝐹 𝑗𝑖 −

√︄
2𝑎𝐹 𝑗𝑖

𝑚 𝑗

)
.

Define 𝛿2 as

√︃
2𝑎𝐹 𝑗𝑖

𝑚 𝑗
. From [11] (Thm. 7), we have

P
(
𝐺 𝑗𝑖 ≤ 𝐹 𝑗𝑖 − 𝛿2

)
≤ exp

(
−

𝑚 𝑗𝛿
2

2

2𝐸 [𝐺2

𝑗𝑖
]

)
≤ exp

(
−
𝑚 𝑗𝛿

2

2

2𝐹 𝑗𝑖

)
=
1 − 𝑣 ′

𝑘 ′

2𝑠𝛼
.

The last inequality comes from the fact that E[𝐺2

𝑗𝑖 ] ≤ E[𝐺 𝑗𝑖 ] = 𝐹 𝑗𝑖 . With union bound, we have

|𝐹 𝑗𝑖 −𝐺 𝑗𝑖 | ≤ max(𝜖1, 𝜖2) with probability at least 1 − (1 − 𝑣 ′
𝑘 ′ )/𝑠𝛼 . □

Proof of Thm. 1. In Algo. 2, the returned attributes based on the approximate results have

the properties that 𝐷 (𝛼 ′𝑖 ) − 𝐷 (𝛼 ′𝑖 ) ≤ 2𝜖 for 𝑖 ∈ [1, 𝑘]. We define the estimation �̂� (𝛼) of 𝐷 (𝛼) as
�̂� (𝛼) = (𝐷 (𝛼) + 𝐷 (𝛼))/2. Since 𝐷 (𝛼 ′𝑖 ) ≤ 𝐷 (𝛼 ′𝑖 ) ≤ 𝐷 (𝛼 ′𝑖 ), the absolute difference between 𝐷 (𝛼)
and �̂� (𝛼) is no larger than 𝜖 , i.e., |𝐷 (𝛼 ′𝑖 ) − �̂� (𝛼 ′𝑖 ) | ≤ 𝜖 , which satisfies the first condition in Def. 2.

For attribute 𝛼∗𝑖 , where 𝑖 ∈ [1, 𝑘] and which is the attribute with the 𝑖-th largest metric function

value, we have 𝐷 (𝛼𝑙𝑖 ) ≤ 𝐷 (𝛼∗𝑖 ) ≤ 𝐷 (𝛼𝑢𝑖 ) since 𝛼𝑙𝑖 is the attribute with the 𝑖-th largest lower-bound

and 𝛼𝑢𝑖 is the attribute with the 𝑖-th largest upper-bound. The distances between �̂� (𝛼 ′𝑖 ) and the

boundaries of 𝐷 (𝛼∗𝑖 ), i.e., 𝐷 (𝛼𝑙𝑖 ) and 𝐷 (𝛼𝑢𝑖 ), are all no larger than error bound 𝜖 . Therefore, the

absolute difference between the exact 𝑖-th largest metric function value 𝐷 (𝛼∗𝑖 ) and the 𝑖-th largest

estimated value �̂� (𝛼 ′𝑖 ) is no larger than 𝜖 , i.e., |𝐷 (𝛼∗𝑖 ) − �̂� (𝛼 ′𝑖 ) | ≤ 𝜖 , satisfying the second condition

of the definition of the approximate top-𝑘 query. The above analysis assumes that all 𝐷 (𝛼) fall
within their respective confidence intervals. With at most 𝑖max iterations, 𝑑 attributes in each

iteration and the failure probability of each call to calculate 𝐷 (𝛼) and 𝐷 (𝛼) is at most 𝑝′
𝑓
, the total

failure probability of Algo. 2 is at most 𝑝′
𝑓
· 𝑑 · 𝑖max = 𝑝 𝑓 . It is easy to verify that when returning

top-𝑘 attributes with exact values, all returned attributes satisfy Def. 2. Hence, Algo. 2 returns

attributes fulfilling Def. 2 with probability at least 1 − 𝑝 𝑓 . □
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Table 2. Summary of datasets
Dataset Rows Columns
Enem 69,940,536 67

Census American Housing 87,154,886 175

Census American Population 185,760,233 192

Airline Reporting Carrier On-Time 194,385,636 53
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Fig. 2. Varying 𝑘 : Running time of the top-𝑘 algorithms on KS-test.
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Fig. 3. Varying 𝑘 : F1-Measure of the query result on KS-test.
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Fig. 4. Varying 𝑘 : Running time of top-𝑘 algorithms on Chebyshev distance.
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Fig. 5. Varying 𝑘 : Running time of top-𝑘 algorithms on Earth Mover distance.

6 EXPERIMENTS
This section evaluates the proposed framework against the alternatives experimentally. All experi-

ments are conducted on a Linux machine with an Intel Xeon CPU @2.3GHz and 448GB memory.

6.1 Settings
Datasets. To validate the efficiency and effectiveness of the algorithms, we utilize four large real

datasets: Enem, Census American Housing (hus), Census American Population (pus), and Airline

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 239. Publication date: December 2023.



239:18 Xingguang Chen, Fangyuan Zhang, Jinchao Huang, and Sibo Wang

10
-2

10
-1

10
0

10
1

1 2 4 8 16

running time (s)

k

10
-1

10
0

10
1

1 2 4 8 16

running time (s)

k

10
-1

10
0

10
1

1 2 4 8 16

running time (s)

k

10
-1

10
0

10
1

1 2 4 8 16

running time (s)

k

(a) enem (b) hus (c) pus (d) airline

Fig. 6. Varying 𝑘 : Running time of top-𝑘 algorithms on Euclidean distance.

Reporting Carrier On-Time (airline). Each dataset consists of more than 60 million records and no

fewer than 50 attributes. These large real datasets are publicly available online and were previously

tested in [49, 50], with statistics summarized in Tab. 2. To obtain two subsets S1 and S2 of a dataset,
we randomly generate predicates 𝑃1 and 𝑃2 that satisfy corresponding selectivities. Throughout all

experiments, each metric is averaged over 10 cases.

Algorithms.We compare our approximation framework for attribute recommendation (AFFAIR)

with the state-of-the-art solution TopKAttr [49] and exact method by scanning all records (dubbed

as Exact). For Earth Mover distance and Euclidean distance, we compare our AFFAIR with TopKAttr

and Exact. For TopKAttr, we set the number of records in each partition to be 100K, in line with

the configuration mentioned in [50] which uses the same methodology as TopKAttr to find top-𝑘

attributes but focuses on the single-machine in-memory setting. Only Exact is compared on KS-test

and Chebyshev distance since TopKAttr does not provide a solution for these metric functions.

The evaluation focuses on the running time for all algorithms and the F1-measure of the results

returned by approximation algorithms. All algorithms are implemented with C++ and compiled

with full optimization.

Parameters. Both AFFAIR and TopKAttr require a failure probability in the top-𝑘 algorithms,

denoted by 𝑝 𝑓 , which is set to 𝑝 𝑓 = 1/𝑛 where 𝑛 is the total number of records in the dataset. In

our AFFAIR, an error bound 𝜖 is provided to trade off the query efficiency and accuracy. As will be

discussed in Sec. 6.4, we set the default value of 𝜖 to 0.05 as it balances efficiency and accuracy well.

For the initial sample𝑚0 (Ref. to Algo. 2), we set it to 1024 to align it to a page size if the record

values are integers.

6.2 Top-𝑘 Query Processing
In this subsection, we present the evaluation of our framework against alternatives on top-𝑘 queries

using four different metric functions: KS-test, Chebyshev distance, Earth Mover distance, and

Euclidean distance. To evaluate the influence of parameter 𝑘 on performance, we vary 𝑘 from 1 to

16. We report the results for 𝑘 = {1, 2, 4, 8, 16} while using a fixed error bound of 𝜖 = 0.05 and a

selectivity of 𝜂 = 0.5.

Effectiveness on KS-test and Chebshev distance. Fig. 2 shows the running time of top-𝑘

algorithms on the KS-test. For all cases, AFFAIR is 90× faster than Exact. When 𝑘 = 1 on dataset

pus, AFFAIR achieves an up to 1430× speed-up over Exact. As for accuracy, AFFAIR returns the

same top-𝑘 attributes as Exact with 100% F1-measure in all cases on all datasets, as shown in Fig.

3. It shows that our AFFAIR gains superb efficiency without any trade-off to accuracy, which is

the preferred choice. For remaining metric functions, our framework consistently achieves nearly

100% F1-measure on all datasets in all cases. Hence, we omit the results for the interest of space.

Interested readers are referred to our technical report [1].

Next, we examine the performance of AFFAIR with Chebshev distance. Fig. 4 shows that AFFAIR

is more than 80× faster than Exact in all cases. Specifically, AFFAIR has an up to 819× speed-up
over Exact when 𝑘 = 1 on dataset pus.
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Fig. 7. Varying 𝜂: Running time on KS-test.
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Fig. 8. Varying 𝜂: Running time on Chebyshev distance.

Effectiveness on Earth Mover and Euclidean distance. Fig. 5 demonstrates that AFFAIR

outperforms both Exact and TopKAttr in all cases on Earth Mover distance, with up to 67× speed-up
over Exact when 𝑘 = 2 on dataset pus, and up to 12× speed-up over TopKAttr when 𝑘 = 16 on

dataset pus.

Next, we examine the performance of all methods on Euclidean distance. As shown in Fig. 6, our

AFFAIR outperforms alternatives in terms of efficiency in all cases. Notably, when 𝑘 = 8, AFFAIR is

up to 165× faster than Exact on pus dataset; our solution further obtains up to 16× speed-up over

TopKAttr when 𝑘 = 16 on hus.

6.3 Impact of Selectivity 𝜼
We also conduct a set of experiments to evaluate the impact of selectivity 𝜂. To do this, we vary 𝜂

from 0.1 to 1 and show the results when 𝜂 is {0.1, 0.25, 0.5, 0.75}. In this set of experiments, error

bound 𝜖 is set to 0.05, and 𝑘 is fixed at 16. For the interest of space, we only report the results on

two datasets: hus and airline. The results on all datasets can be found in our technical report [1].

The accuracy result in terms of F1-measure is also omitted as all approximate algorithms return

results with nearly 100% F1-measure. Interested readers are referred to [1] for the results.

Effectiveness on KS-test and Chebyshev distance. Fig. 7 shows the running time on KS-test.

Across all instances, AFFAIR is at least 50× faster than Exact and achieves up to two orders of

magnitude speed-up over Exact on both datasets. Again, AFFAIR is at least 50× faster than Exact in

all cases and achieves up to two orders of magnitude speed-up over Exact on both datasets.

Effectiveness on Earth Mover and Euclidean distance. Fig. 9 reports the running time with

Earth Mover distance as the metric. It shows that AFFAIR outperforms both Exact and TopKAttr in

all cases in terms of running time. When 𝜂 = 0.75 on dataset hus, our AFFAIR is up to 30× faster
than Exact and exhibits a significant speed-up of up to 17× over TopKAttr.

Fig. 10 reports the running time with Euclidean distance as the metric. It illustrates that AFFAIR

is more than 40× faster than Exact and has a significant speed-up over TopKAttr in all cases based

on their respective running time. When 𝜂 = 0.75 on dataset airline, AFFAIR is up to 114× faster

than Exact, while on dataset hus, AFFAIR achieves an up to 34× speed-up over TopKAttr.
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Fig. 9. Varying 𝜂: Running time on Earth Mover distance.
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Fig. 10. Varying 𝜂: Running time on Euclidean distance.
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Fig. 11. Tuning 𝜖 : KS-test.
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Fig. 12. Tuning 𝜖 : Chebyshev distance.

6.4 Tuning Error Bound Parameter 𝝐
Recap that our AFFAIR has an error-bound parameter 𝜖 to balance efficiency and accuracy. Next,

we evaluate the impact of 𝜖 on the top-𝑘 queries for four distribution comparison metric functions:

KS-test, Chebyshev distance, Earth Mover distance, and Euclidean distance. We vary 𝜖 from 0.001

to 0.5 and report the results when 𝜖 is equal to {0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5}
when fixing 𝑘 at 16 and selectivity 𝜂 at 0.5. As shown in Figs. 11-14 (a), the running time of our

approximate top-𝑘 query on KS-test and Chebyshev distance sharply decreases with increasing

𝜖 . However, for 𝜖 > 0.05, the F1-measures drop below 98% on KS-test for dataset pus, as shown

in Fig. 11 (b), and on Chebyshev distance for datasets enem, hus, and pus, as shown in Fig. 12

(b). When 𝜖 > 0.05, the F1-measures fall below 98% on Earth Mover distance for datasets hus and

pus as shown in Fig. 13 (b) and on Euclidean distance for all four datasets as shown in Fig. 14 (b).

Therefore, we use 𝜖 = 0.05 as the default setting of all four tested metric functions since it achieves

the best trade-off between efficiency and accuracy.
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Fig. 13. Tuning 𝜖 : Earth Mover distance.
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Fig. 14. Tuning 𝜖 : Euclidean distance.

6.5 User Study
Next, we have a user study to assess the effectiveness of our recommended attributes based on

metric functions for real users.

Comparing different metric functions. Following SeeDB [48], we use the pus dataset and

the task of analyzing the impact of marital status. Similar to the user study in SeeDB [48], we

set the two predicates married=“True” and married=“False” for trend analysis. The goal is to find

the attributes such that under these two different predicates, the two distributions show different

trends that can be used for analysis. We first visualize the two distributions for 100 attributes when

the predicate married is “True” and “False”, respectively. In SeeDB [48], 5 experts are then asked to

classify each visualization as interesting or not interesting in the context of the task. Then, they use

the majority vote to label the attribute as “interesting” or “not interesting”. We follow their setting

and invite 5 experts to manually label the distribution deviation for each attribute as interesting

and not interesting. We then derive the rank of each attribute by taking the average score of these

5 experts. For instance, if 4 out of 5 experts think the attribute is interesting, the score is 0.8. We

then rank the attributes by the scores. When the attributes have the same score, we rank them by

the alphabetic order of the attribute name to make them consistent no matter how we change the

metric function. Among these 100 attributes, 9 attributes have a score of 1, 9 have a score of 0.8, 9

have a score of 0.6, 6 have a score of 0.4, 6 have a score of 0.2, and all remaining have a score of 0.

Thus, 27 attributes are labeled as “interesting”, and the remaining attributes are “not interesting”. In

Fig. 15, each row indicates an attribute and for the same row, the attribute is the same for all metric

functions, ranked according to the scores of experts. The uppermost attribute has the highest score

1.0, and the attribute at the bottom has the lowest score 0.0 ranked by the experts. Next, a colored

heatmap is drawn based on the rank of each attribute by using each metric function.

The heatmap in Fig. 15 shows a concentration of red bands at the top and blue bands at the

bottom, indicating that all four metric functions perform well in identifying interesting trends with

high values while filtering out uninteresting ones, which suggests that the attributes recommended

by our framework are of high quality.

However, the figure also reveals that there is no one-size-fits-all metric function for the attribute

recommendation task. To explain, firstly, as we can observe from the dashed box at the top in Fig.

15, there exists an attribute “Time of arrival at work” that is ranked high by experts but is ranked

medium with the Euclidean distance (in white color) and ranked low with Chebyshev distance (in

blue color). Fig. 16 shows the detailed distribution of the attribute “Time of arrival at work” for those

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 239. Publication date: December 2023.



239:22 Xingguang Chen, Fangyuan Zhang, Jinchao Huang, and Sibo Wang

Earth Mover Euclidean Chebyshev KS-Test

R
an

k
in

g
 b

y
 E

x
p

er
ts

1

25

50

75

100

R
an

k
in

g
 b

y
 M

et
ri

c 
F

u
n

ct
io

n
s

Fig. 15. Metric functions ranking.

0.0

0.1

0.2

0.3

12:00 am 8:00 am 4:00 pm 11:59 pm

distribution

Time of arrival at work

Fig. 16. Interesting attribute: high ranking with Earth Mover&KS-test; low ranking with Eu-
clidean&Chebyshev.

UnmarriedMarried

0.0

0.05

0.1

0.15

1 99

distribution

Age

Fig. 17. Non-interesting attribute: high ranking with Earth Mover, Euclidean, and KS-test; low ranking with
Chebyshev.

who are married and not married. There is a significant trend change in the time of arrival at work

depending on the marital status, and such a trend can be potentially used in other data analytic

tasks. For example, companies can leverage this trend to strategically place TV advertisements

targeting specific users on public transportation at different times of the day.

Besides, for the dashed box below in Fig. 15, we can find that the attribute “Age”, which is “not

interesting” with a score of 0.0 by the experts, is ranked high (with deep red) by Earth Mover

distance, Euclidean distance, and KS-test. Only Chebyshev provides a low rank to this attribute.

Fig. 17 shows the detailed distribution. There is an obvious trend that a young age tends not to be

married while adults are more likely to be married. This is expected from common sense and is not

interesting from a data scientist’s perspective.

The results show that there is no one-size-fits-all metric function for attribute recommendation

and it is necessary to include a general framework to support more metric functions.

Effectiveness in attribute recommendation. Additionally, we follow SeeDB and adopt the

“receiver operating characteristic” (ROC) curve, a common concept in data mining, to show the

relationship between the false positive rate and the true positive rate. Here, in our studied problem,

the true positive rate measures the ratio of retrieved interesting attributes over the whole set of

interesting attributes. The false positive rate measures the ratio of non-interesting attributes that

are falsely returned in the top-𝑘 answer over the total number of non-interesting attributes. The

goal is to achieve a high true positive rate and a low false positive rate. The area under the ROC

curve (also called the AUC), measures how well a top-𝑘 algorithm balances the true positive rate

and false positive rate. The higher the AUC is, the better the top-𝑘 algorithm is. Generally, when

AUC is above 0.9, the top-𝑘 algorithm is considered to perform excellently. Fig. 18 shows the ROC

curve and the corresponding AUC for these four metric functions, where the top-𝑘 algorithm with
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Fig. 18. ROC of the four metric functions.

all four metric functions can gain excellent AUC, all above 0.95. Besides, KS-test achieves the best

AUC of 0.978, demonstrating a better alternative to Euclidean and Earth Mover distance. We further

combine all four metric functions to obtain the medium score and use the score to derive the top-𝑘

answer. This strategy gains an AUC of 0.982, achieving a better performance. It shows the potential

to improve the effectiveness by supporting different metric functions with a generalized framework.

In summary, our experiments show that all four metric functions effectively recommends in-

teresting attributes for trend analysis. Yet, there is no metric function that is best suited for all

scenarios, as indicated by our findings. Providing a general framework to support more metric

functions other than Euclidean and Earth Mover distance is indeed important. With more metric

functions, we may combine them to avoid the limitations of a specific metric function and have the

potential to gain better results.

7 RELATEDWORK
There are existing works [39, 40] that identify sub-cubes of a cube having the largest deviation

among all sub-cubes, similar to the attribute recommendation problem in [48, 49] which finds

attributes with the largest variations for ad hoc queries. These works use data mining techniques

such as table analysis method [40] and entropy [39]. Seo et. rank attributes to enable the under-

standing of distributions and discovery of relationships [41]. Based on the statistics of data, VizDeck

recommends visualizations with a series of heuristics [26]. Voyager [56] provides univariate sum-

maries for each attribute, suggests additional attributes beyond the selected one by users, and ranks

visualizations according to data properties. SeeDB [48] and TopKAttr [49] recommend attributes

with the largest deviations between two subsets of records under ad hoc queries.

In feature selection, existing works can be categorized as filter methods, wrapper methods, and

embedded methods [28]. This review focuses mainly on the filter methods that rely on statistical

methods to evaluate each attribute. Laplacian score [21] selects features that best preserve the data

manifold structure. Information gain [20] measures the importance of a feature from its correlation

with class labels. Besides, fast correlation-based filter [57] considers both feature-class correlation

and feature-feature correlation. In addition, the Chi-square score [30] leverages the independence

test to validate whether the feature is independent of the class label.

Sampling methods are wildly used in databases [34]. Olken et al. design data structures and

algorithms for sampling from relational databases [35]. Toivonen adopts sampling to find association

rules from large databases efficiently [47]. Additionally, approximate query processing (AQP) is a

technique used in database systems to provide quick and approximate answers to complex queries
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based on samples. Recently, Chaudhuri et al. point out two routes: ceding control over accuracy to

the user and leveraging AQP system for exploratory queries, to integrate AQP into data platforms.

Later, VerdictDB [36], an AQP framework is proposed to work with all off-the-shelf engines using

a middleware architecture.

8 CONCLUSION
This paper proposes a general approximation framework AFFAIR for attribute recommendation

that returns 𝑘 attributes efficiently while providing theoretical guarantees. The framework ac-

commodates a broad range of metric functions such as KS-test, Chebyshev distance, Earth mover

distance, Euclidean distance, and has the potential to integrate more metrics. Extensive experiments

show that AFFAIR is an order of magnitude faster than the state-of-the-art approximate solution

while maintaining consistently high accuracy.
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